
Monoidal Context Theory

Mario Román

Tallinn University of Technology, PhD Thesis,
Defended on the 16th November 2023, Tallinn

Supervisor: Paweł Sobociński
Opponents: Guy McCusker and Paul-André Melliès

Abstract. We universally characterize the produoidal category of monoidal
lenses over a monoidal category. In the same way that each category induces a
cofree promonoidal category of spliced arrows, each monoidal category induces
a cofree produoidal category of monoidal spliced arrows; monoidal lenses are
the free normalization of the cofree produoidal category of monoidal spliced
arrows.

We apply the characterization of symmetric monoidal lenses to the anal-
ysis of multi-party message-passing protocols. We introduce a minimalistic
axiomatization of message passing – message theories – and we construct com-
binatorially the free message theory over a set. Symmetric monoidal lenses are
the derivations of the free message theory over a symmetric monoidal category.

Monoidiliste Kontekstide Teooria
Kokkuvõte. Karakteriseerime monoidiliste läätsede produoidilise kategoo-
ria universaalomaduse abil. Nii nagu iga kategooria indutseerib pleissitud
noolte kovaba promonoidilise kategooria, indutseerib monoidiline kategooria
monoidiliste pleissnoolte kovaba produoidilise kategooria; monoidilised läätsed
on monoidiliste pleissnoolte kovaba produoidilise kategooria vaba normalisat-
sioon.

Kasutame sümmeetriliste monoidiliste läätsede karakterisatsiooni mitme
osapoole sõnumiedastusprotokollide analüüsimiseks. Toome sisse sõnumiedas-
tuse minimalistliku aksiomatisatsiooni – sõnumiteooriaid – ja konstrueerime
vaba sõnumiteooria etteantud hulgal. Sümmeetrilised monoidilised läätsed on
sümmeetrilise monoidilise kategooria vaba sõnumiteooria tuletised.

3

Acknowledgements. I would like to thank my PhD advisor, Pawel Sobocin-
ski. Pawel has an exceptional ability to separate the scientifically promising ideas
from the noise; he gave me the support, encouragement and freedom to pursue the
research on this thesis. Pawel always said he wanted to replicate in Tallinn the
atmosphere of Bob Walters’ group in Sydney and I am particularly thankful for the
result. I am also very grateful to Nicoletta Sabadini, for her advice and for sharing
her encyclopedic knowledge of both automata and the history of Como.

Most ideas were cultivated at group meetings, and I want to thank Ed, Chad,
Clémence, Nathan, Diana, Fosco, Elina, Amar, Cole, Philipp, Ekaterina, Niccolò,
Michele, Andrea, and the rest of the Tarkvarateaduse Instituut for all the math
and time we shared. I am very grateful to Niels, for his contagious enthusiasm and
much useful feedback on this thesis. Special thanks go to Matt for his attention
to detail and mathematical elegance, great discussions and ideas, and equally great
book recommendations.

I learned and enjoyed a lot on short but productive visits to Pisa, Como, Oxford
and Paris, and I want to thank Filippo, Alessandro, Vladimir, Louis and Davidad
for many insightful discussions during this thesis. I had the privilege of having
Giovanni, James, and Dylan as coauthors and I learned a lot from each one of
them.

I thank the constant support of my parents, my brother Víctor, and my friends;
I especially thank David and Esperanza for finding the best cafés in Granada. I
thank Anna, Paolo, Enrico and Andrea for the time at the lake. Finally, I thank
Elena: for all the fun we had writing each joint paper, and for all the happiness,
math and drawings of these four years.

Contents

Acknowledgements 3
Preface 9
Introduction 10

Processes and Diagrams 10
Algebra and Duoidal Algebra 10
Fundamental Structures for Message Passing 11
Global Effects 13
Monoidal Context Theory 13

Overview 14
Chapter 1: Process Theories 14
Chapter 2: Context Theory 14
Chapter 3: Monoidal Context Theory 14
Chapter 4: Monoidal Message Passing 14

Contributions 15
Literature 15

Chapter 1. Monoidal Process Theory 17
Monoidal Process Theory 17
1.1. Monoidal Categories 18

1.1.1. Strict Monoidal Categories 18
1.1.2. Some Words on Syntax 18
1.1.3. String Diagrams of Strict Monoidal Categories 20
1.1.4. Example: Crema di Mascarpone 22
1.1.5. Bibliography 22

1.2. Non-Strict Monoidal Categories 23
1.2.1. Non-Strictness 23
1.2.2. Coherence 23
1.2.3. String Diagrams of Monoidal Categories 24
1.2.4. Bibliography 24

1.3. String Diagrams of Bicategories 25
1.3.1. String diagrams of 2-categories 25
1.3.2. Bicategories 26
1.3.3. Example: Adjunctions 26
1.3.4. Bibliography 27

1.4. Symmetric Monoidal Categories and Do-Notation 28
1.4.1. Commutative Monoidal Categories 28
1.4.2. Symmetric Monoidal Categories 28
1.4.3. Do-Notation 30
1.4.4. Symmetry in Do-notation 32
1.4.5. Quotienting Do-notation 33
1.4.6. Example: the XOR Variable Swap 35
1.4.7. Bibliography 36

1.5. Cartesianity: Determinism and Totality 38

5

6 CONTENTS

1.5.1. Cartesian Monoidal Categories 38
1.5.2. Partial Markov Categories 40
1.5.3. Bibliography 42

1.6. Premonoidal Categories 44
1.6.1. Premonoidal Categories 44
1.6.2. Effectful and Freyd Categories 45
1.6.3. Bibliography 47

1.7. String Diagrams for Premonoidal Categories 48
1.7.1. Effectful Polygraphs 48
1.7.2. Adding Runtime 48
1.7.3. Example: a Theory of Global State 53
1.7.4. Bibliography 54

Chapter 2. Context Theory 57
Context Theory 57
2.1. Profunctors and Coends 58

2.1.1. Profunctors 58
2.1.2. Dinaturality and Composition 59
2.1.3. Coend Calculus 59
2.1.4. The Point of Coend Calculus 60
2.1.5. Promonads 61
2.1.6. Bibliography 62

2.2. Multicategories 63
2.2.1. Multicategories 63
2.2.2. The Category of Multicategories 63
2.2.3. Application: Shufflings 64

2.3. Malleable Multicategories 65
2.3.1. Promonoidal Categories 65
2.3.2. Promonoidal Categories are Malleable Multicategories 66
2.3.3. Bibliography 68

2.4. The Splice-Contour Adjunction 69
2.4.1. Contour of a multicategory 69
2.4.2. Spliced Arrows 69
2.4.3. Splice-Contour Adjunction 70
2.4.4. Promonoidal Splice-Contour 71

Chapter 3. Monoidal Context Theory 73
Monoidal Context Theory 73
3.1. Duoidal categories 74

3.1.1. Duoidal Categories 74
3.1.2. Communication via Duoidals 74
3.1.3. Duoidals via adjoint monoids 75
3.1.4. Be Careful with Duoidal Coherence 76
3.1.5. Bibliography 78

3.2. Normal Duoidal Categories 79
3.2.1. Normalization of duoidal categories 79
3.2.2. Physical duoidal categories 80
3.2.3. Physical Lax Tensor of a Physical Duoidal Category 81
3.2.4. Bibliography 82

3.3. Produoidal Decomposition of Monoidal Categories 83
3.3.1. Produoidal categories 83
3.3.2. Monoidal Contour of a Produoidal Category 84
3.3.3. Produoidal Splice of a Monoidal Category 85

CONTENTS 7

3.3.4. A Representable Parallel Structure 88
3.3.5. Bibliography 88

3.4. Interlude: Produoidal Normalization 89
3.4.1. Normal Produoidal Categories 89
3.4.2. The Normalization Monad 89
3.4.3. Symmetric Normalization 93
3.4.4. Bibliography 93

3.5. Monoidal Lenses 94
3.5.1. The Category of Monoidal Lenses 94
3.5.2. Symmetric Monoidal Lenses 95
3.5.3. Towards Message Theories 97
3.5.4. Bibliography 99

Chapter 4. Monoidal Message Passing 101
Monoidal Message Passing 101
4.1. Message Theories 102

4.1.1. Message Theories 102
4.1.2. Properties of a Message Theory 103
4.1.3. Coherence for Message Theories 106
Bibliography 107

4.2. Physical Monoidal Multicategories, and Shufflings 109
4.2.1. Symmetric Multicategories 109
4.2.2. Monoidal Multicategories 109
4.2.3. Physical Monoidal Multicategories 110
4.2.4. Shuffling 110
4.2.5. Bibliography 111

4.3. Polarization 112
4.3.1. Monoidal Polarization 112
4.3.2. Monoidal Polarization is Not Enough 113
4.3.3. Polarization of a Physical Monoidal Multicategory 114
4.3.4. Bibliography 115

4.4. Polar Shuffles 116
4.4.1. Polar Shuffles 116
4.4.2. Encoding of polar shuffles 116
4.4.3. The Multicategory of Polar Shuffles 117
4.4.4. Message Theories are Algebras of Polar Shuffles 119
4.4.5. Bibliography 120

4.5. Processes versus Sessions 121
4.5.1. Processes of a message theory 121
4.5.2. Sessions of a process theory 122
4.5.3. Sessions versus Processes 125
4.5.4. Example: One-Time Pad, as a Message Session 127
4.5.5. Case Study: Causal versus Evidential Decision Theories 128
Bibliography 132

Chapter 5. Conclusions and Further Work 133
Conclusions 133

Monoidal Context Theory 133
Monoidal Message Passing 134
Future Work 134

Bibliography 137

Appendix. Appendix 149

8 CONTENTS

0.1. Coherence diagrams for a duoidal category 150
0.2. Polycategories 152

0.2.1. Polycategories 152
0.2.2. The Category of Polycategories 153
0.2.3. Polycategorical Contour 153
0.2.4. Malleable Polycategories 154
0.2.5. Prostar-Autonomous Categories 155
0.2.6. Prostar Autonomous are Malleable Polycategories 156
0.2.7. Splice of a Polycategory 156
0.2.8. Bibliography 157

PREFACE 9

Preface

Understanding and correctly designing intelligent and explainable systems could
be both, if we get it right, one of the most beneficial human advancements; and,
if we get it wrong, an existential risk for humanity [Ord20]. Humanity’s need for
languages and formalisms for trustworthy complex systems is now an urge.

Mathematics may possibly be the only right tool for this; but mathematics
has not always been concerned with complex and interconnected systems. John
von Neumann, talking about the intelligent and complex system that is the human
brain, famously noted that

the outward forms of our mathematics are not absolutely relevant
from the point of view of evaluating what the mathematical or
logical language truly used by the central nervous system is.
However, the above remarks about reliability and logical and
arithmetical depth prove that whatever the system is, it cannot
fail to differ considerably from what we consciously and explicitly
consider as mathematics.

– John Von Neumann, The Computer and The Brain [vN58].
Meanwhile, when we try to describe big interconnected networks with linear

algebra, geometry and calculus, even with all of our achievements, we seem to miss
the point: things get extremely complicated, computationally intractable, humanly
unimaginable; and we declare our defeat, we resort to vague analogies, and we ask
an impenetrable pile of linear algebra to be our oracle.

This does not need to be our strategy: mathematics and computer science
do not advance with bigger computations; they advance with new conceptual un-
derstanding. The past century saw the rise of conceptual mathematics and theo-
retical computer science – the kind of mathematics that took seriously the most
elementary notions and cultivated them to tame complex abstractions and systems
[LS09, PC07, Gro85]. Slowly but surely, the development of the conceptual theory
of categories has brought us to a point where we can forget about comforting but
vague analogies and start talking about complex systems formally and scientifically.

This thesis is part of the ongoing effort to find better languages and reasoning
tools for science, epistemology, causality and probability: both intuitive graphical
syntaxes for humans to reason with, and formal languages for computers, linked by
a trusted and transparent mathematical formalism.

10 CONTENTS

Introduction

Processes and Diagrams. Processes come intuitively to us; descriptions of
processes arose independently all across science and engineering, in the form of
diagrams, flowcharts or prose. We reason with them and we depict them all the
time, but that does not mean that we always know how to interpret them: many
diagrams in computer science and elsewhere do not have clear formal semantics, so
we relegate them to serving merely as sources of intuition and inspiration.

The notation has been found very useful in practice as it greatly
simplifies the appearance of complicated tensor or spinor equa-
tions, the various interrelations expressed being discernable at a
glance. Unfortunately the notation seems to be of value mainly
for private calculations because it cannot be printed in the nor-
mal way. – Penrose and Rindler, Spinors and Spacetime [PR84]

Diagrams deserve better: we can lift diagrams from mere intuitions to mathe-
matical structures; we can defend the legitimate and exceptional conceptual math-
ematics we now have to talk about processes and diagrams. This thesis follows the
framework of symmetric monoidal categories. Processes that pass resources around
and that compose sequentially and in parallel form symmetric monoidal categories;
diagrams that depict these processes are no less than a sound and complete formal
syntax for symmetric monoidal categories (e.g. Figure 1).

We will develop formal syntaxes for the compositional description of process,
in particular for – but not restricted to – probabilistic, effectful and non-classical
processes. We make use of category theory as a foundational tool: category theory
allows us to characterize a syntactic construction as the one generating a universal
semantics object and, at the same time, it provides a robust classification framework
for mathematical structures.

Figure 1. String-diagrammatic correctness proof for the One-time
pad protocol (Proposition 3.5.10, [BK22]).

Algebra and Duoidal Algebra. The main technical idea of this thesis is
natural: in the same way that the analysis of classical algebraic theories required
the development of multicategories – and more precisely, of cartesian multicate-
gories and Lawvere theories – the analysis of process theories, which are themselves
two-dimensional algebraic theories, requires the development of monoidal multicat-
egories and duoidal categories.

Multicategories, or colored operads, are mathematical structures that describe
algebraic theories. In 1963, Lawvere introduced a categorical approach to uni-
versal algebra [Law63]: a theory can be captured by the cartesian multicategory
containing all of its derived operations, and this notion is invariant to the specific
primitive operations we choose to present the theory. This idea opens the field of
functorial semantics: theories are categories, models are functors, and homomor-
phisms are natural transformations. More importantly, Lawvere’s thesis gives a

INTRODUCTION 11

robust account of classical algebra that can be modified to suit our needs: the same
framework can be employed for deductive systems [Lam69], higher-order algebra
[Lam86], relational algebra [BPS17], or partial algebra [DLLNS21].

How does it apply to process theories? Monoidal categories and multicategories
are not structured enough for the task of describing 2-dimensional structures them-
selves: we need duoidal categories and produoidal categories [Str12]. Intermediate
algebraic expressions with variables are not complete expressions; they are only
contexts into which we can plug values, and context is of central importance in
computer science: we model not only processes but also the environment in which
they act. While the algebra of 1-dimensional context is commonplace in applica-
tions like parsing [MZ22], the same concept was missing for 2-dimensional syntaxes,
which are still less frequent in computer science [UVZ18, ES22].

Figure 2. A depiction of monoidal lenses, or incomplete processes.

Duoidal categories are well-known and there is a reasonable body of litera-
ture primarily concerned with applications in pure algebra and algebraic topology
[AM10, Str12]; but the usage of duoidal categories to study processes is less fre-
quent: two notable examples are the treatment of commutativity in the work of
Garner and López Franco [GF16], and the study of “compositional dependencies” in
the recent work of Spivak and Shapiro [SS22]. In this text, duoidal categories and
monoidal multicategories allow us to postulate axioms for modularity and message
passing; these axioms apply to any symmetric monoidal category, or any process
theory.

Fundamental Structures for Message Passing. This main idea has an
immediate consequence that we explore in the second part of this thesis: we can
now develop an algebra for incomplete processes and their communication. While
concurrent software has been intensively studied since the early 60s, the theoret-
ical research landscape remains quite fragmented: we do not have a satisfactory
understanding of the underlying mathematical principles of concurrency, and the
proliferation of models has not helped us understand how they relate. Indeed,
Abramsky [Abr05] argued in 2006 that we simply do not know what the fundamen-
tal structures of concurrency are.

A way to identify such principles and arrive at more canonical models is to look
for logical or universal properties. An example of the former is the discovery of and
work on Curry-Howard style connections between calculi for concurrency and frag-
ments of linear logic, which led to the development of session types [Hon93, Dd09].
We take the latter route: departing from monoidal categories and their theory
of context, we universally characterize a minimalistic axiomatization of message
passing in process theories.

12 CONTENTS

Concurrent message passing assumes two principles: interleaving and polariza-
tion. Polarization is a categorical technique to construct dualities; and in message
passing, it constructs the duality between sending and receiving [CS07, Nes21,
Mel21]. Interleaving is well-known in concurrency, and it models the ability of
multiple processes to advance in parallel by mixing their global effects: imagine
multiple processes determined by a sequence of statements; their concurrent exe-
cution may shuffle these statements in any possible order – the only requirement
is to preserve the relative order of statements within any single process. We will
not only propose a minimalistic axiomatization of message passing from these two
principles, but we will also characterize the universal structures for message passing
on a process theory.

Briefly, we assume polarized types, X• and X◦, that correspond to sending
and receiving ; and ordered lists of types describe sessions. Our axioms ask that (i)
a sending port can be linked to a receiving port; (ii) echoing allows us to receive
and then send; (iii) sequences of actions can be interleaved by a shuffling τ ; and
(iv) there exists a no-operation that does nothing.

Γ, X•, X◦,∆

Γ,∆
(com)

X◦, X•
(spw)

Γ ∆

τ(Γ,∆)
(shfτ)

()
(nop)

Figure 3. Type-theoretic presentation of a message theory.

This is a naive logic of message passing, but its strength is that it can be char-
acterized mathematically using duoidal categories and, more concretely, physical
monoidal multicategories, which we introduce. This paves the way to an adjunc-
tion that characterizes the free message theory on top of any process theory. The
idea is simple but powerful: in order to construct message theories, we need to
add global effects for sending and receiving to our process theories [OY16]; Theo-
rem 4.5.9 notices that the diagrams for resulting effectful process theories can be
wired precisely in the ways that the minimalistic logic of message passing prescribes.

Figure 4. One-time pad protocol, split in four actors, mixed with a
shuffle.

This means that the only addition to our process are two global effects (sending
and receiving), that we depict using special red wires in the string diagrams. Each

INTRODUCTION 13

party in a session will have one of these red wires, and the logic of message passing
allows us to combine them together. For instance, if the one-time pad protocol
consists of a party (say, Alice) sending a message to another party (say, Bob), with
an attacker (say, Eve), sharing a Stage that only allows broadcasting of messages;
then these are four parties that connect together (Figure 4).

Global Effects. It remains then to explain the idea of global effects. Most
imperative programming languages assume that there exist a global state that the
program affects. Full parallelism is not possible when two programs need to change
this global state in a specific order: they could run into race conditions [Huf54].

