Graded Coalgebras of Monads 1 for Continuous Dynamics

- Elena Di Lavore 3
- University of Oxford, England

Mario Román

University of Oxford, England

Abstract 7

- We argue for the time-graded coalgebras of probabilistic and non-determinisic monads to be suitable 8 coalgebraic continuous-time dynamical systems. q
- 2012 ACM Subject Classification 10
- Keywords and phrases Coalgebra, transition systems, continuous time, category theory. 11
- Digital Object Identifier 10.4230/LIPIcs... 12

1 Graded Coalgebras of Graded Monads 13

- Coalgebras are portrayed as machines with a button and a display: each time we press the 14 button, the machine displays a value [3, 7]. This picture is discrete: the button is a morphism, 15 $\alpha \colon X \to F(X)$, and pressing it multiple times induces a map $X \to F^n(X)$. Grading refines 16
- this picture; and graded coalgebras, $\alpha_t \colon X \to F_t(X)$, buy us analog buttons we can modulate. 17

▶ **Definition 1** (Graded monad [9, 6, 1]). A graded monad Θ in a category \mathbb{C} , graded 18 on a monoid (T, \cdot, e) , is a family of endofunctors $\Theta_t \colon \mathbb{C} \to \mathbb{C}$ together with a family of 19 transformations, $\mu_X^{s,t} : \Theta_s(\Theta_t(X)) \to \Theta_{s,t}(X)$; and a natural transformation $\eta_X : X \to \Theta_e(X)$; 20 making the following diagrams commute. 21

▶ Definition 2 (Graded coalgebra). A graded coalgebra for a graded monad Θ is a carrier object, X, together with a family of morphisms $\alpha_t \colon X \to \Theta_t(X)$ indexed over the monoid (T, \cdot, e) , and making the following diagrams commute. 25

26

$$\begin{array}{cccc} X & \xrightarrow{\alpha_s} & \Theta_s X & X & \xrightarrow{\alpha_e} & \Theta_e X \\ & & & & \downarrow \\ \alpha_{s \cdot t} & & & \downarrow \\ & \Theta_{s \cdot t} X & \overleftarrow{\mu_{s,t}} & \Theta_s \Theta_t X & & \Theta_e X \end{array}$$

A coalgebra morphism $f: (X, \alpha) \to (Y, \beta)$ must be such that $\alpha_t \circ f = f \circ \beta_t$ for each $t \in T$. 27

Example 3 (The splitting interval as a list coalgebra, c.f. [8]). Lists form an $(\mathbb{N}, \cdot, 1)$ -graded monad on Set with functors $\operatorname{List}_n(X) = X^n$ and multiplications $\mu_X^{m,n} \colon (X^n)^m \to X^{m \cdot n}$ given by flattening a list of lists. The set of closed intervals, $Int = \{[x, y] \mid x, y \in \mathbb{R}\}$, is a graded coalgebra for the graded list monad. Its coalgebra morphisms, $\alpha_n \colon \text{Int} \to \text{List}_n(\text{Int})$, map an interval [x, y] to the list of intervals obtained by splitting it into n equal parts:

$$\alpha_n([x,y]) = ([z_0, z_1], [z_1, z_2], \dots, [z_{n-1}, z_n]), \text{ for } z_k = x + k \cdot \frac{y - x}{n}$$

Leibniz International Proceedings in Informatics Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany **Proposition 4** (Coalgebras of free monads). Coalgebras for an endofunctor are $(\mathbb{N}, +, 0)$ -

²⁹ graded coalgebras for the $(\mathbb{N}, +, 0)$ -graded monad $F^{\circ n}$ given by n-fold composition of the ³⁰ functor.

2 Continuous-Time Dynamics

Graded coalgebras for a trivially graded monad coincide with Lawvere dynamical systems [5]: monoid homomorphisms from a monoid of grades, (M, \cdot, e) , to the monoid of endomorphisms in the Kleisli category, $\mathbb{C}(X; \Theta(X))$.

Example 5 (Brownian motion). The family of morphims $\beta_s: X \to D(X)$ defining Brownian motion, $\beta_s(x) = \text{Normal}(x; s)$, form a trivially graded coalgebra for the Giry monad [2] over standard Borel spaces. The coalgebra axioms say that $y \sim \text{Normal}(x; s)$ and $z \sim \text{Normal}(y; t)$ imply that $z \sim \text{Normal}(x; s + t)$; and that $y \sim \text{Normal}(x; 0)$ implies y = x.