However, mathematical theories of processes often assume no global state; pro-
cesses do not interact with each other except when it is explicit that they do. This
property is called purity in some functional programming languages [HJW+92] and
that makes it easier to reason with them. The problem is that even pure functional
programming languages need some techniques to change global state, and mathe-
matical structures like monads [Mog91] or arrows [Hug00] achieve precisely this –
they take a pure theory and endow it with global effects.

Effects, monads and arrows create premonoidal categories [Pow02, HJ06]. These
are not monoidal categories, but Alan Jeffrey [Jef97a] still introduced a string di-
agrammatic calculus for them: it is similar to the string diagrammatic calculus of
monoidal categories, but it adds a red wire to control effects. This thesis proves that
the extra red wire ensures a sound and complete graphical calculus for premonoidal
categories.

Monoidal Context Theory. All these ideas align to produce a theory of
contexts, or incomplete processes, in monoidal categories. Each monoidal category
can generate a premonoidal category with the global effects of sending and receiving.
The string diagrams of this new premonoidal category can be combined using the
logic of message theories, and in fact, they form the free message theory on top of
the original process theory: we can use them to reason and decompose multi-party
processes in arbitrary process theories.

14 CONTENTS

Overview

Chapter 1: Process Theories. Chapter 1 is an introduction to monoidal
categories and their string diagrammatic syntax. Section 1.1 defines strict monoi-
dal categories in terms of process theories and introduces their string diagrams.
Section 1.4 defines their symmetric counterpart and their type theory in terms of
do-notation, while Sections 1.2 and 1.3 extend string diagrams to non-strict monoi-
dal categories and bicategories, variants that we will employ later.

Section 1.6 is an introduction to premonoidal categories and effectful categories.
Section 1.7 gives their string diagrammatic calculus and proves its soundness and
completeness. Finally, Section 1.5 studies linearity, copying and discarding in terms
of monoidal categories. This concludes a basic treatment of processes in terms of
monoidal categories.

Chapter 2: Context Theory. Chapter 2 introduces profunctors, in Sec-
tion 2.1, and multicategories, in Section 2.2, as the mathematical tools to analyze
decomposition. Profunctors provide a canonical equivalence relation, dinaturality,
that we use whenever we study decomposition; in fact, it brings us to consider
malleable multicategories in Section 2.3. Section 2.4 presents the splice-contour ad-
junction between a category and its malleable multicategory of incomplete terms,
or contexts.

Chapter 3: Monoidal Context Theory. Chapter 3 brings context theory
to the monoidal setting. Section 3.1 and Section 3.2 introduce duoidal categories
and normal duoidal categories. The duoidal counterpart of malleable multicate-
gories are produoidal categories and we introduce their splice-contour adjunction
in Section 3.3. The idempotent normalization monad of produoidal categories is
constructed in Section 3.4, and it is used in Section 3.5 to normalize monoidal
spliced arrows and obtain a universal characterization of monoidal lenses.

Chapter 4: Monoidal Message Passing. Chapter 4 starts defining message
theories in Section 4.1. Section 4.2 studies its categorical semantics in terms of
physical monoidal multicategories. Section 4.3 introduces polarization and opens
the way for Section 4.4 to define polar shuffles and prove that they form a free
polarized monoidal multicategory. Section 4.5 constructs an adjunction between
process theories and message theories.

Figure 5. Chapter dependencies.

CONTRIBUTIONS 15

Contributions

The main results of this thesis are Theorem 3.5.3 and Theorem 4.5.9. They
universally characterize, in two different ways, the produoidal structure of incom-
plete diagrams: the former is used for a theory of monoidal context, the latter is
used for message passing.

The definition of message theory (Definitions 4.1.1 and 4.1.2 and proposi-
tion 4.1.4) is novel. There does not seem to be literature specifically on physi-
cal monoidal multicategories (Definition 4.2.4) nor on the observation that shuffles
form the free one (Proposition 4.2.9) – even when, admittedly, these are all vari-
ations on the idea of physical duoidal categories and an old result by Grabowski
[Gra81]. We give a different presentation of polarization in monoidal categories
(Proposition 4.3.4), we discuss the problems of polarization in monoidal categories
(Proposition 4.3.6) and we propose a solution describing polarization in physical
monoidal multicategories (Definition 4.3.7). The definitions of polar shuffle (Defi-
nitions 4.4.1 and 4.4.2) and their physical monoidal multicategory (Theorem 4.4.7)
are new contributions, as it is its proposed characterization as a free polarized phys-
ical monoidal multicategory (Theorem 4.4.11). Our main contribution is the final
adjunction between sessions and processes (Theorem 4.5.9).

Duoidal categories are well-known, but we write down some observations about
coherence in Proposition 3.1.6 and we contribute the definition of the physical tensor
(Definition 3.2.14). Our main contribution is not only the monoidal splice-contour
adjunction (Theorem 3.3.10); the adjunctions between produoidal categories and
normal produoidal categories, and between symmetric produoidal categories and
physical produoidal categories, with the construction of an idempotent monad The-
orems 3.4.6 and 3.4.10, are contributions to pure category theory. Theorem 3.5.3
consitutes the first universal characterization of the whole produoidal category of
lenses.

Even when do-notation is well-known, a categorical treatment like the one in
Theorem 1.4.21 seemed to be missing from the literature; it is based in an expo-
sition of string diagrams that is unusual in that it takes adjunctions as the main
construction (Theorem 1.2.5). The string diagrams for premonoidal categories and
effectful categories are a new formalization (Theorem 1.7.8) that is detailed in other
papers by this author [Rom22]. We propose a new way of seeing coend calculus
(Section 2.1.4) that is used briefly in this thesis but that is more extensively ex-
plained in other papers by this author [Rom20b]. The only contribution that we
claim while translating the splice-contour adjunction to promonoidal categories is
realizing their characterization as malleable multicategories (Proposition 2.3.10),
which is admittedly a new spin on the usual characterization as closed multicate-
gories.

Literature. The following is the list of publications authored or coauthored
during the preparation of this thesis. As is customary in mathematics, we list
authors in alphabetical order.

(1) Bryce Clarke, Derek Elkins, Jeremy Gibbons, Fosco Loregiàn, Bartosz
Milewski, Emily Pillmore, and Mario Román. Profunctor optics, a cat-
egorical update. Accepted at Compositionality, preprint abs/2001.07488,
2020, [CEG+20].

(2) Mario Román. Open diagrams via coend calculus. Applied Category
Theory 2020. Electronic Proceedings in Theoretical Computer Science,
333:65–78, Feb 2021, [Rom20b].

16 CONTENTS

(3) Guillaume Boisseau, Chad Nester, and Mario Román. Cornering op-
tics. In Applied Category Theory 2022, Preprint abs/2205.00842, 2022,
[BNR22].

(4) Mario Román. Promonads and string diagrams for effectful categories. In
Jade Master and Martha Lewis, editors, Proceedings Fifth International
Conference on Applied Category Theory, ACT 2022, Glasgow, United
Kingdom, 18-22 July 2022, volume 380 of EPTCS, pages 344–361, 2022,
[Rom22].

(5) Elena Di Lavore, Alessandro Gianola, Mario Román, Nicoletta Sabadini,
and Pawel Sobocinski. A canonical algebra of open transition systems. In
Gwen Salaün and Anton Wijs, editors, Formal Aspects of Component Soft-
ware - 17th International Conference, FACS 2021, Virtual Event, October
28-29, 2021, Proceedings, volume 13077 of Lecture Notes in Computer Sci-
ence, pages 63–81. Springer, 2021, [LGR+21].

(6) Elena Di Lavore, Alessandro Gianola, Mario Román, Nicoletta Sabadini,
and Pawel Sobocinski. Span(graph): a canonical feedback algebra of open
transition systems. Softw. Syst. Model., 22(2):495–520, 2023 [LGR+23].

(7) James Hefford and Mario Román. Optics for premonoidal categories.
Applied Category Theory 2023, abs/2305.02906, 2023 [HR23].

(8) Elena Di Lavore, Giovanni de Felice, and Mario Román. Monoidal streams
for dataflow programming. In Proceedings of the 37th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS ’22, New York, NY,
USA, 2022. Association for Computing Machinery. Kleene Award to the
best student paper.

(9) Dylan Braithwaite and Mario Román. Collages of string diagrams. Ap-
plied Category Theory 2023, preprint arXiv:2305.02675, 2023 [BR23].

(10) Elena Di Lavore and Mario Román. Evidential decision theory via partial
Markov categories. In Logic In Computer Science (LICS’23), pages 1–14,
2023 [LR23].

(11) Matt Earnshaw, James Hefford, and Mario Román. The Produoidal Al-
gebra of Process Decomposition, 2023. In Peer-Review, [EHR23].

The Produoidal Algebra of Process Decomposition is the main unpublished work
(currently in peer-review) that guides the writing of the main chapter of this thesis.
It develops the universal characterization of monoidal lenses and forms the basis of
Chapter 3 and Chapter 4. Promonads and String Diagrams for Effectful Categories,
adapted, was used as the basis of Section 1.6 and Section 1.7.

CHAPTER 1

Monoidal Process Theory

Monoidal Process Theory

This chapter gives an overview of monoidal categories, their variants and their
syntaxes. Monoidal categories are our framework of choice for process theories: we
claim that the minimalistic axioms of monoidal categories capture what a process
theory is and we assume them for the rest of the thesis.

Section 1.1 recalls monoidal categories and their string diagrams. Section 1.2
shows that the same axioms and syntax apply to non-strict monoidal categories
and Section 1.3 extends them to bicategories, which we will briefly use later. Sec-
tion 1.4 presents our definitive notion of process theory: symmetric monoidal cat-
egories. Symmetric monoidal categories have two syntaxes that are not commonly
presented together: a string diagrammatic syntax in terms of hypergraphs and a
term theoretic syntax – Hughes’ do-notation [Hug00]. We argue that these two
syntaxes further justify symmetric monoidal categories as a natural setting for pro-
cesses.

There is a final concept that has been traditionally left out of monoidal cat-
egories: computational effects. We argue in Sections 1.6 and 1.7 that, far from
being a problem that requires an extension of monoidal categories, as usually as-
sumed, computational effects can still use the same diagrammatic syntax of string
diagrams. This will be crucial for the next chapters in message passing : messages
will constitute a computational effect, but our results in this chapter allow us to
model them without having to leave the syntax of monoidal categories.

17

18 1. MONOIDAL PROCESS THEORY

1.1. Monoidal Categories

1.1.1. Strict Monoidal Categories. Monoidal categories are an algebra of
processes, with minimal axioms. The definition of monoidal category – and this
thesis – follow a particular tradition of conceptual mathematics: category theory.
Category theory aims to extract mathematical structures in an abstract and general
form. As one such structure, monoidal categories are permissive: process theories
like quantum maps and Markov kernels form monoidal categories [AC09, HV19,
Fri20, CJ19]; and even relations among sets or the homomorphisms of modules
over a ring form monoidal categories [BSS18, Alu21]. We start by reinterpreting
MacLane’s axioms for a monoidal category [ML71] in terms of processes.

Definition 1.1.1. A strict monoidal category C consists of a monoid of objects,
or resources, (Cobj ,⊗, I), and a collection of morphisms, or processes, C(X;Y),
indexed by an input X ∈ Cobj and an output Y ∈ Cobj . A strict monoidal category
is endowed with operations for the sequential and parallel composition of processes,
respectively

(#) : C(X;Y)× C(Y ;Z)→ C(X;Z),

(⊗) : C(X;Y)× C(X ′;Y ′)→ C(X ⊗X ′;Y ⊗ Y ′),

and a family of identity morphisms, idX ∈ C(X;X). Strict monoidal categories
must satisfy the following axioms.

(1) Sequencing is unital, f # idY = f and idX # f = f .
(2) Sequencing is associative, f # (g # h) = (f # g) # h.
(3) Tensoring is unital, f ⊗ idI = f and idI ⊗ f = f .
(4) Tensoring is associative, f ⊗ (g ⊗ h) = (f ⊗ g)⊗ h.
(5) Tensoring and identities interchange, idA ⊗ idB = idA⊗B .
(6) Tensoring and sequencing interchange,

(f # g)⊗ (f ′ # g′) = (f ⊗ f ′) # (g ⊗ g′).

Remark 1.1.2 (Process theories). Objects are also known as types or resources
[CFS16]. If X and Y are both resources, it is reasonable to assume their joint
occurrence is also a resource, X ⊗ Y ; this joining operation, called tensor (⊗),
must be unital with the empty resource I. Morphisms represent transformations
or processes. If we have a process transforming X into Y and a process transform-
ing Y into Z, we can sequence them (#) and create a process that transforms X
into Z. The process that does nothing, the identity (id), is neutral for sequential
composition. Similarly, transforming X into Y and transforming X ′ into Y ′ gives
a way of transforming the joint object X ⊗X ′ into Y ⊗ Y ′. Whenever we accept
these basic constructions and axioms, we end up with strict monoidal categories.

Once we have accepted these basic axioms, the next sections develop a syntax
for monoidal categories: string diagrams. String diagrams are an intuitive syntax
for process that is sound and complete for the previous axioms.

1.1.2. Some Words on Syntax. What makes a mathematical syntax prac-
tical? Different syntaxes highlight different aspects of a proof, and we consider
better those that make the more bureaucratic steps invisible. Syntaxes are an ex-
plicit construction of the free mathematical object with some algebraic structure;
what makes them efficient is how we construct them.

For instance, how to prove that, in a group, the inverse of a multiplication is
the reversed multiplication of the inverses? Usually, we simply observe that

(x · y) · (y−1 · x−1) = �x ·��y · y−1 · �x
−1 = e;

1.1. MONOIDAL CATEGORIES 19

that is, a simple computation checks that each letter is cancelled by its inverse. But
we could be more bureaucratic and argue that the correct proof is, actually,

(x · y) · (y−1 · x−1)
(i)
= x · (y · (y−1 · x−1))

(ii)
= x · ((y · y−1) · x−1)

(iii)
= x · (e · x−1)

(iv)
= x · x−1

(v)
= e.

This proof uses associativity (i, ii), the definition of inverse (iii, v), and unitality
(iv). What makes these two proofs different? We can argue that, implicitly, they
are using different syntaxes, constructed in different ways [Shu16].

The bureaucratic syntax implicitly assumes the tautological construction of a
free group. The free group on a set is generated by the elements of the set, the
binary multiplication (·), the unit (e), and the inverse unary operator (−1); then,
it is quotiented by associativity, unitality, and the inverse axioms. Tautological
constructions only allow bureaucratic proofs – but we can do better.

How does one construct free objects non-tautologically? The usual strategy
is to first show that some combinatorial structure possesses the desired algebraic
structure (say, it forms a group with some selected elements). This combinatorial
structure will be as simple as possible, will relegate most steps to computation, and
will use minimal quotienting. The result that makes this recipe work is freeness:
the fact that it defines an adjunction (say, there exists a unique map to any group
with some elements).

More concretely, in our example, we know of a better classical construction of
the free group: reduced words. Reduced words are lists containing some generators
and their inverses. The only condition is that they cannot contain ocurrences of a
generator followed by its inverse: they get automatically cancelled out.

Definition 1.1.3. Given a set A, the reduced words over it, Word(A), are lists of
polarized elements of A – that is, a or a−1 for each a ∈ A – not containing the
substrings aa−1 or a−1a for any element a ∈ A.

Definition 1.1.4. The multiplication of two reduced words is inductively defined:
if the first word is empty, then the multiplication is defined to be the second,
e ·w2 = w2; however, if the first word consists of a letter and a word, aw1 or a−1w1,
then we consider two cases: we first compute w1 · w2 by induction; if this word
starts by the inverse of the first letter, a−1 ·w′ or a ·w′, then they both reduce and
the multiplication is w′ · w2, otherwise, we just append the first letter, a(w1 · w2).

Remark 1.1.5. It is non-trivial to prove that this multiplication is associative:
the effort we put in here is the ease we get in return every time we use the syntax.
We spare the reader this proof and we focus only on showcasing the syntax.

Proposition 1.1.6. The inverse of a multiplication is the reversed multiplication
of the inverses.

Proof. Reduced words form a group, in fact, the free group over some gen-
erators. In the group of reduced words, (xy) · (y−1x−1) = e holds by definition.
Because of freeness, there is a unique group homomorphism mapping this equality
to any two elements of any other group. �

The core of this argument has been to construct, combinatorially, a left adjoint
Words : Set → Group to the forgetful functor Forget : Group → Set. This thesis

20 1. MONOIDAL PROCESS THEORY

will use adjoints as a more compositional way to discuss syntax. Let us start with
the first of these syntaxes: string diagrams for monoidal categories.

1.1.3. String Diagrams of Strict Monoidal Categories. Monoidal cate-
gories have a sound and complete syntax in terms of string diagrams [JS91], which
is the one we will use during this text. We may prefer the classical axioms of mo-
noidal categories when proving that some category is indeed monoidal, but proving
equalities in a monoidal category is easier using deformations of string diagrams –
we will not need to remember the formulas. Accepting string diagrams and defor-
mations as a criterion for equality is equivalent to accepting the axioms of strict
monoidal categories: whenever we accept one, we accept the other.

Figure 1. Process of preparing a Crema di Mascarpone, adapted
from Sobocinski.

A first example of this syntax describing a process is in Figure 1 [Sob13]. String
diagrams construct an adjunction between a category of polygraphs and a category
of strict monoidal categories.

Definition 1.1.7. A polygraph G (analogue of amultigraph [Shu16]) is given by a set
of objects, Gobj , and a set of arrows G(A0, . . . , An;B0, . . . , Bm) for any two sequences
of objects A0, . . . , An and B0, . . . , Bm. A morphism of polygraphs f : G → H is a
function between their object sets, fo : Gobj → Hobj , and a family of functions
between their corresponding morphism sets for any two sequences of objects

f : G(A0, . . . , An;B0, . . . , Bm)→ H(foA0, . . . , foAn; foB0, . . . , foBm).

Polygraphs with polygraph homomorphisms form a category, PolyGraph.

Definition 1.1.8. A strict monoidal functor, F : C → D, is a monoid homor-
phism between their object sets, Fobj : Cobj → Dobj , and an assignment taking any
morphism f ∈ C(X;Y) to a morphism F (f) ∈ D(FX;FY). A functor must
preserve sequential composition, F (f # g) = F (f) # F (g); parallel composition,
F (f ⊗ g) = F (f) ⊗ F (g); and identities, F (id) = id. Strict monoidal categories
with strict monoidal functors form a category, MonCatStr.

Definition 1.1.9. A string diagram over a polygraph G (or progressive plane graph
in the work of Joyal and Street [JS91, Definition 1.1]) is a graph Γ embedded in
the squared interval such that

1.1. MONOIDAL CATEGORIES 21

(1) the boundary of the graph touches only the top and the bottom of the
square, δΓ ⊆ {0, 1} × [0, 1];

(2) and the second projection is injective on each component of the graph
without its vertices, Γ− Γ0; this makes it acyclic and progressive.

We call to the components of Γ − Γ0 wires, W ; we call the vertices of the graph
nodes, Γ0. Wires must be labelled by the objects of the polygraph, o : W → Gobj ,
nodes must be labelled by the generators of the polygraph, m : Γ0 → G; and each
node must be connected to wires exactly typed by the objects of its generator – a
string diagram must be well-typed.

Lemma 1.1.10. String diagrams over a polygraph G form a monoidal category,
which we call String(G). This determines a functor,

String : PolyGraph→MonCatStr.

Proof sketch. The objects of the category are lists of objects of the poly-
graph, which we write as [X0, . . . , Xn], for Xi ∈ Gobj . These form a (free) monoid
with concatenation and the empty list.

Morphisms [X0, . . . , Xn]→ [Y 0, . . . , Ym] are string diagrams over the polygraph
G such that (i) the ordered list of wires that touches the upper boundary is typed
by [X0, . . . , Xn], and (ii) the ordered list of wires that touches the lower boundary
is typed by [Y 0, . . . , Ym].

Figure 2. Strict monoidal category of string diagrams.

Figure 2 describes the operations of the category. The parallel composition of
two diagrams α : [X0, . . . , Xn]→ [Y 0, . . . , Ym] and α′ : [X ′0, . . . , X

′
n′]→ [Y ′0 , . . . , Y

′
m′]

is their horizontal juxtaposition. The sequential composition of two diagrams
α : [X0, . . . , Xn]→ [Y 0, . . . , Ym] and β : [Y 0, . . . , Ym]→ [Z0, . . . , Zk] is the diagram
obtained by vertical juxtaposition linking the outputs of the first to the inputs of the
second. The identity on the object [X0, . . . , Xn] is given by a diagram containing
n identity wires labelled by these objects. �

Lemma 1.1.11. Forgetting about the sequential and parallel composition defines a
functor from monoidal categories to polygraphs,

Forget : MonCatStr → PolyGraph.

Proof. Any monoidal category C can be seen as a polygraph Forget(C) where
the edges are determined by the morphisms,

Forget(C)(A0, . . . , An;B0, . . . , Bm) = C(A0 ⊗ . . .⊗An, B0 ⊗ . . .⊗Bm),

and we forget about composition and tensoring. It can be checked, by its defini-
tion, that any strict monoidal functor induces a homomorphism on the underlying
polygraphs. �

Theorem 1.1.12 (Joyal and Street, [JS91, Theorem 2.3]). There exists an ad-
junction between polygraphs and strict monoidal categories, StringaForget. Given a

22 1. MONOIDAL PROCESS THEORY

polygraph G, the free strict monoidal category String(G) is the strict monoidal cate-
gory that has as morphisms the string diagrams over the generators of the polygraph;
the underlying polygraph determines the right adjoint.

1.1.4. Example: Crema di Mascarpone. This first example shows how to
construct morphisms in a monoidal category. The theory for preparing crema di
mascarpone contains the following resources,

{egg,white, yolk, shell,whisked white, sugar,mascarpone, paste, thick paste, crema}.
These resources are the objects of the polygraph also containing the following seven
generators, as in Figure 3.

(1) crack: egg→ white⊗ shell⊗ yolk,
(2) beat : yolk⊗ yolk⊗ sugar→ paste,
(3) stir : paste⊗mascarpone→ thick paste,
(4) whisk: white⊗ white→ whisked whites,
(5) fold : whisked whites⊗ thick paste→ cream,
(6) swap: yolk⊗ white→ white⊗ yolk,
(7) discard: shell→ i.

All these resources form a polygraph C. Thanks to the adjunction between poly-
graphs and monoidal categories, deciding how to interpret the resources and the
generators of the polygraph in any monoidal category, C → Forget(D), is the same
as creating a strict monoidal functor that interprets string diagrams in that cat-
egory, String(C) → D. In particular, it interprets Figure 1 as a morphism in the
monoidal category D.

Figure 3. Polygraph for the theory of mascarpone.

Usually, discarding and swapping are better understood as global structure
with which all of the objects of the category are endowed. Even better than ask-
ing for the last generator in Figure 3, we will ask for the ability to copy or to
swap resources freely. This is done via cartesian monoidal categories or symmetric
monoidal categories, respectively.

1.1.5. Bibliography. Monoidal categories, together with their coherence the-
orem, were first introduced by MacLane [Mac63, Mac78], explicit equivalence the-
orems are given later by Joyal and Street [JS93]. String diagrams as progressive
graphs were introduced by Joyal [JS91]. Our presentation follows the resource the-
ories of Coecke, Fritz and Spekkens [CFS16].

Petri nets and process calculi are alternative mathematical approaches to pro-
cess theory; at the same time, they are arguably particular cases of monoidal cate-
gories [Sob10]. Monoidal categories as circuits and processes are explicitly pioneered
by Sabadini, Walters, Carboni and Street [KSW97, CW87]. The string diagram-
matic recipe for “crema di mascarpone” is an adaptation of a blog post by Sobocinski
[Sob13]. We also follow the ideas of Shulman on categorical logic [Shu16].

1.2. NON-STRICT MONOIDAL CATEGORIES 23

1.2. Non-Strict Monoidal Categories

We have just argued for the axioms of strict monoidal categories as our process
theories and string diagrams as our syntax. The bad news is that there exists a tech-
nicality preventing many interesting examples from ever forming a strict monoidal
category; the good news is that neither the axioms of monoidal categories nor our
string diagrams need to change at all to accommodate this technicality: this curious
phenomenon is possible thanks to MacLane’s strictification and coherence results
[ML71]. This section introduces non-strict, or general monoidal categories, and
it immediately details how MacLane’s results ratify the axioms of strict monoidal
categories.

1.2.1. Non-Strictness. The axioms of strict monoidal categories are enough
to study a broader class of mathematical structures: non-strict monoidal categories.

What is a non-strict monoidal category? In a monoidal category, the tensor
(⊗) is not required to be associative or unital. Because of how we usually construct
our definitions, it is not always the case that X⊗ (Y ⊗Z) = (X⊗Y)⊗Z. Consider
the theory of sets and functions, with the cartesian product (×) as the tensor. If
we define

X × Y = {(x, y) | x ∈ X, y ∈ Y },
then, simply, X × (Y × Z) 6= (X × Y)× Z. However, it is still the case that there
exist two functions X × (Y ×Z)→ (X × Y)×Z and (X × Y)×Z → X × (Y ×Z)
and that these functions are mutual inverses for sequential composition. Whenever
this happens in a category, we say these two objects are isomorphic (∼=) and the
morphisms are isomorphisms. In a monoidal category, the tensor is not associative
and unital but it is still associative and unital up to an isomorphism. This may
sound like a minor technicality, but it makes many examples fail to form a monoidal
category.

Definition 1.2.1. Amonoidal category, (C,⊗, I, α, λ, ρ), is a category C equipped
with a pair of functors (⊗) : C×C→ C, and I ∈ C, called tensor and unit respec-
tively. and three families of isomorphisms called the coherence maps:

(1) the associator αX,Y,Z : (X ⊗ Y)⊗ Z ∼= X ⊗ (Y ⊗ Z),
(2) the left unitor λA : I ⊗A ∼= A and
(3) the right unitor ρA : A⊗ I ∼= A.

These three families of maps must be natural, meaning they commute with other
well-typed morphisms of the monoidal category. Moreover, these must be such that
every formally well-typed equation between coherence maps holds.

Proposition 1.2.2. A strict monoidal category is precisely a monoidal category
where α, λ, and ρ are identities.

Proof. The naturality of the coherence maps, whenever these are identities, is
the same as the associativity and unitality of the tensor (3 and 4). Functoriality of
the tensor is the same as the interchange axioms (5 and 6); while the functoriality
of the unit is trivially true. �

1.2.2. Coherence. The conditions of the definition of a non-strict monoidal
category may seem too strong: we are asking that a wide family of equations (all
the formally well-typed ones) hold. Fortunately, the coherence theorem shows that
simply checking two families of equations is enough.

Theorem 1.2.3 (MacLane, [ML71]). The three different families of coherence
maps (α, λ, ρ) satisfy all formally well-typed equations between them whenever they
satisfy the triangle and pentagon equations:

24 1. MONOIDAL PROCESS THEORY

(1) αX,I,Y # (idX ⊗ λY) = ρX ⊗ idY , and
(2) (αX,Y,Z ⊗ id) # αX,Y⊗Z,W # (idX ⊗ αY,Z,W) = αX⊗Y,Z,W # αX,Y,Z⊗W .

Finally, the theorem that allows strict monoidal categories to talk about non-
strict monoidal categories is the strictification theorem that says that any monoidal
category is monoidally equivalent to a strict one. This does determine an adjunction
with extra structure, making it a 2-adjunction [Cam19].

Theorem 1.2.4 (Joyal and Street, [JS91]). Any monoidal category is equivalent
via a strong monoidal functor to a strict one. There exists a 2-adjunction between
the category of monoidal categories and strong monoidal functors and the category
of strict monoidal categories with strict monoidal functors. Moreover, the unit of
this 2-adjunction is an equivalence.

1.2.3. String Diagrams of Monoidal Categories. While it is true that
we can construct the free strict monoidal category on a polygraph, it is not true
yet that we know how to construct the free monoidal category (the non-strict one)
over a polygraph; in fact, this seems to be impossible. This could be misread
as saying that string diagrams are not equally sound and complete for monoidal
categories. Nothing is further from the truth: even if there are now multiple ways
of interpreting a string diagram in a monoidal category, these are essentially equal
– they define isomorphic functors.

Theorem 1.2.5. There is a pseudoadjunction between the locally discrete 2-
category of polygraphs and the 2-category of monoidal categories, strong monoidal
functors and monoidal natural transformations.

Proof sketch. This pseudoadjunction arises as a combination of two differ-
ent 2-adjunctions. The first one is the adjunction between polygraphs and strict
monoidal categories we have studied before. The second one is described in Theo-
rem 1.2.4, and its unit defines an equivalence: every monoidal category is equivalent
to a strict one.

Figure 4. Pseudoadjunctions between polygraphs and monoidal cat-
egories.

It is well known that each time that we have two adjunctions in this disposition
we can reduce one along the other, provided that the unit of the former is invertible
(see Proposition 1.3.10). In this case, the unit is not exactly invertible but merely
an equivalence: as a consequence, we obtain not another 2-adjunction but merely
a pseudoadjunction. This concludes the proof. �

1.2.4. Bibliography. The coherence results go back to MacLane, Joyal and
Street [Mac63, JS91]; Hermida arrived at the same result via multicategories [Her01,
Had18]; and there is a more modern account by Becerra detailing the 2-adjunction
between strict and non-strict monoidal categories [Bec23], which Campbell studies
for bicategories [Cam19].

1.3. STRING DIAGRAMS OF BICATEGORIES 25

1.3. String Diagrams of Bicategories

Bicategories are the second extension of monoidal categories that we will em-
ploy during the text. If monoidal categories were well-suited to reason about pro-
cess theories, bicategories, one level up, are well-suited to reason about categories
themselves; however, their string diagrammatic syntaxes are very close.

String diagrams of monoidal categories can be easily extended to bicategories
if we allow ourselves to color the regions. Coloring the regions simply constrains
which objects can be tensored: this algebraic structure is a bicategory, also known
as a weak 2-category. In a bicategory, two objects must coincide along a boundary
to be tensored.

Definition 1.3.1. A strict 2-category B consists of a collection of objects, or 0-cells,
Bobj , and a category of morphisms or 1-cells between any two objects, B(A;B). A
strict 2-category is endowed with operations for the parallel composition of 1-cells,

(;) : B(A;B)× B(B;C)→ B(A;C),

(IA) : B(A;A),

that are associative and unital both on objects and morphisms, meaning that (X ;
Y) ; Z = X ; (Y ; Z), and IA ; X = X = X ; IB . Bicategories must satisfy the
following axioms, making parallel composition a functor:

(1) parallel composition is unital, f ; id = f , and id ; f = f ;
(2) parallel composition is associative, f ; (g ; h) = (f ; g) ; h;
(3) compositions are unital, id ; id = id;
(4) compositions interchange, (f # g) ; (f ′ # g′) = (f ; f ′) # (g ; g′).

Remark 1.3.2. A single-object strict 2-category is exactly a strict monoidal cat-
egory.

1.3.1. String diagrams of 2-categories. Let us briefly comment on how the
string diagrams of monoidal categories extend to bicategories. We repeat the same
definitions and the same theorems, just taking care of matching the boundaries this
time.

Definition 1.3.3. A bigraph, or 2-graph, B is given by a set of objects, Bobj ; a set
of arrows between any two objects, B(A;B); and a set of 2-arrows between any two
paths of arrows, B(X0, . . . , Xn;Y 0, . . . , Ym).

A bigraph homomorphism, f : A → B, is a function between their object sets,
fo : Aobj → Bobj ; a family of functions between their corresponding arrow sets,
f : A(A;B)→ B(f(A), f(B)); and a family of functions between their correspond-
ing 2-arrow sets,

f : A(X0, . . . , Xn;Y 0, . . . , Ym)→ B(fX0, . . . , fXn; fY 0, . . . , fYm).

Bigraphs with bigraph homomorphisms form a category, BiGraph.

Definition 1.3.4. A string diagram over a bigraph A is a string diagram over the
polygraph formed by arrows and 2-arrows, additionally satisfying that each region
is labelled by an object of the bigraph, and in such a way that any wire is labelled
by an arrow connecting the labels of the two regions.

Theorem 1.3.5. There is an adjunction between bicategorical graphs and 2-
categories with strict 2-functors between them. The left adjoint is given by colored
string diagrams over the bigraph.

26 1. MONOIDAL PROCESS THEORY

1.3.2. Bicategories. Strict monoidal categories have a weak analogue that
still shares the same syntax – (weak, or non-strict) monoidal categories. In the
same way, strict 2-categories have a weak analogue that shares the same syntax:
weak 2-categories, sometimes called bicategories.

Definition 1.3.6. A bicategory (B, ;, I, α, λ, ρ) is a collection of 0-cells, Bobj , to-
gether with a category B(A;B) between any two 0-cells, A,B ∈ Bobj , and functors

(;) : B(A;B)× B(B;C)→ B(A;C), and IA : B(A;A),

that are associative and unital up to isomorphism, meaning that there exist natural
isomorphisms describing associativity αX,Y,Z : (X ⊗ Y) ⊗ Z ∼= X ⊗ (Y ⊗ Z), left
unitality λX : IA ⊗X ∼= X and right unitality ρX : X ⊗ IB ∼= B.

Conjecture 1.3.7. There is a pseudoadjunction between the locally discrete 2-
category of bicategorical graphs and the 2-category of bicategories, pseudofunctors
and icons (see Campbell, Garner and Gurski’s work for the higher structure of the
strictification adjunction [Cam19, GG09]).

1.3.3. Example: Adjunctions. We exemplify the usage of string diagrams
for bicategories in an abstract definition of adjunctions. We then use string dia-
grams to prove a theorem about adjunctions.

Definition 1.3.8. The theory of a duality in a bicategory contains two 0-cells A
and B; it contains two 1-cells between them, L : A → B and R : B → A, and it
contains two 2-cells, ε : L#R→ I and η : I → R#L, that satisfy (id⊗η)#(ε⊗id) = id
and (η ⊗ id) # (id⊗ ε) = id.

Figure 5. Theory of a duality.

Remark 1.3.9. Adjunctions are dualities in the bicategory of categories, functors,
and natural transformations.

Proposition 1.3.10 (Reducing an adjunction). Let F : A→ C and H #U : C→ A
determine an adjunction (F,H # U, η, ε) and let P : B → C determine a second
adjunction (P,H, u, c) such that the unit u : I → P # H is a natural isomorphism
(as in Figure 6). Then, F #H is left adjoint to U .

Figure 6. Setting for reducing an adjunction.

Proof. We employ the string diagrammatic calculus of bicategories for the
bicategory of categories, functors and natural transformations [Mar14]. We define
the morphisms in Figure 7 to be the unit and the counit of the adjunction. We
then prove that they satisfy the snake equations in Figures 7 and 8.

1.3. STRING DIAGRAMS OF BICATEGORIES 27

Figure 7. Unit and counit of the reduced adjunction (left). First
snake equation (right).

In the first snake equation, in Figure 7, we use (i) that there is a duality (η, ε),
and (ii) that u is invertible. In the second snake equation, in Figure 8, we use (i)
that there is a duality (u, c), (ii) that u is invertible, (iii) that there is a duality
(u, c), again; and (iv) that there is a duality (η, ε). �

Figure 8. Second snake equation.

1.3.4. Bibliography. String diagrams for bicategories are usually interpreted
as the Poincaré dual of globular pasting diagrams, which were used by Bénabou
since the introduction of bicategories [Bén67]. Marsden uses string diagrams for
bicategories to study basic formal category theory [Mar14].

28 1. MONOIDAL PROCESS THEORY

1.4. Symmetric Monoidal Categories and Do-Notation

Setting strictness asside, an extra axiom sharpens monoidal categories for the
study of process theories: symmetry. Symmetry states that the position that re-
sources occupy is not important: A ⊗ B is worth the same as B ⊗ A. Assuming
symmetry simplifies process syntax drammatically – in fact, it also enables a new
syntax that mimics imperative programming – and it is arguably an axiom that we
need before we can really talk of processes.

This section introduces symmetric monoidal categories, their specialized string
diagrams in terms of hypergraphs [BGK+16], and their do-notation syntax [Hug00].

1.4.1. Commutative Monoidal Categories. So far, the meaning of the
tensor (⊗) in process theories has arguably been too general: so far, we have
asked A⊗B to represent the juxtaposition of resources – resources form a monoid.
Why not a commutative monoid? If we interpret objects as bags of resources,
it seems clear that a commutative monoid would be more appropriate. However,
imposing commutativity naively fails catastrophically: the individuality of each
resource disappears [MM90].

Definition 1.4.1. A commutative monoidal category is a strict monoidal category
(C,⊗, I) where objects form a commutative monoid, A ⊗ A′ = A′ ⊗ A for each
A,A′ ∈ Cobj , and the tensor of morphisms is also commutative, f ⊗ f ′ = f ′⊗ f for
any two f : A→ B and f ′ : A′ → B′.

Proposition 1.4.2. In a commutative monoidal category, resources do not have
individuality: it does not matter to which of them we apply a transformation, and
not even the order in which we apply them. More formally,

(f # g)⊗ id = (f ⊗ g) = id⊗ (g # f)

for each two transformations of the same resource, f : X → X and g : X → X.