Regarding Lawvere dynamical systems as coalgebras enables more complex examples: let us translate from a family of non-deterministic snapshots, $\alpha_t(x) \in \mathcal{P}(X)$, to the set of possible paths that explain them.

We fix a monoid representing time (T, \cdot, e) , and an abelian group (S, +, -, 0) representing a space; say, \mathbb{R}^+ for time and \mathbb{R}^2 for space. We consider the set of paths $(T \Rightarrow_0 S)$: functions from time to space, $f: T \to S$ starting at zero, f(e) = 0. In the same way that, in the discrete case, a coalgebra map translates from non-deterministic machines to stream traces, the coalgebra map in Proposition 7 can translate from continuous-time transitions to paths.

⁴⁷ ► Proposition 6 (Coalgebra of paths). The family of functions β_s : $(T \Rightarrow_0 S) \rightarrow (T \Rightarrow_0 S) \times S$ ⁴⁸ defined by $\beta_t(p) = (p(t \cdot \bullet) - p(t), p(t))$ is a T-graded functional coalgebra of the S-writer ⁴⁹ monad.

▶ **Proposition 7** (Possible paths). Let $\alpha_t : X \to X \times S$ be a *T*-graded relational coalgebra of the *S*-writer monad. The following relation, $\gamma : X \to (T \Rightarrow_0 S)$, defined by those paths that have a trace, $x_\bullet : T \to X$, witnessing its plausibility, is a coalgebra map:

 $\gamma(x) = \{ p \in (T \Rightarrow_0 S) \mid \exists x_{\bullet} \colon T \to S.(x_0 = x) \land \forall s, t.(x_{t \cdot s}, p(t \cdot s) - p(t)) \in \alpha_s(x_t) \}.$

This relation maps each $x \in X$ to the set of possible paths starting from that X. This is a continuous-time analogue to computing the set of traces for a non-deterministic machine.

⁵² **3** Early Idea: Stochastic Continuous Dynamics

⁵³ Carefully setting up graded coalgebras allows continuous-time transitions. Apart from ⁵⁴ explicitly computing final coalgebras, two important challenges remain. Firstly, we want ⁵⁵ to force systems to depend continuously on time: this can be achieved by enriching in an ⁵⁶ appropriate category of topological spaces, as it is done for Lawvere dynamical systems. ⁵⁷ A Top-enriched graded coalgebra for a Top-monad Θ consists of a *continuous* function ⁵⁸ $\alpha: T \to C(X, \Theta(X))$ compatible with the monad structure.

Secondly, while memoryful non-deterministic systems do not require much structure, memoryful stochastic systems seem to rely on two features particular to probabilistic programming: stochastic memoization [4] and exact observations [10]. We conjecture coalgebra may help clarifying the categorical semantics of these constructs. 64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

63 References 1 Soichiro Fujii, Shin-ya Katsumata, and Paul-André Melliès. Towards a formal theory of graded monads. In Bart Jacobs and Christof Löding, editors, Foundations of Software Science and Computation Structures - 19th International Conference, FOSSACS 2016, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings, volume 9634 of Lecture Notes in Computer Science, pages 513-530. Springer, 2016. doi:10.1007/978-3-662-49630-5_30. 2 Michèle Giry. A categorical approach to probability theory. In Categorical aspects of topology and analysis, pages 68-85. Springer, 1982. 3 Bart Jacobs. Introduction to coalgebra, volume 59. Cambridge University Press, 2017. Younesse Kaddar and Sam Staton. A model of stochastic memoization and name generation in 4 probabilistic programming: categorical semantics via monads on presheaf categories. *Electronic* Notes in Theoretical Informatics and Computer Science, 3, 2023. F William Lawvere. Toposes of laws of motion, 1997. 5 6 Stefan Milius, Dirk Pattinson, and Lutz Schröder. Generic trace semantics and graded monads. In 6th Conference on Algebra and Coalgebra in Computer Science (CALCO 2015), pages 253–269. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2015. 7 Dirk Pattinson. An introduction to the theory of coalgebras. Course notes for NASSLLI, 2003.

- 8 Dusko Pavlović and Vaughan Pratt. The continuum as a final coalgebra. Theoretical Computer 82 Science, 280(1-2):105-122, 2002. 83
- 9 A. L. Smirnov. Graded monads and rings of polynomials. Journal of Mathematical Sciences, 84 151(3):3032-3051, 2008. 85
- 10 Dario Stein and Sam Staton. Compositional semantics for probabilistic programs with exact 86 conditioning. In 2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science 87 (LICS), pages 1–13. IEEE, 2021. 88