This may be useful in specific applications. Indeed, it is one of the crucial ideas
behind the formalization of Petri nets as monoids in the work of Meseguer and
Montanari [MM90] – commutativity represents the “collective token philosophy”
of Petri nets [BGMS21]. However, for our purposes, we will need a more refined
notion that does not destroy the individuality of our resources: this notion is given
by symmetric monoidal categories.

1.4.2. Symmetric Monoidal Categories. Symmetric monoidal categories
do not assume that the monoid of objects is commutative; they only assume that
there is a family of processes that allow us to reorder resources, making it com-
mutative “up to an invertible process”. In practice, this means that even when
X ⊗ Y 6= Y ⊗X, there exists a process σX,Y : X ⊗ Y → Y ⊗X that is invertible.
These are our definitive notion of process theory.

Definition 1.4.3. A strict symmetric monoidal category (or a permutative cat-
egory) is a strict monoidal category (C,⊗, I) endowed with a family of maps
σX,Y : X ⊗ Y → Y ⊗X that satisfy the following equations describing how to

(1) swap nothing, σI,X = idX = σX,I ;
(2) swap resources on the left, σX,Y⊗Z = (σX,Y ⊗ idZ) # (idY ⊗ σX,Z);
(3) swap resources on the right, σX⊗Y,Z = (idX ⊗ σY,Z) # (σX,Z ⊗ idY);
(4) reverse a swap with a swap, σX,Y # σY,X = idX ⊗ idY ;
(5) swap and apply transformations, σX,Y # (f ⊗ g) = (g ⊗ f) # σX′,Y ′ ;
(6) and swap in any order,

(σX,Y ⊗ id) # (id⊗ σX,Z) # (σY,Z ⊗ id) = (id⊗ σY,Z) # (σX,Z ⊗ id) # (id⊗ σX,Y).

1.4. SYMMETRIC MONOIDAL CATEGORIES AND DO-NOTATION 29

The first three axioms are especially important for clarifying all the rest: they
say that the swapping process of any two objects in a freely generated monoidal cat-
egory is determined by the swapping process of the generators. This already allow
us to have a first string diagrammatic calculus for symmetric monoidal categories:
the swap on the generators is represented by wires crossing; the swap on arbitrary
objects is constructed from it; the rest of the axioms are better understood in terms
of string diagrams (Figure 9).

Figure 9. Theory of strict symmetric monoidal categories.

However, this is an inefficient syntax: it forces us to explicitly deal with the
axioms of the swap. A better syntax would make them transparent, and state that
the only thing that matters in a string diagram for symmetric monoidal categories
is where the wires are ultimately connected – that is, we only care about the
underlying hypergraph. A detailed presentation of the string diagrams of symmetric
monoidal categories as hypergraphs is in the work of Bonchi, Sobocinski, Zanasi,
and others [BSZ14, BGK+16].

Definition 1.4.4. A hypergraph (V,E) consists of a set of nodes, V , and a set
of directed hyperedges E connecting lists of vertices to lists of vertices, that is,
e : [v1, . . . , vn] → [w1, . . . wm] for each e ∈ E. We say a hypergraph is acylic if
contains no loops.

Definition 1.4.5. A hypergraph labelled over a polygraph G, is a hypergraph (V,E)
such that each vertex v ∈ V is assigned an object of the polygraph, l(v) ∈ Gobj ,
and each hyperedge e : [v1, . . . , vn]→ [w1, . . . wm] is assigned an edge

l(e) : l(v1), . . . , l(vn)→ l(w1), . . . , l(wm),

preserving the type of its vertices.

Definition 1.4.6. A symmetric string diagram from [X1, . . . , Xn] to [Y 1, . . . , Ym]
is an acyclic hypergraph (V,E) labelled by a polygraph G, such that each vertex
appears exactly once as an input and exactly once as an output, and endowed with
two distinguished unlabelled hyperedges:

the input i : []→ [x1, . . . , xn], and the output o : [y1, . . . , ym]→ [],

typed by l(x1) = X1, . . . , l(xn) = Xn and l(y1) = Y 1, . . . , l(ym) = Ym.

Proposition 1.4.7. Symmetric string diagrams over a polygraph G form a sym-
metric monoidal category, Stringσ(G).

Proof. A summary of the construction is in Figure 10: wires are vertices and
hyperedges are nodes. Let us describe the category. The objects are lists of objects
of the polygraph. Tensoring of string diagrams of type [X1, ..., Xn] → [Y 1, ..., Ym]
and [X ′1, ..., X ′n]→ [Y ′1, ..., Y ′m] is defined by the disjoint union of the hypergraphs –
merging input and output edges – into a string diagram [X1, ..., Xn, X

′
1, ..., X ′n]→

[Y 1, ..., Ym, Y ′1, ..., Y ′m]. Composition of string diagrams of type [X1, ..., Xn] →
[Y 1, ..., Ym] and [Y 1, ..., Ym] → [Z1, ..., Zp] is constructed by glueing the vertices
along the output edge of the first and the input edge of the second, which disappear

30 1. MONOIDAL PROCESS THEORY

Figure 10. Symmetric monoidal category of string diagrams.

producing a string diagram [X1, . . . , Xn] → [Z1, . . . , Zp]. Generators are included
as single hyperedges labelled by them. The identity, [X1, . . . , Xn]→ [X1, . . . , Xn],
consists only of the input and output edges, connected by a list of vertices. Symme-
tries are defined by twisting the connections of the input and output edges. Finally,
we can check that string diagrams satisfy the axioms of symmetric monoidal cate-
gories. �

Definition 1.4.8. A strict symmetric monoidal functor between two strict sym-
metric monoidal categories, F : C→ D, is a strict monoidal functor that moreover
preserves symmetries: F (σ) : F (X) ⊗ F (Y) → F (Y) ⊗ F (X) is the symmetry on
F (X) and F (Y). Strict symmetric monoidal categories and strict symmetric mo-
noidal functors form a category, SymMonCatStr.

Proposition 1.4.9. The construction of symmetric string diagrams extends to a
functor from polygraphs to symmetric monoidal categories,

Stringσ : PolyGraph→ SymMonCatStr.

Proposition 1.4.10. There exists a forgetful functor from strict symmetric mo-
noidal categories to polygraphs that takes the objects as the vertices of the polygraph
and the morphisms as the edges,

Forget : SymMonCatStr → PolyGraph.

Theorem 1.4.11. String diagrams for symmetric monoidal categories form the
free strict symmetric monoidal category over a polygraph: there exists an adjunction
Stringσ a Forget.

Proof sketch. We have already shown that string diagrams form a symme-
tric monoidal category. It only remains to show that there exists a unique strict
symmetric monoidal functor to any strict symmetric monoidal category. The as-
signment is determined by the fact that each string diagram is constructed from
the generators and the operations of a symmetric monoidal category, the difficulty
is in showing that this assignment is well-defined. We refer the reader to the work
of Bonchi and others [BGK+16]. �

The syntax of symmetric string diagrams as hypergraphs is more efficient: to
check equality, only the connectivity of the wires matters, and we no longer need
to track the specific blocks forming the diagram.

1.4.3. Do-Notation. There is a second practical syntax for symmetric mo-
noidal categories that links string diagrams to programming: Hughes’ arrow do-
notation [Hug00, Pat01]. It comes from functional programming, but it is precisely
a representation of imperative programming. The main idea is that, in a string
diagram, we can label the wires by variable names, and simply declare which nodes

1.4. SYMMETRIC MONOIDAL CATEGORIES AND DO-NOTATION 31

take which inputs and outputs to reconstruct the string diagram. In a certain
sense, this is the graph encoding of a string diagram, but it closely resembles an
imperative program.

Example 1.4.12 (Crema di Mascarpone in Do-notation). Consider the same pro-
cess for “crema di mascarpone” that we detailed in Section 1.1.4. This time, we can
directly assume that we are in a symmetric monoidal category. The translation of
the string diagram of Figure 1 is the following code in Figure 11.

Figure 11. Do-notation recipe for Crema di Mascarpone.

Let us formalize do-notation in the style of a type-theory: we will work with
variables, we consider them to be unique and we work implicitly up to α-equivalence
(or renaming of variables). Our notion of signature is again that of a polygraph:
our basic types will be the objects of the polygraph, and we will have a rule for
each one of the generators in the polygraph.

Definition 1.4.13. A derivation in the proof theory of do-notation over a poly-
graph is defined inductively to be either

(1) a single return statement, given by a permutation; or
(2) the application of a generator f : A0, . . . , An → B0, . . . , Bm, given by a

choice of generator and an insertion of variables, followed by a derivation.

a0:A0, . . . , an:An �τ () ` return(a0, . . . , an) : A0 ⊗ . . .⊗An
(Return)

b0:B0, . . . , bm:Bm,Γ ` t : ∆

a0:A0, . . . , an:An �τ Γ ` f(a0, . . . , an)→ b0, . . . , bm # t : ∆
(f)

Figure 12. Do-notation for symmetric monoidal categories.

Before continuing, then, it is important to understand what an insertion is.
An insertion captures how many ways we have of inserting some n new terms into
a list of m terms. The new n terms can be freely permuted, but the list of m terms
must preserve their relative order. This is the combinatorial structure that will
track how variables are used in a derivation.

Definition 1.4.14. We define the family of insertions of n terms into m terms,
Ins(n,m), inductively. There exists a single way of inserting zero terms into any
list of terms, Ins(0,m) = 1; inserting n+ 1 terms into a list of m terms amounts to
choosing the position of the first among m + 1 possible choices, and inserting the
rest of the terms,

Ins(n+ 1,m) = (m+ 1)× Ins(n,m+ 1).

32 1. MONOIDAL PROCESS THEORY

As a consequence, the number of possible insertions is Ins(n,m) = (m+ n)!/m!.
We write a1, . . . , an �τ Γ to refer to the list resulting from the insertion of

the variables a1, . . . , an into the list Γ, of length m, according to the insertion
τ ∈ Ins(n,m).

Remark 1.4.15. Accordingly, the only information that a return statement may
carry is that of an insertion Ins(n, 0), which is equivalently a permutation of the n
elements that are being returned. The information carried by a generator statement
is not only a generator n-to-m but also an insertion Ins(n,#Γ) of n variables on
the context of the derivation.

Example 1.4.16. Let us provide an example of the correspondence between the
different notations: a Rosetta’s stone translating between string diagrams, terms
of do-notation, and their corresponding derivations (Figure 13).

z:Z,w:W ` return(z,w) : Z ⊗W
z:Z, b:B,w:W, y:Y ` h(b, y)→ ()#

return(z,w) : Z ⊗W
a:A, b:B,w:W, x:X, y:Y ` f(a, x)→ z #

h(b, y)→ () #
return(z,w) : Z ⊗W

x:X, y:Y ` g()→ (a, b,w) #
f(a, x)→ z #
h(b, y)→ () #
return(z, w) : Z ⊗W

Figure 13. String diagram and derivation of a term.

1.4.4. Symmetry in Do-notation. At this point, using insertions may seem
complicated: why not simply assume an exchange rule that allows us to permute
variables freely? The problem we would encounter is that exchanges introduce
redundancy: there would be multiple ways of writing the same term, depending on
where we place the symmetries (Shulman describes the same problem for a different
notation [Shu16]). This is not a catastrophic problem – we could still quotient them
out appropriately – but it would make the construction much more complicated
than simply dealing with the combinatorial structure of insertions upfront.

The better solution is to have exchange appear as a derived, admissible rule,
rather than a primitive.

Proposition 1.4.17. Exchange is admissible in Do-notation for symmetric mo-
noidal categories. Any derivation Γ, x, y,∆ ` t : X admits a derivation Γ, y, x,∆ `
t : X.

Proof. We proceed by structural induction. The base case is a single return
statement, written as a0, . . . , x, y, . . . , an �σ () ` return(a0, . . . , x, . . . , y, . . . an) : X.
Permuting x, y in the insertion τ gives us a new insertion τxy deriving the same
statement under a different context

a0, . . . , y, x, . . . , an �τxy () ` return(a0, . . . , x, . . . , y, . . . an) : X.

Consider now an application of a generator,

a0, . . . , an �τ Γ ` f(a0, . . . , an)→ b0, . . . , bm # term : X.

There are two possible cases here: (1) if any of x, y is among the inserted variables,
a0, . . . , an, then we may simply exchange them by changing the order in which they

1.4. SYMMETRIC MONOIDAL CATEGORIES AND DO-NOTATION 33

are inserted; (2) if not, then Γ = Γ′, x, y,∆′, and we apply the induction hypothesis
over the derivation Γ′, x, y,∆′ ` term : X. �

Indeed, this is enough to ensure that terms do correspond to derivations: we
may simply write a term and there is a unique way it could have been extracted
from the context.

Proposition 1.4.18. Do-notation terms in a given context have a unique deriva-
tion.

Proof. By structural induction, a term is either a single return or an appli-
cation of some generator (f). Any single term x0, . . . , xn ` return(a0, . . . , an) has a
unique derivation: namely, the one that inserts the a’s into the x’s permuting them
in the only possible order. The insertion τ must be the only one making τ(xi) = ai.

Consider now an application of a generator, ∆ ` f(a0, . . . , an)→ b0, . . . , bm # t :
X. We know that it must come from ∆ = (a0, . . . , an �τ Γ), and this forces
Γ = (∆−{a0, . . . , an}) and the value of the insertion τ : it is the only one that turns
Γ into ∆. Once Γ has been determined, we apply the induction hypothesis to get
the derivation of b0, . . . , bm,Γ ` t : X. �

1.4.5. Quotienting Do-notation. Our logic is freely constructed, but it is
not yet a logic of monoidal categories: technically, it misses interchange. As it
stands, it is actually a logic for symmetric premonoidal categories, which we will
study later. We shall only add the following rule – the interchange rule – in order
to convert it into a calculus of symmetric monoidal categories.

Interchange rule. Consider a derivation of the following term, where b0, . . . , bm
and c0, . . . cp are two lists of distinct variables, meaning that no bi appears in cj – and
conversely, no di appears in aj. Then, we can interchange the two first statements
of the term.

Γ ` f(a0, . . . , an)→ b0, . . . , bm #
g(c0, . . . , cp)→ d0, . . . , dp #
term : ∆

≡
Γ ` g(c0, . . . , cp)→ d0, . . . , dp #

f(a0, . . . , an)→ b0, . . . , bm #
term : ∆

Figure 14. Interchange rule.

Proposition 1.4.19. We show this is well defined. Whenever the left hand side of
the interchange rule is a valid term, and variables are distinct, the right hand side
is also a valid term.

Proof. First, we reason that the term on the left-hand side must have a
derivation tree of the following form.

d0, . . . , dq, b0, . . . , bm,∆ ` term : C

b0, . . . , bm, (c0, . . . , cp �ρ ∆) ` g(c0, . . . , cp)→ (d0, . . . , dq) #

term : C

a0, . . . , an �σ (c0, . . . , cp �ρ ∆) ` f(a0, . . . , an)→ (b0, . . . , bm) #

g(c0, . . . , cp)→ (d0, . . . , dq) #

term : C

We now argue for this. In the second line of the derivation we use that, because
of variables being distinct, the only possible context (c0, . . . , cp) �τ Ψ we can use
must factor as b0, . . . , bm, (c0, . . . , cp)�ρ ∆ for some ∆ and ρ. We can then check

34 1. MONOIDAL PROCESS THEORY

by the form of the rules that the final context Γ must be of the form a0, . . . , an �σ

(c0, . . . , cp �ρ ∆) for some insertion σ. All this means that the following derivation
is also valid.

b0, . . . , bm, d0, . . . , dq,∆ ` term : X

d0, . . . , dq, (c0, . . . , cp � ∆) ` f(a0, . . . , an)→ b0, . . . , bm #

t : X

a0, . . . , an � (c0, . . . , cp � ∆) ` g(c0, . . . , cp)→ (d0, . . . , dq) #

f(a0, . . . , an)→ (b0, . . . , bm) #

term : X

This derivation proves that the right side term is also valid. �

Finally, we can start proving that do-notation terms are a syntax for symmetric
monoidal categories: they form the free strict symmetric monoidal category over a
signature.

Lemma 1.4.20. Do-notation terms over a polygraph G, quotiented by the inter-
change rule, define a monoidal category, Do(G). This construction induces a functor
Do : PolyGraph→ SymMonCatStr.

Proof sketch. We will describe the operations of this strict symmetric mo-
noidal category. Let us start by composition: consider derivations Γ ` t : B1 ⊗
. . . ⊗ Bm and b1:B1, . . . , bm:Bm ` s : Ψ. We will construct, by induction over t, a
derivation Γ ` comp(t, s) : Ψ, that will define their composition. If t is a return state-
ment, then Γ is a permutation of b1:B1, . . . , bm:Bm and, by exchange, we obtain
Γ ` s : Ψ and we define it as the composition. Whenever t consists of a generator
followed by a derivation, Γ ` t : Ψ must be of the form

(x1, . . . , xn)� Γ′ ` f(x1, . . . , xn)→ y1, . . . , ym # t′ : Ψ,

and we define comp(t, s) to mean f(x1, . . . , xn)→ y1, . . . , ym # comp(t′, s), using the
y1, . . . , ym,Γ

′ ` t′ : B1 ⊗ . . .⊗ Bm we just obtained. Put simply, we have removed
the last return statement from one of the derivations, taking care of permutations,
and then concatenated both (see Figure 15).

Let us now define tensoring: consider derivations Γ ` t : ∆ and Γ′ ` t′ : ∆′.
We start by noticing that, if we have a derivation Γ ` t : ∆, we can construct, by
induction, a derivation Γ, z:Z ` tz : ∆ ⊗ Z for any z:Z: the return case consists of
adding an extra variable to the permutation, the generator case is not affected by
the presence of an extra variable. Repeating this reasoning and using exchange, we
can obtain terms Γ,Γ′ ` tΓ′ : ∆⊗ Γ′ and ∆,Γ′ ` t′∆ : ∆⊗∆′ that we can compose
into Γ,Γ′ ` comp(tΓ′ , t

′
∆′) : ∆ ⊗ ∆′. The order of composition does not matter

because of the interchange law. Put simply, we write the two terms one after the
other, taking care not to mix the variables (see Figure 15, for a graphical intuition).

Figure 15. Composition and tensoring in do-notation.

1.4. SYMMETRIC MONOIDAL CATEGORIES AND DO-NOTATION 35

Finally, we must define identities, generators and symmetries. These are
the following three terms.

a1, . . . , an ` return(a1, . . . , an)

a1, . . . , an ` f(a1, . . . , an)→ (b1, . . . , bm) # return(b1, . . . , bm)

a1, . . . , an, b1, . . . bm ` return(b1, . . . , bm, a1, . . . , an)

We can check that these operations define a category and a monoidal category. The
interchange law of monoidal categories is extracted from the interchange law that
we imposed in do-notation. �

Theorem 1.4.21. There is an adjunction between polygraphs and the category
of strict symmetric monoidal categories given by do-notation terms, Do a Forget.
Moreover, do-notation terms and string diagrams are naturally isomorphic.

Proof sketch. We have already proven that do-notation constructs a sym-
metric monoidal category over a polygraph. We need to show that there is a unique
map out of the category constructed by do-notation that commutes with any as-
signment of the polygraph to a monoidal category.

The first part would be to prove the initiality of the syntax. We can do so by
structural induction: any term is either a return statement or a composition of a
generator with a symmetry and a term. In the first case, the symmetry determined
by the return statement must be mapped to the corresponding symmetry in any
symmetric monoidal category; in the second case, the image of the generator is
determined, and the rest of the term is determined by structural induction. In
conclusion, the image of any do-notation term is determined in any symmetric
monoidal category over which we map the polygraph of generators.

The core of the proof is in showing that this unique possible assignment is
well-defined: the only equality imposed on do-notation is the interchange law, but
this law corresponds, under the assignment, to the interchange law of symmetric
monoidal categories.

Finally, both functors,

Do,Stringσ : PolyGraph→ SymMonCatStr

have been found to be left adjoints to the same forgetful functor. This implies they
are isomorphic functors. �

1.4.6. Example: the XOR Variable Swap. Let us provide an example of
the formal usage of both do-notation and string diagrams, by reasoning about a
simple process. In imperative programming languages, swapping the value of two
variables usually requires a third temporary variable. However, the XOR variable
swap algorithm uses the properties of the exclusive-or operation (XOR, ⊕) to ex-
change variables without needing a temporary variable. Let xor(x, y) = (x⊕ y, y).
The code is in Figure 16.

Figure 16. XOR variable exchange.

36 1. MONOIDAL PROCESS THEORY

The property that makes this algorithm possible is the nilpotency of the XOR
operation: x ⊕ x = 0 for any n-bit word x ∈ 2n. This means that we can prove
the correctness of the XOR variable exchange in the abstract setting of nilpotent
bialgebras. In fact, consider a polygraph X with a single object and the generators
depicted in Figure 17.

Figure 17. Signature for a bialgebra.

We now want to impose a set of equations, E ⊆ String(X)× String(X), on top
of this signature. This can also be done via the adjunction: the equations give
two maps E → Forget(String(X)), or equivalently, String(E) → String(X). The
coequalizer of the latter two describes the universal monoidal category with some
generators and satisfying some equations. Back to our example, the theory of a
nilpotent bialgebra satisfies the following equations in Figure 18.

Figure 18. Theory of a nilpotent bialgebra.

Given any nilpotent bialgebra in any strict symmetric monoidal category, there
exists a unique monoidal functor from the string diagrams quotiented by these
equations to that signature.

Proposition 1.4.22. Let a nilpotent bialgebra in a symmetric monoidal category.
The XOR variable exchange algorithm is equal to the swap morphism.

Proof. In the theory of nilpotent bialgebras over a symmetric monoidal cat-
egory, the following equation in Figure 19 holds.

The left hand side represents the XOR variable exchange while the right hand
side represents swapping the contents of two variables. We have shown both are
equal. �

1.4.7. Bibliography. Symmetric monoidal categories and their hexagon co-
herence equations were already stated by MacLane [Mac63, ML71], Bénabou de-
fined commutations on a monoidal category and an abstract notion of commutative
monoid [Bén68]. String diagrams for symmetric monoidal categories are already de-
scribed by Joyal and Street [JS91, Sel10]; we follow the representation in terms of
hypergraphs by Bonchi, Gadducci, Kissinger, Sobocinski and Zanasi [BGK+16].

1.4. SYMMETRIC MONOIDAL CATEGORIES AND DO-NOTATION 37

Figure 19. XOR variable exchange.

The XOR example was known to Erbele [BE14] and Sobocinski. The idea of using
a Rosetta stone to translate between categories and logics comes from Baez and
Stay [BS10].

Do-notation comes from the Haskell programming language [HJW+92], where
it takes semantics in a strong promonad [Hug00, HJ06] (also known as an arrow
[Pat03]). We have studied here an adaptation to the monoidal setting. Our pre-
sentation of do-notation follows the style of Shulman’s categorical logic [Shu16].

38 1. MONOIDAL PROCESS THEORY

1.5. Cartesianity: Determinism and Totality

Our process theories are, by default, linear on resources: every variable must
be used exactly once. This may seem like a limitation, but it is a more general
case that can be particularized into the classical case when necessary: we say that
a process theory – a monoidal category – is classical or cartesian whenever it has
processes representing copying and discarding and satisfying suitable axioms.

Non-classical theories can become so in two ways: either because they do not
allow copying, or because they do not allow discarding. Theories without copying
model stochasticity and non-determinism: running a computation twice is different
from just running it once and assuming its result will be the same next time.
Theories without discarding model partiality: even if we do not care about the
result, we cannot assume anymore that any computation will succed.

1.5.1. Cartesian Monoidal Categories. Cartesian monoidal categories give
a universal property to their tensor: the tensor of two objects, A×B, is such that
pair of maps to A and B are in precise correspondence to single map to A×B. This
universal property, in some sense, ensures that the tensor contains nothing more
and nothing less than its two constituent parts; this is what characterizes classical
theories.

Definition 1.5.1. Cartesian monoidal categories are monoidal categories, (C,×, 1),
such that

(1) each tensor, A × B, is endowed with projections, π1 : A × B → A and
π2 : A × B → B, that make it a product: for each object X ∈ Cobj and
any pair of morphisms, f : X → A and g : X → B, there exists a unique
〈f, g〉 : X → A×B such that

〈f, g〉 # π1 = f and 〈f, g〉 # π2 = g;

(2) the unit, 1, is terminal: for each object X ∈ Cobj there exists a unique
morphism π : X → 1.

Fox’s theorem is a characterisation of classical theories, cartesian monoidal
categories, in terms of the existence of a uniform cocommutative comonoid structure
(copy and delete) on all objects of a monoidal category.

Theorem 1.5.2 (Fox, [Fox76]). A symmetric monoidal category (C,⊗, I) is
cartesian monoidal if and only if every object X ∈ C has a commutative como-
noid structure (X, εX , δX), every morphism of the category f : X → Y is a co-
monoid homomorphism, and this structure is uniform across the monoidal cat-
egory, meaning that εX⊗Y = εX ⊗ εY , that εI = id, that δI = id and that
δX⊗Y = (δX ⊗ δY) # (id⊗ σX,Y ⊗ id).

Figure 20. Theory of cartesian categories.

Fox’s characterization has a direct translation to string diagrams: the first
conditions impose a natural commutative comonoid structure on each generator

1.5. CARTESIANITY: DETERMINISM AND TOTALITY 39

(Figure 20); the last conditions state that the structure on all the objects follows
from that of the generators.

We can add a slight improvement. Most sources ask the comonoid structure
in Fox’s theorem (Theorem 1.5.2) to be cocommutative [Fox76, FS19]. However,
cocommutativity and coassociativity of the comonoid structure are implied by the
fact that the structure is uniform and natural. We present an original refined
version of Fox’s theorem.

Theorem 1.5.3 (Refined Fox’s theorem). A symmetric monoidal category, (C,
⊗, I), is cartesian monoidal if and only if every object X ∈ C has a counital
comagma structure (X, εX , δX), or (X, X , X), every morphism of the category
f : X → Y is a comagma homomorphism, and this structure is uniform across
the monoidal category: meaning that εX⊗Y = εX ⊗ εY , εI = id, δI = id and
δX⊗Y = (δX ⊗ δY); (id⊗ σX,Y ⊗ id).

Proof. We prove that such a comagma structure is necessarily coassociative
and cocommutative. Note that any comagma homomorphism f : A → B must
satisfy δA # (f ⊗ f) = f # δB . In particular, δX : X → X ⊗ X must itself be a
comagma homomorphism (see Figure 25), meaning that

(1) δX # (δX ⊗ δX) = δX # δX⊗X = δX # (δX ⊗ δX) # (id⊗ σX,Y ⊗ id),

where the second equality follows by uniformity.

Figure 21. Comultiplication is a comagma homomorphism.

Now, we prove cocommutativity (Figure 22): composing both sides of Equa-
tion (1) with (εX ⊗ id ⊗ id ⊗ εX) discards the two external outputs and gives
δX = δX #σX . Then, we prove coassociativity (Figure 23): composing both sides of

Figure 22. Cocommutativity

Equation (1) with (id⊗ εX ⊗ id⊗ id) discards one of the middle outputs and gives
δX # (id⊗ δX) = δX # (δX ⊗ id).

A coassociative and cocommutative comagma is a cocommutative comonoid.
We can then apply the classical form of Fox’s theorem (Theorem 1.5.2). �

Figure 23. Coassociativity

40 1. MONOIDAL PROCESS THEORY

1.5.2. Partial Markov Categories. If process theories were all cartesian,
we could use the commutative comonoid structure on every object to simplify cal-
culations. However, most of the theories that pose a challenge to computer science
(like stochastic processes, partial processes, or quantum maps) are not cartesian.
The rest of this thesis will not assume cartesianity: let us give a good example and
motivation for doing this.

Cartesianity in a category with copy and discard processes can be divided
in two concepts: determinism and totality. All pure functions, for instance, are
deterministic and total, but stochastic functions are not deterministic (tossing a coin
twice is different from tossing it once and copying the result twice), and partially
computable functions are not total (because even if we do not care about the output,
they could diverge and make the whole process wait).

Definition 1.5.4. In a symmetric monoidal category with uniform commutative
comonoids, (C,⊗, I, , , σ), a morphism f : X → Y is deterministic if it can be
copied, f # Y = X # (f ⊗ f), and it is total (or causal) if it can be discarded,
f # Y = X . Moreover, we say it is quasitotal (or quasicausal), if it can be copied
on the side and discarded, f = X # ((f # Y)⊗ f). See Figure 24.

Figure 24. Deterministic, total, and quasitotal morphisms.

Let us provide a single theory where these three assumptions fail: the theory
of discrete partial Markov categories [LR23], which we will use to study partial
stochastic functions. Apart from copy () : X → X ⊗X and discard () : X → I,
we also consider a comparator morphism () : X ⊗ X → X. Copying, discarding
and comparing interact as a partial Frobenius algebra [DLLNS21].

Definition 1.5.5. A discrete partial Markov category is is a symmetric monoidal
category (C,⊗, I) such that every object has a partial Frobenius monoid structure
(, ,) that satisfies the axioms in Figure 25 and uniformity, meaning that

(1) ()X⊗Y = (X ⊗ Y) # (idX ⊗ σ ⊗ idY) and ()I = id;
(2) ()X⊗Y = (idX ⊗ σ ⊗ idY) # (X ⊗ Y) and ()I = id;
(3) ()X⊗Y = (X ⊗ Y) and ()I = id.

Figure 25. Theory of a partial Frobenius algebra.

1.5. CARTESIANITY: DETERMINISM AND TOTALITY 41

Proposition 1.5.6. A subdistribution on a set X is a function d : X → [0, 1] that
is non-zero on a finite number of elements and that adds up to less or equal than
one, ∑

d(x)>0

d(x) ≤ 1.

Subdistributions form a monad, and the Kleisi category of the subdistribution monad
forms a discrete partial Markov category [LR23].

Proof. Let us write D≤1(X) for the set of subdistributions over a set. We
claim that this extends to a monad in the category of sets and functionsD≤1 : Set→
Set. The multiplication µ : D≤1(D≤1(X)) → D≤1(X) is defined by µ(ψ)(x) =∑
ψ(d)>0 d(x), and the unit η : X → D≤1(X) is defined by the Dirac’s delta,

η(x0)(x) = [x = x0], which is valued to 1 whenever x = x0 and is valued to 0
otherwise.

The Kleisli category of this monad has morphisms the partial stochastic chan-
nels f : X → D≤1(Y). We write f(y|x) ∈ [0, 1] for the value of f(x) on the input
y ∈ Y , capturing the usual notation for conditionals in probability. Under this
notation, composition on the Kleisli category becomes

(f # g)(z|x) =
∑
y∈Y

f(y|x) · g(z|y).

While tensoring is (f ⊗ f ′)(y, y′|x, x′) = f(y|x) · f ′(y′|x′). The copy morphism is
defined by ()(x, y|z) = [x = y = z]; the discard morphism is defined by ()(|x) = 1;
and the comparator is given by ()(x|y, z) = [x = y = z]. It is direct to check that
these satisfy the axioms of a partial Frobenius algebra. �

Remark 1.5.7 (Effect algebras). The set of partial stochastic channels between
two sets, X → D≤1(Y), forms a particular algebraic structure known as an effect
module.

An effect algebra [FB94, Jac15, vdW21] is a set E with a partial binary opera-
tion (⊕) : E ×E → E, a unary operation (•)⊥ : E → E, and a constant 0 ∈ E. We
write x⊥y whenever x⊕ y is well-defined and we write 1 = 0⊥. The effect algebra
must satisfy

(1) Commutativity, x⊕ y = y ⊕ x, where x⊥y implies y⊥x.
(2) Unitality, x⊕ 0 = x = 0⊕ x, where x⊥0.
(3) Associativity, x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z, where having both y⊥z and

x⊥(y ⊕ z) implies both x⊥y and (x⊕ y)⊥z.
(4) Complementarity, x⊥ is unique such that x⊥ ⊕ x = 1 and x⊥x⊥.

An effect algebra homomorphism f : E → F must satisfy f(1) = 1, and x⊥y must
imply f(x)⊥f(y), with f(x ⊕ y) = f(x) ⊕ f(y). Effect algebras form a symmetric
monoidal category.

The unit interval, [0, 1], forms an effect algebra with the binary sum (whenever
it is contained on the interval), the unary complement x⊥ = 1 − x, and the zero;
moreover, the unit interval [0, 1] with multiplication forms a monoid in the monoidal
category of effect algebras.

Partial stochastic channels also form an effect algebra, with the same pointwise
operations, but moreover, we can multiply them by a ‘scalar’ from the unit interval
[0, 1]: they form a module in the monoidal category of effect algebras. The structure
of effect module interplays well with composition and tensoring of partial stochastic
channels; so we will employ it later in Section 4.5.5.

Remark 1.5.8 (Bayesian inversions). The Bayesian inversion of a stochastic chan-
nel g : X → Y with respect to a distribution f : I → X is the stochastic channel

42 1. MONOIDAL PROCESS THEORY

g†
f : Y → X classically defined by

g†
f (x|y) =

g(y|x) · f(x)∑
x•∈X g(y|x•) · f(x•)

.

Bayesian inversions can be defined synthetically in any partial Markov category
[CJ19]. The Bayesian inversion of a morphism g : X → Y with respect to f : I → X

is a morphism g†
f : Y → X satisfying the equation in Figure 26, which translates to

the above when the partial Markov category is that of subdistributions.

Figure 26. Bayesian inversion.

The definition of a partial Markov category includes asking a quasitotal Bayesian
inversion for every morphism, with respect to any other morphism: this is the notion
of quasitotal conditional [LR23], which we will not need in this thesis.

Finally, let us justify that this process theory is enough to capture many of the
features of classical probability theory. We will prove a synthetic version of Bayes
theorem using the syntax of discrete partial Markov categories. The classical Bayes
theorem prescribes that, after observing the output of a prior distribution through
a channel, we should update our posterior distribution to be the Bayesian inversion
of the channel with respect to the prior distribution, evaluated on the observation.

Theorem 1.5.9 (Synthetic Bayes’ Theorem). In a discrete partial Markov cat-
egory, observing a deterministic x : I → X from a prior distribution f : I → A
through a channel g : A → X is the same, up to scalar, as the Bayesian inversion
evaluated on the observation, g†

f (x) : I → A.

Figure 27. Bayes theorem.

Proof. We employ string diagrams (Figure 27). Equalities follow from (i)
the definition of Bayesian inversion, (ii) the partial Frobenius axioms, and (iii)
determinism of y. �

1.5.3. Bibliography. Fox’s theorem, in its original formulation, is the con-
struction of a right adjoint to the forgetful functor from cartesian monoidal cate-
gories to Monoidal categories. This right adjoint is given by the category of cocom-
mutative comonoids over a monoidal category [Fox76]. The version here presented
is esentially equivalent; in fact, it is called “Fox’s theorem” in the work of Bonchi,
Seeber and Sobocinski [BSS18].

1.5. CARTESIANITY: DETERMINISM AND TOTALITY 43

The categorical approach to probability theory based on Markov categories is
due to Fritz [Fri20] and prior work of Cho and Jacobs [CJ19]. Multiple results of
classical probability theory have been adapted to the framework of Markov cate-
gories by multiple authors [FR20, FPR21, FP19, FGP21]. Markov categories have
been further applied for formalising Bayes networks and other kinds of probabilis-
tic and causal reasoning in categorical terms [Fon13, JZ20, JKZ21]. Their partial
counterpart and the application to decision theory was introduced in joint work
with Di Lavore [LR23]. Effect algebras are due to Foulis and Bennett [FB94]; Ja-
cobs employed them for a probabilistic categorical logic [Jac15]; van de Wetering
[vdW21] characterized the unit interval in terms of effect algebras.

44 1. MONOIDAL PROCESS THEORY

1.6. Premonoidal Categories

It might seem that monoidal categories are limited to pure imperative program-
ming without effects. After all, the interchange law seems to imply that the order
in which two independent are executed does not matter. This is true, but again,
category theory has a solution for us: premonoidal categories.

Category theory has two successful applications that are rarely combined: mo-
noidal string diagrams [JS91] and programming semantics [Mog91]. We use string
diagrams to talk about quantum transformations [AC09], relational queries [BSS18],
and even computability [Pav13]; at the same time, proof nets and the geome-
try of interaction [Gir89, BCST96] have been widely applied in computer science
[AHS02, HMH14]. On the other hand, we traditionally use monads and comonads,
Kleisli categories and premonoidal categories to explain effectful functional pro-
gramming [Hug00, JHH09, Mog91, PT99, UV08]. Even if we traditionally employ
Freyd categories with a cartesian base [Pow02], we can also consider non-cartesian
Freyd categories [SL13], which we call effectful categories.

This section introduces premonoidal categories and effectful categories. The
next section will study their string diagrams in terms of monoidal categories, reduc-
ing them to a particular consideration on top of the theory of monoidal categories.

1.6.1. Premonoidal Categories. Premonoidal categories are monoidal cat-
egories without the interchange law, (f ⊗ id) # (id ⊗ g) 6= (id ⊗ g) # (f ⊗ id). This
means that we cannot tensor any two arbitrary morphisms, (f ⊗g), without explic-
itly stating which one is to be composed first, (f ⊗ id) # (id⊗ g) or (id⊗ g) # (f ⊗ id),
and the two compositions are not equivalent (Figure 28).

Figure 28. The interchange law does not hold in a premonoidal category.

In technical terms, the tensor of a premonoidal category (⊗) : C × C → C is
not a functor, but only what is called a sesquifunctor : independently functorial in
each variable. Tensoring with any identity is itself a functor (• ⊗ id) : C → C, but
there is no functor (• ⊗ •) : C× C→ C.

A practical motivation for dropping the interchange law can be found when
describing transformations that affect a global state. These effectful processes
should not interchange in general, because the order in which we modify the global
state is meaningful. For instance, in the Kleisli category of the writer monad,
(Σ∗ × •) : Set → Set for some alphabet Σ ∈ Set, we can consider the function
print : Σ∗ → Σ∗ × 1. The order in which we “print” does matter (Figure 29).

Figure 29. Writing does not interchange.

Not surprisingly, the paradigmatic examples of premonoidal categories are the
Kleisli categories of Set-based monads T : Set → Set (more generally, of strong

1.6. PREMONOIDAL CATEGORIES 45

monads), which fail to be monoidal unless the monad itself is commutative [Gui80,
PR97, PT99, Hed19]. Intuitively, the morphisms are “effectful”, and these effects
do not always commute.

However, we may still want to allow some morphisms to interchange. For in-
stance, apart from asking the same associators and unitors of monoidal categories
to exist, we ask them to be central : which means that they interchange with any
other morphism. This notion of centrality forces us to write the definition of pre-
monoidal category in two different steps: first, we introduce the minimal setting
in which centrality can be considered (binoidal categories [PT99]) and then we use
that setting to bootstrap the full definition of premonoidal category with central
coherence morphisms.

Definition 1.6.1 (Binoidal category). A binoidal category is a category C endowed
with an object I ∈ C and an object A ⊗ B for each A ∈ C and B ∈ C. There are
functors (A⊗•) : C→ C, and (•⊗B) : C→ C that coincide on (A⊗B). Note that
(• ⊗ •) is not being defined as a functor.

Again, this means that we can tensor with identities (whiskering), functorially;
but we cannot tensor two arbitrary morphisms: the interchange law stops being
true in general. The centre, Z(C), is the wide subcategory of morphisms that do
satisfy the interchange law with any other morphism. That is, f : A→ B is central
if, for each g : A′ → B′,

(f ⊗ idA′) # (idB ⊗ g) = (idA ⊗ g) # (f ⊗ idB′), and
(idA′ ⊗ f) # (g ⊗ idB) = (g ⊗ idA) # (idB′ ⊗ f).

Definition 1.6.2. A premonoidal category is a noidal category (C,⊗, I) together
with the following coherence isomorphisms αA,B,C : A ⊗ (B ⊗ C) → (A ⊗ B) ⊗ C,
ρA : A ⊗ I → A and λA : I ⊗ A → A which are central, natural separately at each
given component, and satisfy the pentagon and triangle equations.

A premonoidal category is strict when these coherence morphisms are identities.
A premonoidal category is moreover symmetric when it is endowed with a coherence
isomorphism σA,B : A ⊗ B → B ⊗ A that is central and natural at each given
component and satisfies the symmetry condition and hexagon equations.

Remark 1.6.3. The coherence theorem of monoidal categories still holds for pre-
monoidal categories: every premonoidal is equivalent to a strict one. We will con-
struct the free strict premonoidal category using string diagrams. However, the
usual string diagrams for monoidal categories need to be restricted: in premonoidal
categories, we cannot consider two morphisms in parallel unless any of the two is
central.

1.6.2. Effectful and Freyd Categories. Premonoidal categories immedi-
ately present a problem: what are the premonoidal functors? If we want them
to compose, they should preserve the centrality of the coherence morphisms (so
that the central coherence morphisms of F # G are these of F after applying G),
but naively asking them to preserve all central morphisms rules out important ex-
amples [SL13]. The solution is to explicitly choose some central morphisms that
represent “pure” computations. These do not need to form the whole centre: it
could be that some morphisms considered effectful just “happen” to fall in the cen-
tre of the category, while we do not ask our functors to preserve them. This is the
well-studied notion of a non-cartesian Freyd category, which we shorten to effectful
monoidal category or effectful category.

46 1. MONOIDAL PROCESS THEORY

Effectful categories are premonoidal categories endowed with a chosen family of
central morphisms. These central morphisms are called pure morphisms, contrast-
ing with the general, non-central, morphisms that fall outside this family, which we
call effectful.

Definition 1.6.4. An effectful category is an identity-on-objects functor V → C
from a monoidal category V (the pure morphisms, or “values”) to a premonoidal
category C (the effectful morphisms, or “computations”), that strictly preserves all
of the premonoidal structure and whose image is central. It is strict when both are.
A Freyd category [Lev22] is an effectful category where the pure morphisms form a
cartesian monoidal category.

Effectful categories solve the problem of defining premonoidal functors: a func-
tor between effectful categories needs to preserve only the pure morphisms. We
are not losing expressivity: premonoidal categories are effectful with their centre,
Z(C)→ C. From now on, we study effectful categories.

Definition 1.6.5 (Effectful functor). Let V → C and W → D be effectful cat-
egories. An effectful functor is a quadruple (F, F0, ε, µ) consisting of a functor
F : C→ D and a functor F0 : V→W making the square commute, and two natural
and pure isomorphisms ε : I ′ ∼= F (I) and µ : F (A ⊗ B) ∼= F (A) ⊗ F (B) such that
they make F0 a monoidal functor. It is strict if these are identities.

When drawing string diagrams in an effectful category, we shall use two differ-
ent colours to declare if we are depicting either a value or a computation (Figure 30).

Figure 30. “Hello world” is not “world hello”.

Here, the values “hello” and “world” satisfy the interchange law as in an ordinary
monoidal category. However, the effectful computation “print” does not need to
satisfy the interchange law. String diagrams like these can be found in the work of
Alan Jeffrey [Jef97b]. Jeffrey presents a clever mechanism to graphically depict the
failure of interchange: all effectful morphisms need to have a control wire as an input
and output. This control wire needs to be passed around to all the computations
in order, and it prevents them from interchanging.

Figure 31. An extra wire prevents interchange.

Our interpretation of monoidal categories is as theories of resources. We can
interpret premonoidal categories as monoidal categories with an extra resource –
the “runtime” – that needs to be passed to all computations. The next section
promotes Jeffrey’s observation into a theorem.

1.6. PREMONOIDAL CATEGORIES 47

Remark 1.6.6. After the next section, which reduces premonoidal categories to
monoidal categories, the rest of this thesis deals mostly with monoidal categories.
Why not study premonoidal categories instead of just monoidal categories? Pre-
monoidal categories should be more general: they do not assume the interchange
law, which is false in stateful systems. However, we give an argument for study-
ing only monoidal categories in the next section: any premonoidal category can
be reinterpreted as a monoidal category carrying an extra resource (an extra wire)
representing the global state. We do not need to write a new theory of premonoidal
categories: premonoidal categories are already monoidal categories, in which one
wire is hidden. The following section makes this idea formal.

1.6.3. Bibliography. This chapter follows closely the first part of “Promon-
ads and String Diagrams for Effectful Categories”, by this author [Rom22].

Effectful categories are the monoidal counterpart of a well-known notion: that
of “Freyd categories”. The name “Freyd category” sometimes assumes cartesianity
of the pure morphisms, but it is also used for the general case; choosing to call
“effectful categories” to the general case and reserving the name “Freyd categories”
for the cartesian ones avoids this clash of nomenclature. There exists also the more
fine-grained notion of “Cartesian effect category” [DDR11], which generalizes Freyd
categories and may further justify calling “effectful category” to the general case.

48 1. MONOIDAL PROCESS THEORY

1.7. String Diagrams for Premonoidal Categories

Premonoidal categories give us a generalization of monoidal categories account-
ing for effectful computation but, at the same time, they do not need us to change
our syntax yet. String diagrams for premonoidal categories can be reduced to string
diagrams for monoidal categories: they rely on the fact that the morphisms of the
monoidal category freely generated over a polygraph of generators are string dia-
grams on these generators, quotiented by topological deformations, as we saw in
Section 1.1.3.

1.7.1. Effectful Polygraphs. We justify string diagrams for premonoidal
categories by proving that the freely generated effectful category over a pair of
polygraphs (for pure and effectful generators, respectively) can be constructed as
the freely generated monoidal category over a particular polygraph that includes
an extra wire. In the same sense that polygraphs are signatures for generating free
monoidal categories, effectful polygraphs are signatures for generating free effectful
categories.

Definition 1.7.1. An effectful polygraph is a pair of polygraphs (V,G) sharing the
same objects, Vobj = Gobj. A morphism of effectful polygraphs (u, f) : (V,G) →
(W,H) is a pair of morphisms of polygraphs, u : V → W and f : G → H, such that
they coincide on objects, fobj = uobj.

1.7.2. Adding Runtime. Recall from Section 1.1.3 that there exists an ad-
junction between polygraphs and strict monoidal categories. Any monoidal cate-
gory C can be seen as a polygraph, Forget(C), where the edges are morphisms

Forget(C)(A0, . . . , An;B0, . . . , Bm) = C(A0 ⊗ . . .⊗An;B0 ⊗ . . .⊗Bm),

and we forget about composition and tensoring. Given a polygraph G, the free strict
monoidal category, which we will now write as Mon(G) = String(G), is the strict
monoidal category that has as morphisms the string diagrams over the generators
of the polygraph.

We will construct a similar adjunction between effectful polygraphs and effectful
categories. Let us start by formally adding the runtime to a free monoidal category.

Definition 1.7.2 (Runtime monoidal category). Let (V,G) be an effectful poly-
graph. Its runtime monoidal category, MonRun(V,G), is the monoidal category
freely generated from adding an extra object – the runtime, R – to the input and
output of every effectful generator in G (but not to those in V), and letting that
extra object be braided with respect to every other object of the category.

In other words, it is the monoidal category freely generated by the following
polygraph, Run(V,G), (Figure 32), assuming A0, . . . , An and B0, . . . , Bm are dis-
tinct from R

• Run(V,G)obj = Gobj + {R} = Vobj + {R},
• Run(V,G)(R,A0, . . . , An;R,B0, . . . , Bn) = G(A0, . . . , An;B0, . . . , Bn),
• Run(V,G)(A0, . . . , An;B0, . . . , Bn) = V(A0, . . . , An;B0, . . . , Bn),
• Run(V,G)(R,A0;A0, R) = Run(V,G)(A0, R;R,A0) = {σ},

with Run(V,G) empty in any other case, and quotiented by the braiding axioms
for R (Figure 33).

Somehow, we are asking the runtime R to be in the Drinfeld centre [DGNO10]
of the monoidal category. The extra wire that R provides is only used to prevent
interchange, and so it does not really matter where it is placed in the input and the
output. We can choose to always place it on the left, for instance – and indeed we
will be able to do so – but a better solution is to just consider objects “up to some
runtime braidings”. This is formalized by the notion of braid clique.

1.7. STRING DIAGRAMS FOR PREMONOIDAL CATEGORIES 49

Figure 32. Generators for the runtime monoidal category.

Figure 33. Axioms for the runtime monoidal category.

Definition 1.7.3 (Braid clique). Given any list of objects A0, . . . , An in Vobj =
Gobj, we construct a clique [Tod10, Shu18] in the category MonRun(V,G): we con-
sider the objects, A0 ⊗ . . .⊗R(i) ⊗ . . .⊗An, created by inserting the runtime R in
all of the possible 0 ≤ i ≤ n+1 positions; and we consider the family of commuting
isomorphisms constructed by braiding the runtime,

σi,j : A0 ⊗ . . .⊗R(i) ⊗ . . .⊗An → A0 ⊗ . . .⊗R(j) ⊗ . . .⊗An.
We call this the braid clique, BraidR(A0, . . . , An), on that list.

Definition 1.7.4. A braid clique morphism,

f : BraidR(A0, . . . , An)→ BraidR(B0, . . . , Bm),

is a family of morphisms in the runtime monoidal category, MonRun(V,G), from
each of the objects of first clique to each of the objects of the second clique,

fik : A0 ⊗ . . .⊗R(i) ⊗ . . .⊗An → B0 ⊗ . . .⊗R(k) ⊗ . . .⊗Bm,
that moreover commutes with all braiding isomorphisms, fij # σjk = σil # f.

A braid clique morphism f : BraidR(A0, . . . , An) → BraidR(B0, . . . , Bm) is
fully determined by any of its components, by pre/post-composing it with braidings.
In particular, a braid clique morphism is always fully determined by its leftmost
component f00 : R⊗A0 ⊗ . . .⊗An → R⊗B0 ⊗ . . .⊗Bm.

Lemma 1.7.5. Let (V,G) be an effectful polygraph. There exists a premonoidal
category, Eff(V,G), that has objects the braid cliques, BraidR(A0, . . . , An), in the
runtime monoidal category MonRun(V,G), and as morphisms the braid clique mor-
phisms between them.

Proof. First, let us give Eff(V,G) the structure of a category. The identity
on BraidR(A0, . . . , An) is the identity on R ⊗ A. The composition of a morphism
R ⊗ A → R ⊗ B with a morphism R ⊗ B → R ⊗ C is their plain composition in
MonRun(V,G).

Let us now check that it is moreover a premonoidal category. Tensoring
of cliques is given by concatenation of lists, which coincides with the tensor in
MonRun(V,G). However, it is interesting to note that the tensor of morphisms can-
not be defined in this way: a morphism R ⊗ A → R ⊗ B cannot be tensored with
a morphism R⊗A′ → R⊗B′ to obtain a morphism R⊗A⊗A′ → R⊗B ⊗B′.

Whiskering of a morphism f : R⊗A→ R⊗B is defined with braidings in the
left case, R ⊗ C ⊗ A → R ⊗ C ⊗ B, and by plain whiskering in the right case,
R ⊗ A ⊗ C → R ⊗ B ⊗ C, as depicted in Figure 34. Finally, the associators and
unitors are identities, which are always natural and central. �

50 1. MONOIDAL PROCESS THEORY

Figure 34. Whiskering in the runtime premonoidal category.

Lemma 1.7.6. Let (V,G) be an effectful polygraph. There exists an identity-on-
objects functor Mon(V) → Eff(V,G) that strictly preserves the premonoidal struc-
ture and whose image is central.

Proof. A morphism v ∈ Mon(V)(A,B) induces a morphism (idR ⊗ v) ∈
MonRun(V,G)(R⊗A,R⊗B), which can be read as a morphism of cliques (idR⊗v) ∈
Eff(V,G)(A,B). This is tensoring with an identity, which is indeed functorial.

Let us now show that this functor strictly preserves the premonoidal structure.
The fact that it preserves right whiskerings is immediate. The fact that it preserves
left whiskerings follows from the axioms of symmetry (Figure 35, left). Associa-
tors and unitors are identities, which are preserved by tensoring with an identity.
Finally, we can check by string diagrams that the image of this functor is central,

Figure 35. Preservation of whiskerings, and centrality.

interchanging with any given x : R⊗C → R⊗D (Figure 35, center and right). �

Lemma 1.7.7. Let (V,G) be an effectful polygraph and consider the effectful cate-
gory determined by Mon(V) → Eff(V,G). Let V → C be a strict effectful category
endowed with an effectful polygraph morphism F : (V,G)→ U(V,C). There exists a
unique strict effectful functor from (Mon(V) → Eff(V,G)) to (V → C) commuting
with F as an effectful polygraph morphism.

Proof. By freeness, there already exists a unique strict monoidal functor
H0 : Mon(V) → V that sends any object A ∈ Vobj to Fobj(A). We will show there
is a unique way to extend this functor together with the hypergraph assignment
G → C into a functor H : Eff(V,G) → C. Giving such a functor amounts to give
some mapping of morphisms containing the runtime R in some position in their
input and output,

f : A0 ⊗ . . .⊗R⊗ . . .⊗An → B0 ⊗ . . .⊗R⊗ . . .⊗Bm
to morphisms H(f) : FA0 ⊗ . . . ⊗ FAn → FB0 ⊗ . . . ⊗ FBn in C, in a way that
preserves composition, whiskerings, inclusions from Mon(V), and that is invariant
to composition with braidings. In order to define this mapping, we will perform
structural induction over the monoidal terms of the runtime monoidal category of
the form MonRun(V,G)(A0 ⊗ . . .⊗R(i) ⊗ . . .⊗An, R⊗B0 ⊗ . . .⊗R(j) ⊗ . . .⊗Bm)
and show that it is the only mapping with these properties (Figure 36).

Monoidal terms in a strict, freely presented, monoidal category are formed by
identities (id), composition (#), tensoring (⊗), and some generators (in this case, in
Figure 32). Monoidal terms are subject to (i) functoriality of the tensor, id⊗id = id

1.7. STRING DIAGRAMS FOR PREMONOIDAL CATEGORIES 51

and (f # g)⊗ (h # k) = (f ⊗h) # (g⊗ k); (ii) associativity and unitality of the tensor,
f ⊗ idI = f and f ⊗ (g ⊗ h) = (f ⊗ g)⊗ h; (iii) the usual unitality, f # id = f and
id #f = f and associativity f # (g #h) = (f #g) #h; (iv) the axioms of our presentation
(in this case, in Figure 33).

Figure 36. Assignment on morphisms, defined by structural induc-
tion on terms.

• If the term is an identity, it can be (i) an identity on an object A ∈ (V,G)obj, in
which case it must be mapped to the same identity by functoriality,H(idA) = idA;
(ii) an identity on the runtime, in which case it must be mapped to the identity
on the unit object, H(idR) = idI ; or (iii) an identity on the unit object, in which
case it must be mapped to the identity on the unit, H(idI) = idI .

• If the term is a composition, (f #g) : A0⊗. . .⊗R⊗. . .⊗An → C0⊗. . .⊗R⊗. . .⊗Ck,
it must be along a boundary of the form B0⊗ . . .⊗R⊗ . . .⊗Bm: this is because
every generator leaves the number of runtimes, R, invariant. Thus, each one of
the components determines itself a braid clique morphism. We must preserve
composition of braid clique morphisms, so we must map H(f # g) = H(f) #H(g).

• If the term is a tensor of two terms, (x⊗u) : A0⊗. . .⊗R⊗. . .⊗An → B0⊗. . .⊗R⊗
. . .⊗Bm, then only one of them was a term taking R as input and output (without
loss of generality, assume it to be the first one) and the other was not: again,
by construction, there are no morphisms taking one R as input and producing
none, or viceversa. We split this morphism into x : A0 ⊗ . . .⊗R⊗ . . .⊗Ai−1 →
B0 ⊗ . . .⊗R⊗ . . .⊗Bj−1 and u : Ai ⊗ . . .⊗An → Bj ⊗ . . .⊗Bm.

Again by structural induction, this time over terms u : Ai ⊗ . . . ⊗ An →
Bj ⊗ . . . ⊗ Bm, we know that the morphism must be either a generator in
V(Ai, . . . , An;Bj , . . . , Bn) or a composition and tensoring of them. That is, u
is a morphism in the image of Mon(V), and it must be mapped according to the
functor H0 : Mon(V)→ V.

By induction hypothesis, we know how to map the morphism x : A0⊗. . .⊗R⊗
. . .⊗Ai−1 → B0⊗. . .⊗R⊗. . .⊗Bj−1. This means that, given any tensoring x⊗u,
we must map it toH(x⊗u) = (H(x)⊗id)#(id⊗H0(u)) = (id⊗H0(u))#(H(x)⊗id),
where H0(u) is central.

• If the string diagram consists of a single generator, f : R ⊗ A → R ⊗ B, it
can only come from a generator f ∈ Run(V,G)(R,A0, . . . , An;R,B0, . . . , Bm) =
G(A0, . . . , An;B0, . . . , Bm), which must be mapped to H(f) = F (f) ∈ C(A0 ⊗
. . . ⊗ An, B0 ⊗ . . . ⊗ Bm). If the string diagram consists of a single braiding, it
must be mapped to the identity, because the want the assignment to be invariant
to braidings.
Now, we need to prove that this assignment is well-defined with respect to the

axioms of these monoidal terms. Our reasoning follows Figure 37.

52 1. MONOIDAL PROCESS THEORY

Figure 37. The assignment is well defined.

• The tensor is functorial. We know that H(id ⊗ id) = H(id), both are identities
and that can be formally proven by induction on the number of wires. Now, for
the interchange law, consider a quartet of morphisms that can be composed or
tensored first and such that, without loss of generality, we assume the runtime
to be on the left side. Then, we can use centrality to argue that

H((x⊗ u) # (y ⊗ v)) = (H(x)⊗ id) # (id⊗H0(u)) # (H(y)⊗ id) # (id⊗H0(v))

= ((H(x) #H(y))⊗ id) # (id⊗ (H0(u) #H0(v)))

1.7. STRING DIAGRAMS FOR PREMONOIDAL CATEGORIES 53

= H((x # y)⊗ (u # v)).

• The tensor is monoidal. We know that H(x⊗ idI) = (H(x)⊗ idI) # (id⊗ idI) =
H(x). Now, for associativity, consider a triple of morphisms that can be tensored
in two ways and such that, without loss of generality, we assume the runtime to
be on the left side. Then, we can use centrality to argue that

H((x⊗ u)⊗ v) = (((H(x)⊗ id) # (id⊗H0(u)))⊗ id) # id⊗H0(v)

= (H(x)⊗ id) # (id⊗H0(u)⊗H0(v))

= H(x⊗ (u⊗ v))

• The terms form a category. And indeed, it is true by construction that H(x #
(y # z)) = H((x # y) # z) and also that H(x # id) = H(x) because H preserves
composition.

• The runtime category enforces some axioms. The composition of two braidings is
mapped to the identity by the fact that H preserves composition and sends both
to the identity. Both sides of the braid naturality over a morphism v are mapped
to H0(v); with the multiple braidings being mapped again to the identity.

Thus, H is well-defined and it defines the only possible assignment and the only
possible strict premonoidal functor. �

Theorem 1.7.8 (Runtime as a resource). The free strict effectful category over
an effectful polygraph (V,G) is Mon(V)→ Eff(V,G). Its morphisms A→ B are in
bijection with the morphisms R⊗A→ R⊗B of the runtime monoidal category,

Eff(V,G)(A,B) ∼= MonRun(V,G)(R⊗A,R⊗B).

Proof. We must first show that Mon(V)→ Eff(V,G) is an effectful category.
The first step is to see that Eff(V,G) forms a premonoidal category (Lemma 1.7.5).
We already know that Mon(V) is a monoidal category: a strict, freely generated
one. There exists an identity on objects functor, Mon(V)→ Eff(V,G), that strictly
preserves the premonoidal structure and centrality (Lemma 1.7.6).

Let us now show that it is the free one over the effectful polygraph (V,G).
Let V → C be an effectful category, with an effectful polygraph map F : (V,G) →
U(V,C). We can construct a unique effectful functor from (Mon(V) → Eff(V,G))
to (V→ C) giving its universal property (Lemma 1.7.7). �

Corollary 1.7.9 (String diagrams for effectful categories). We can use string di-
agrams for effectful categories, quotiented under the same isotopy as for monoidal
categories, provided that we do represent the runtime as an extra wire that needs to
be the input and output of every effectful morphism.

1.7.3. Example: a Theory of Global State. Let us provide an example
of reasoning using the string diagrams for premonoidal categories. Imperative pro-
grams are characterized by the presence of a global state that can be mutated.
Reading or writing to this global state constitutes an effectful computation: the
order of operations that affect some global state cannot be changed. Let us pro-
pose a simple theory of global state and let us show that it is enough to capture
the phenomenon of race conditions.

Definition 1.7.10. The theory of global state is given by a single object X; two
pure generators, () : X → X ⊗X and () : X → I, allowing copy and discard; and
two effectful generators, put : X → I and get : I → X, quotiented by the equations
in Figure 39.

These two put and get generators, without extra axioms, are enough for captur-
ing what happens when a process can send or receive resources; in further sections,

54 1. MONOIDAL PROCESS THEORY

Figure 38. Generators of the theory of global state.

we will develop this theory. Right now, we are only concerned with the theory of
a single global state, accessed by a single process: we can impose some axioms that
assert that the memory was not changed by anyone but this single process.

Figure 39. Axioms of the theory of global state.

The equations in Figure 39 say that: (i) reading the global state twice gets us
the same result, (ii) reading the global state and discarding the result is the same
as doing nothing, (iii) writing something to the global state and then reading it is
the same as keeping a copy of it, (iv) writing twice to the global state keeps only
the last thing that was written, (v) copying and discarding a copy is doing nothing,
and (vi) reading something and immediately writing it to the global state is the
same as doing nothing.

Proposition 1.7.11 (Race conditions). Concurrently mixing two processes that
share a global state, f and g, can produce four possible results: (i) only the result
of the first one is preserved, (ii) only the result of the second one is preserved, or
(iii,iv) the composition of both is preserved, in any order, f # g or g # f .

Proof. We work in the theory of global state adding two processes, f : X → X
and g : X → X, that can moreover be discarded, meaning f # ε = g # ε = ε. We
employ the string diagrams of premonoidal categories. The first three diagrams in
Figure 40 correspond to the first three cases, the last one is analogous to the third
one. �

1.7.4. Bibliography. Alan Jeffrey pioneered a string diagrammatic represen-
tation of programs using an extra wire to represent runtime [Jef97a], all the credit
for this idea should go there. Staton and Møgelberg [MS14] already showed how
any premonoidal category could be reinterpreted as the Kleisli category of a state
promonad.

We take these ideas a step further, showing that a particular syntax for monoi-
dal categories can be used to talk about premonoidal categories as well. Our study
may demystify premonoidal categories, or at least make them more accessible to a
category theorist already interested in monoidal categories: premonoidal categories
are simply monoidal categories with a hidden state object.

1.7. STRING DIAGRAMS FOR PREMONOIDAL CATEGORIES 55

Figure 40. Race conditions in the theory of global state.

CHAPTER 2

Context Theory

Context Theory

Our goal in this thesis is to study how processes compose from their constituent
parts while keeping for each one of these incomplete parts (each context) a meaning
of its own: the meaning – the semantics – of the whole process is then determined by
the semantics of each one of its parts, and how they compose. This is the principle
of compositionality.

In the categorical framework, the structures that govern composition and de-
composition are Lambek’s multicategories: categories where morphisms have mul-
tiple inputs that get composed into a single output. We will decompose multicate-
gories and compare them to monoidal categories using profunctors and dinaturality,
which we claim to be the right mathematical tools to talk about abstract process
composition in Section 2.1.

We give a short exposition of multicategories in Section 2.2, and then introduce
a type of multicategory with the particular property that every transformation
can be decomposed into smaller ones: malleable multicategories, which we prove
equivalent to promonoidal categories in Section 2.3. Our main result in this section
is a characterization of the multicategory that governs how morphisms compose in
a category – the malleable multicategory of spliced arrows – as cofreely generated
by the category, Section 2.4. This result is a variant on a recent result by Melliés
and Zeilberger [MZ22]; and Chapter 3 will extend this theory for the first time to
the setting of monoidal categories.

57

58 2. CONTEXT THEORY

2.1. Profunctors and Coends

2.1.1. Profunctors. A profunctor from a category A to a category B is a
functor P : Aop × B → Set [Bén00]. Profunctors describe families of processes in-
dexed functorially by the objects of two different categories. The canonical example
of a profunctor is the one that returns the set of morphisms between two objects
of the same category, A(•; •) : Aop × A → Set. Profunctors, however, do not need
to be restricted to a single category: this makes them useful to study the relation
between processes of different categories.

Categorically, profunctors can be seen as a categorification of the concept of re-
lations, functions A×B → 2. Under this analogy, existential quantifiers correspond
to coends. This section will first introduce profunctors (Definition 2.1.1), then a
naturality relation for them (Definition 2.1.4) and, finally, their composition using
coends (Sections 2.1.3 and 2.1.4). We connect them explicitly to process theories
in Section 2.1.5.

Definition 2.1.1. A profunctor (P,≺,�) between two categories, A and B, is a
family of sets, P (A,B), indexed by objects A ∈ Aobj and B ∈ Bobj , and endowed
with jointly functorial left and right actions of the morphisms of the two categories
A and B, respectively.

Explicitly, types of these actions are

(�) : A(A′;A)× P (A′;B)→ P (A;B)

(≺) : P (A;B)× B(B;B′)→ P (A;B′)

These two actions must be compatible, (f � p) ≺ g = f � (p ≺ g), they must
preserve identities, id� p = p, and p≺ id = p, and they must preserve composition
(p≺ f)≺ g = p≺ (f # g) and f � (g � p) = (f # g)� p.

More succinctly, a profunctor P : A→ B is the same as a functor P : Aop×B→
Set. When presented as a family of sets with a pair of actions, profunctors have
been sometimes called bimodules.

Definition 2.1.2 (Parallel composition). Two profunctors P : Aop1 ×B1 → Set and
Q : Aop2 ×B2 → Set compose in parallel into a profunctor P ×Q : Aop1 ×Aop2 ×B1×
B2 → Set defined by

(P ×Q)(A,A′;B,B′) = P (A;B)×Q(A′;B′).

Remark 2.1.3. We will consider profunctors between product categories explicitly:
a profunctor P : A0 × ...× An → B0 × ...× Bm is a functor

P : Aop0 ...× Aopn × B0 × ...× Bm → Set.

For our purposes, a profunctor P (A0, ..., An;B0, ..., Bm) is a family of processes
indexed by contravariant inputs A0, ..., An and covariant outputs B0, ..., Bm. The
profunctor is endowed with jointly functorial left (�0, ...,�n) and right (≺0, ...,≺m)
actions of the morphisms of A0, ...,An and B0, ...,Bm, respectively [Bén00, Lor21].
We will simply use (≺/�) without any subscript whenever the input/output is
unique.

Composing profunctors sequentially is subtle: the same processes could arise as
the composite of different pairs of processes, so we need to impose an equivalence
relation. Imagine we try to connect two different processes:

p ∈ P (A0, ..., An;B0, . . . , Bm), and q ∈ Q(C0, ..., Ck;D0, . . . , Dh);

and we have some morphism f : Bi → Cj that translates the i-th output port of p
to the j-th input port of q. Let us write (i|j) for this connection operation. Note
that we could connect them in two different ways: we could

2.1. PROFUNCTORS AND COENDS 59

(1) change the output of the first process p≺i f before connecting both, thus
obtaining (p≺ if) i|j q;

(2) or change the input of the second process f �j q before connecting both,
thus obtaining p i|j (f �j q).

These are different descriptions, made up of two different components. However,
they essentially describe the same process: they are dinaturally equal. Indeed,
profunctors are canonically endowed with this notion of equivalence [Bén00, Lor21],
precisely equating these two descriptions. Profunctors, and their elements, are thus
composed up to dinatural equivalence.

2.1.2. Dinaturality and Composition. Dinaturality is a canonical notion
of equivalence for profunctors: it arises naturally from the construction of the
bicategory of profunctors, but it also has a good interpretation in terms of procesess.

Definition 2.1.4 (Dinatural equivalence). For any functor P : Cop × C → Set,
consider the set

SP =
∑
M∈C

P (M ;M).

Dinatural equivalence, (∼), on the set SP is the smallest equivalence relation satis-
fying (r � p) ∼ (p≺ r) for each p ∈ P (M ;N) and each r ∈ C(N ;M).

Coproducts quotiented by dinatural equivalence construct a particular form of
colimit called a coend. Under the process interpretation of profunctors, taking a
coend means plugging an output to an input of the same type.

Definition 2.1.5 (Coend). Let P : Cop × C → Set be a functor. Its coend is the
coproduct of P (M,M) indexed by M ∈ C, quotiented by dinatural equivalence.∫ M∈C

P (M ;M) :=

(∑
M∈C

P (M ;M)

/
∼

)
.

That is, the coend is the colimit of the diagram containing a cospan P (M ;M) ←
P (M ;N)→ P (N ;N) for each f : N →M .

Definition 2.1.6 (Sequential composition). Two profunctors P : Aop × B → Set
and Q : Bop×C→ Set compose sequentially into a profunctor P �Q : Aop×C→ Set
defined by

(P �Q)(A;C) =

∫ B∈B
P (A;B)×Q(B;C).

The hom-profunctor hom: Aop × A → Set that returns the set of morphisms be-
tween two objects is the unit for sequential composition. Sequential composition is
associative up to isomorphism.

2.1.3. Coend Calculus. Coend calculus is the name given to the algebraic
manipulations of coends that prove isomorphisms or construct natural transforma-
tions between profunctors using the behaviour of coends. MacLane [ML71] and
Loregian [Lor21] give presentations of coend calculus.

Proposition 2.1.7 (Yoneda reduction). Let C be any category and let F : C→ Set
be a functor; the following isomorphism holds for any given object A ∈ Cobj.∫ X∈C

C(X;A)× FX ∼= FA.

Following the analogy with classical analysis, the hom profunctor works as a Dirac’s
delta.

60 2. CONTEXT THEORY

Proposition 2.1.8 (Fubini rule). Coends commute between them; that is, there
exists a natural isomorphism∫ X1∈C ∫ X2∈C

P (X1, X2;X1, X2) ∼=
∫ X2∈C ∫ X1∈C

P (X1, X2;X1, X2).

In fact, they are both isomorphic to the coend over the product category,∫ (X1,X2)∈C×C
P (X1, X2;X1, X2).

Following the analogy with classical analysis, coends follow the Fubini rule for in-
tegrals.

2.1.4. The Point of Coend Calculus. In the same way that regular logic
links relations, a coend calculus expression is a list of profunctors linked by some
objects that are bound to a coend. Usually, the isomorphisms that we construct
are never made explicit, and it is difficult for the reader to compute the precise map
we constructed.

Fortunately, this has a straightforward solution. We propose to point the co-
ends: to write an profunctorial expression, P , together with the generic element it
computes, Pp. An expression of pointed coend calculus is a coend bounding some
objects and a series of pointed profunctors. For instance, we may write∫M,N

P (A;M,N)f ×Q(M ;B)g × C(N ;C)h, instead of just∫M,N
P (A;M,N)×Q(M ;B)× C(N ;C).

Coends quotient expressions by dinaturality, meaning that any left action on the
covariant occurrence of a bounded variable can be equivalently written as a right
action on its contravariant occurrence. In terms of pointed profunctors, this means
that ∫ N

P (A;N)(f≺h) ×Q(N ;B)g =

∫ M

P (A;M)f ×Q(M ;B)(h�g).

Proposition 2.1.9. Let C be a category and let F : Cop → Set and G : C→ Set be
a presheaf and a copresheaf, respectively. The following are natural isomorphisms
of pointed profunctors,∫ X

C(X;A)f × F (X)h ∼= F (A)(f�h);∫ X

C(A;X)f ×G(X)h ∼= G(A)(h≺f).

We call these isomorphisms the “pointed” Yoneda reductions.

Remark 2.1.10. Using pointed coends, any derivation does also include the com-
putation of the isomorphism it induces. As an example, compare the following with
the usual coend derivation of a cartesian lens [CEG+20],

Proposition 2.1.11. In a cartesian monoidal category, the pairs of morphisms
C(A;M ×X) and C(M × Y ;B), quotiented by dinaturality, are in bijective corre-
spondence with the pairs of morphisms C(A;M) and C(M × Y ;B).

Proof. A function is explicitly constructed by the following derivation.∫ M

C(A;M ×X)f × C(M × Y ;B)g

∼= (by the adjunction ∆ a ×)

2.1. PROFUNCTORS AND COENDS 61∫ M

C(A;M)(f#π1) × C(A;X)(f#π2) × C(M × Y ;B)g

∼= (by pointed Yoneda lemma)

C(A;X)(f#π2) × C(X × Y ;B)((f#π1)⊗id)#g.

The function mapping an equivalence class [f, g] to (f #π2; (f #π1)⊗id) is a bijection
because it has been constructed from composing bijections.

Indeed, in the first step, we have used that the adjunction (∆ a ×) is given by
postcomposition with projections and; in the second step, we use that the action
on the last profunctor is defined as h � g = (h ⊗ id) # g. The bijection has been
explicitly constructed as sending the pair (f ; g) to (f # π2; ((f # π1)⊗ id) # g). �

2.1.5. Promonads. Promonads are to profunctors what monads are to func-
tors: to quip, a promonad is just a monoid in the category of endoprofunctors. It
may be then surprising to see that so little attention has been devoted to them,
relative to their functorial counterparts. The main source of examples and focus of
attention has been the semantics of programming languages [Hug00, Pat01, JHH09].
Strong monads are commonly used to give categorical semantics of effectful pro-
grams [Mog91], and the so-called arrows (or strong promonads) strictly generalize
them: they coincide with our previous definition of effectful category [HJ06].

Part of the reason behind the relative unimportance given to promonads else-
where may stem from precisely from that fact: promonads over a category can
be shown in an elementary way to be equivalent to identity-on-objects functors
from that category [Lor21]. The explicit proof is, however, difficult to find in the
literature, and so we include it here (Theorem 2.1.14).

Under this interpretation, promonads are new morphisms for an old category.
We can reinterpret the old morphisms into the new ones in a functorial way. The
paradigmatic example is again that of Kleisli or cokleisli categories of strong monads
and comonads. This structure is richer than it may sound, and we will explore it
further during the rest of this text.

Definition 2.1.12. A promonad (P, ?, ◦) over a category C is a profunctor P : Cop×
C → Set together with natural transformations for inclusion (◦)X,Y : C(X;Y) →
P (X;Y) and multiplication (?)X,Y : P (X;Y)×P (Y ;Z)→ P (X;Z), and such that

i. the right action is premultiplication, f◦ ? p = f � p;
ii. the left action is postmultiplication, p ? f◦ = p≺ f ;
iii. multiplication is dinatural, p ? (f � q) = (p≺ f) ? q;
iv. and multiplication is associative, (p1 ? p2) ? p3 = p1 ? (p2 ? p3).

Equivalently, promonads are promonoids in the double category of categories, where
the dinatural multiplication represents a transformation from the composition of
the profunctor P with itself.

Lemma 2.1.13 (Kleisli category of a promonad). Every promonad (P, ?, ◦) induces
a category with the same objects as its base category, but with hom-sets given by
P (•, •), composition given by (?) and identities given by (id◦). This is called its
Kleisli category, Kleisli(P). Moreover, there exists an identity-on-objects functor
C→ Kleisli(P), defined on morphisms by the unit of the promonad.

The converse is also true: every category C with an identity-on-objects functor
from some base category V arises as the Kleisli category of a promonad.

Theorem 2.1.14. Promonads over a category C correspond to identity-on-
objects functors from the category C. Given any identity-on-objects functor i : C→
D there exists a unique promonad over C having D as its Kleisli category: the
promonad given by the profunctor homD(i(•), i(•)).

62 2. CONTEXT THEORY

2.1.6. Bibliography. Coends, the Yoneda lemma, and their calculus, were
introduced in MacLane’s monograph [ML71]. A more modern presentation of coend
calculus and its applications is in the work of Loregian [Lor21]. This author has
also written on the importance of pointed profunctors for open diagrams [Rom20b]
and collages [BR23].

2.2. MULTICATEGORIES 63

2.2. Multicategories

2.2.1. Multicategories. Multicategories will provide an algebra for compos-
ing multiple pieces into one. A multicategory is like a category where every mor-
phism has a list of inputs instead of a single one. A multicategory, M, contains a set
of objects, Mobj , as a category does; but instead of a set of morphisms, M(X;Y),
for every pair of objects X,Y ∈Mobj , it will have a set of multimorphisms,

M(X1, . . . , Xn;Y), for each list of objects X1, . . . , Xn, Y ∈Mobj .

As in sequent logic, it is easier to denote lists of objects by metavariables. For in-
stance, we will use Γ = X1, . . . , Xn and writeM(Γ;Y) for the set of multimorphisms
M(X1, . . . , Xn;Y).

Definition 2.2.1. A multicategory, M, is a collection of objects, Mobj , together
with a collection of multimorphisms,M(Γ;Y), for each list of objects Γ = X0, . . . , Xn ∈
Mobj and each object Y ∈Mobj .

For each object X, there must be an identity multimorphism, idX ∈M(X;X).
For each three lists of objects Γ,Γ1,Γ2 and each two objects Y and Z, there must
exist a composition operation (we omit superscripts when clear from the context),

(#)Γ1,Γ2

i : M(Γ;Y i)×M(Γ1, Y i,Γ2;Z)→M(Γ1,Γ,Γ2;Z).

Composition must be unital, meaning that idX #X f = f and f # idY = f every
time that the equation is fomally well-typed. Composition must be also associative,
meaning that (h #X g) #Y f = h #X (g #Y f); and g #Y (h #X f) = h #X (g #Y f) must
hold whenever they are formally well-typed, see Figure 1.

Figure 1. Associativity for a multicategory.

2.2.2. The Category of Multicategories. In the same way categories are
the first step towards the theory of functors and natural transformations, multi-
categories are the first step towards the theory of multifunctors and multinatural
transformations. In the same way the formal theory of categories is synthetised by
the 2-category Cat of categories, functors and natural transformations; the study
of multicategories is synthetised by the 2-category MultiCat of multicategories,
multifunctors and multinatural transformations.

Definition 2.2.2. A multifunctor between two multicategories, F : M → N, con-
sists of an assignment on objects Fobj : M → N and an assignment on multimor-
phisms of any arity,

Fn : M(X1, . . . , Xn;Y)→ N(FobjX1, . . . , FobjXn;FobjY),

that preserves identities, F 1(idX) = idFobj(X), and composition of multimorphisms,
Fn+m−1(f #Y g) = Fn(f) #Fobj(Y) Fm(g).

64 2. CONTEXT THEORY

Definition 2.2.3. A multinatural transformation θ : F → G between two multi-
functors F,G : M → N is given by a family of multimorphisms θX ∈ N(FX;GX)
such that, for each multimorphism f ∈M(X1, . . . , Xn;Y), the following naturality
condition holds

θX1
#1 . . . #n−1 θXn

#G(f) = F (f) # θY .

Proposition 2.2.4. Multicategories with multifunctors between them form a cate-
gory, Mult.

2.2.3. Application: Shufflings. Let us exemplify multicategories with an
example that will become increasingly relevant in this thesis. Shufflings are per-
mutations that preserve the relative ordering of some blocks. We can always count
shufflings combinatorially, but multicategories provide the extra structure that al-
lows us to track how different shufflings compose.

Example 2.2.5. A shuffling is a permutation of the elements of multiple blocks
that preserves their relative ordering. The multicategory of shufflings has objects
the natural numbers and morphisms the shufflings, σ ∈ Shuf(p0, . . . , pn; q) that
reorganize p0, . . . , pn elements into q = p0 + · · ·+ pn without altering their internal
ordering.

Figure 2. Example of a 1,2,3-shuffling.

More explicitly, the number of shufflings Shuf(p0, . . . , pn; q) is given by a multi-
nomial coefficient whenever q = p0 + · · ·+ pn,

#Shuf(p0, . . . , pn; p0 + · · ·+ pn) =
(p0 + · · ·+ pn)!

p0! · · · · · pn!
,

and it is zero in any other case.
Shufflings exhibit a particular property that motivates our next section: mal-

leability. Any shuffling of p0, p1 and p2 can be factored uniquely in two different
forms: we can first shuffle p0 and p1 and then shuffle the result, p0 + p1, with
p2; or we can first shuffle p1 and p2, and then shuffle p0 with the result, p1 + p2.
For instance, any 1, 2, 3-shuffling splits uniquely into a 2, 3-shuffling followed by a
1, 5-shuffling, but also uniquely into a 1, 2-shuffling followed by a 3, 3-shuffling.

Figure 3. Two factorizations of the previous shuffling.

This is a global property: any shuffling can be uniquely factored into smallest
shufflings, in whichever arrangement we pick. Any morphism of the multicategory
Shuf can be factored into any possible shape, uniquely. We say that the multicat-
egories that satisfy this property are “malleable multicategories”: shufflings form a
malleable multicategory.

2.3. MALLEABLE MULTICATEGORIES 65

2.3. Malleable Multicategories

A malleable multicategory is a multicategory where each morphism can be
morphed uniquely into any possible shape. This means that there exist unique
factorizations of each morphism into each one of the possible shapes. Formally, we
will define malleable multicategories to have an invertible composition, up to the
morphisms of some underlying category.

Definition 2.3.1. The unary morphisms of a multicategory form a category [Shu16].
In other words, given a multicategoryM, the underlying category, Mu, has the same
objects as the multicategory, Mu

obj = Mobj , and morphisms defined from the unary
multimorphisms of the multicategory, Mu(X;Y) = M(X;Y). Composition and
identities are exactly those of the multicategory.

Remark 2.3.2. The multimorphisms of a multicategory determine profunctors
over the underlying category of the multicategory. The underlying category acts
on the multimorphisms by composition,

(�) : Mu(X;X ′)×M(Γ1, X
′,Γ2;Y)→M(Γ1, X,Γ2;Y),

(≺) : M(Γ;Y)×Mu(Y ;Y ′)→M(Γ;Y ′).

In any multicategory, composition of multimorphisms is dinatural with respect to
the underlying category. This follows from the associativity for multicategories,

(f ≺ h) #Xi g = (f #Xi h) #X′i g = f #Xi (h #X′i g) = f #Xi (h� g).

As a consequence, composition is well-defined under dinaturality. We define dinatu-
ral composition to be composition lifted to the equivalence classes of the dinaturality
equivalence relation, which are written as a coend,

(#) :
(∫ Y ∈M M(Γ;Y)×M(Γ0, Y,Γ1;Z)

)
→M(Γ0,Γ,Γ1;Z).

Definition 2.3.3. A malleable multicategory is a multicategory where dinatural
composition is invertible.

Proposition 2.3.4. Malleable multicategories with multifunctors between them
form a category, mMult. This is a wide subcategory of the category of multi-
categories.

Remark 2.3.5. If a multicategory is malleable, we can reconstruct it up to isomor-
phism from its binary and nullary maps. When defining a malleable multicategory,
it is usually easier to provide its binary, unary and nullary maps, and deduce from
those the rest of the structure. The situation is similar in monoidal categories: we
do not need to provide the n-ary tensor in order to define a monoidal category, we
only provide the binary and unary tensors.

This suggests that we will really work with a biased version of malleable mul-
ticategories, one that privileges the binary and nullary tensors over the others.
Biased malleable multicategories are better known as promonoidal categories.

2.3.1. Promonoidal Categories. In the same sense that multicategories
provide an algebra for the composition of multiple pieces into one, promonoidal
categories provide an algebra for the coherent composition of multiple pieces into
one. A category C contains sets of morphisms, C(X;Y). In the same way, a pro-
monoidal category V contains sets of joints, V(X0 CX1;Y), morphisms, V(X;Y),
and units, V(N ;X), where N is the virtual tensor unit. Joints, V(X0 C X1;Y),
represent a way of joining objects of type X0 and X1 into an objects of type Y .
Morphisms, V(X;Y), as in any category, are transformations of X into Y . Units,
V(N ;Y), are the atomic pieces of type Y .

66 2. CONTEXT THEORY

These compositions must now be coherent. For instance, imagine we want to
join X0, X1 and X2 into Y . Joining X0 and X1 into something (•), and then
joining that something (•) and X2 into Y , should be doable in essentially the same
ways as joining X1 and X2 into something (•), and then joining X0 and that
something (•) into Y . Formally, we are saying that,∫ U

V(X0 / X1;U)× V(U / X2;Y) ∼=
∫ V

V(X1 / X2;V)× V(X0 / V ;Y),

and, in fact, we usually just write V(X0 /X1 /X2;Y) for the set of such decompo-
sitions, even when it is only defined up to isomorphism.

Definition 2.3.6. Promonoidal categories are the 2-monoids of the monoidal bicat-
egory of profunctors, which is equivalent to the following definition. A promonoidal
category is a category V(•; •) endowed with two profunctors

V(• / •; •) : V× V→ V, and V(N; •) : 1→ V.

Equivalently, these are functors

V(• / •; •) : Vop × V× V→ Set, and V(N; •) : Vop → Set.

Moreover, promonoidal categories must be endowed with the following natural iso-
morphisms,

V(X0 / X1; •) � V(• / X2;Y) ∼= V(X1 / X2; •) � V(X0 / •;Y);

V(N; •) � V(• / X;Y) ∼= V(X;Y);

V(N; •) � V(X / •;Y) ∼= V(X;Y);

called α, λ, ρ, respectively, and asked to satisfy the pentagon and triangle coherence
equations, α # α = (α � id) # α # (id � α), and (ρ � id) = α # (λ � id).

Definition 2.3.7 (Promonoidal functor). Let V and W be two promonoidal cate-
gories. A promonoidal functor F : V→W is a functor between the two categories
together with natural transformations

F/ : V(X0 / X1;Y)→W(FX0 / FX1;FY), and FN : V(N;X)→W(N;Y),

that satisfy λ#Fmap = (FC×FN)#λ, ρ#Fmap = (FC×FN)#ρ, and α#(FC×FC)#i =
(FC × FC) # i # α.

Proposition 2.3.8. Promonoidal categories with promonoidal functors between
them form a category, Prom.

2.3.2. Promonoidal Categories are Malleable Multicategories. In this
section, we show that the category of promonoidal categories is equivalent to that
of malleable multicategories. In this sense, the study of malleable multicategories
is the study of promonoidal categories.

Definition 2.3.9 (Underlying malleable multicategory). Let V be a promonoidal
category. There is a malleable multicategory, Vm, that has the same objects but
multimorphisms defined by the elements of the promonoidal category. By induction,
we define

Vm(X0, X1,Γ;Y) =
∫ V V(X0 / X1;V)× Vm(V,Γ;Y),

Vm(X;Y) = V(X;Y),

Vm(;Y) = V(N;Y).

In other words, the multimorphisms are elements of the left-biased tree reductions
of the promonoidal category, seen as a 2-monoid. Dinatural composition is then

2.3. MALLEABLE MULTICATEGORIES 67

defined to be the unique map relating two tree expressions in a 2-monoid, which
exists uniquely by coherence,

(coh) :
(∫X∈VV(Γ;X)× Vm(Γ0, X,Γ1;Y)

)
→ Vm(Γ0,Γ,Γ1;X).

Coherence maps are isomorphisms, and so dinatural composition is invertible, mak-
ing the multicategory coherent. By coherence for pseudomonoids, composition must
satisfy associativity and unitality.

Proposition 2.3.10. The category of promonoidal categories and the category of
malleable multicategories are equivalent with the functor (•)m : Prom → mMult
induced by the construction of the underlying malleable multicategory of a promo-
noidal category. See a polycategorical analogue at Proposition 0.2.16.

Proof. First, let us show that a promonoidal functor, F : V → W, induces a
multifunctor, Fm : Vm →Wm between the underlying multicategories. On objects,
we define it to be the same, Fmobj = Fobj . On multimorphisms, we define the binary,
unary and nullary cases using the promonoidal transformations:

Fu0 = FN , with Fu1 = Fmap and Fu2 = F/.

Then, we extend this definition to the n-ary case by induction, using Fun = F/ ×
Fun−1. We now verify that this assignment is functorial: the only remarkable case
is that of checking that the inductive case preserves composition.

(F #G)un
(i)
= (F #G)/ × (F #G)un−1

(ii)
= (F/ #G/)× (Fun−1 #Gun−1)

(iii)
= (F/ × Fun−1)× (G/ ×Gun−1)

(iv)
= Fun #Gun.

This equation holds because (i) of the inductive definition, (ii) the composition of
promonoidal functors and the inductive hypothesis, (iii) the interchange law for
functions, (iv) and the inductive definition.

We will now show that this is a fully faithful functor. It is hopefully clear that
it is faithful because Fu = Gu directly implies Fobj = Gobj , F/ = G/, FN = GN and
Fmap = Gmap. Let us show that it is also full. Let G : Vu →Wu be a multifunctor
between malleable multicategories. We will construct a promonoidal functor G?
such that G?u = G. We start by defining that G?N = G0, that G?map = G1 and that
G?/ = G2. Now, we need to prove that (G?u)n = Gn. This is definitionally true for
binary, unary and nullary multimorphisms; then, by induction,

Gn
(i)
= decomp # (G2 ×Gn)

(ii)
= decomp # (G?u2 ×G?un)

(iii)
= G?un .

Here, we use (i) malleability, (ii) the induction hypothesis, and (iii) the definition
of the underlying multifunctor. We have shown that we have a fully faithful functor.

Finally, we will show that U : Prom→mMult is essentially surjective. Given
any malleable multicategory M, we can define M [to be the promonoidal category
with the same objects and only binary, unary and nullary morphisms. We now
note that there is an isomorphism, M ∼= M[u, that is the identity on objects. It is
defined to use the invertible dinatural composition that exists by malleability,

Mu
[(X1, . . . , Xn;Y) =

∫ UM(X0, X1;U)×M(U,X2, . . . , Xn;Y)

∼= M(X1, . . . , Xn;Y).

This makes the functor fully faithful and essentially surjective, defining an equiva-
lence of categories. �

68 2. CONTEXT THEORY

2.3.3. Bibliography. What makes monoidal tensors universal? Products and
coproducts have a universal property, but that is the exception and not the rule.
Hermida’s work [Her00] explains that tensors are universal because they represent a
relevant multimap structure, a multicategory. For instance, the monoidal category
of vector spaces with their tensor product represents functions linear in each vari-
able: a linear function A⊗B → C is the same as a multilinear function A,B → C.
Indeed, Lambek [Lam69] first introduced multicategories as the underlying struc-
ture that unified Gentzen’s sequents and multilinear maps.

2.4. THE SPLICE-CONTOUR ADJUNCTION 69

2.4. The Splice-Contour Adjunction

2.4.1. Contour of a multicategory. This last section characterizes the cofree
malleable multicategory of spliced arrows, which governs how incomplete morphisms
can be nested. Any multicategory freely generates another category, its contour
[MZ22]. This can be interpreted as the category that tracks the processes of decom-
position that the multicategory describes. The construction is particularly pleasant
from the geometric point of view: it takes its name from the fact that it can be
constructed by following the contour of the shape of the decomposition (Figure 4).

Figure 4. Contour of a multimorphism.

Definition 2.4.1. Let M be a multicategory. Its contour, Contour(M), is the
category presented by two polarized objects, X◦ and X•, for each object X ∈Mobj ;

(1) for each multimorphism f ∈M(X1, . . . , Xn;Y), the following generators,

f0 : Y ◦ → X◦1; f1 : X•1 → X◦2; . . . ; fn−1 : X•n−1 → X◦n; fn : X•n → Y •;

with only an f0 : Y ◦ → Y • for the case n = 0;
(2) requiring contour to preserve identities, (idX)0 = idX◦ and (idX)1 = idX• ;
(3) and requiring contour to preserve compositions, meaning that for each

f ∈ M(X1, . . . , Xn;Y i) and each g ∈ M(Y 1, . . . , Ym;Z), the contour of
their composition is defined by the following five cases

(f #Xi
g)j =

gj when j < i,
gi # f0 when j = i,
fj−i when i < j < i+ n,
fn # gi+1 when j = i+ n,
gj−n+1 when i+ n < j < n+m,

with the special case (f #Xi g)i = gi # f0 # gi+1 whenever n = 0.

A recent article by Melliès and Zeilberger [MZ22] develops the notion of a
context-free grammar over a category as a multicategorical functor to the mul-
ticategory of spliced arrows. The multicategory of spliced arrows is a universal
construction over a category that produces a multicategory of “contexts” over the
category.

2.4.2. Spliced Arrows. The multicatgeory of spliced arrows is formed by
arrows containing blanks or holes that could be filled to constuct a morphism. This
multicategory gives an algebraic theory of context for the category.

Definition 2.4.2 (Spliced arrows). Let C be a category. The multicategory of
spliced arrows has objects pairs of objects in C, and the multimorphisms are given
by sequences of arrows in C separated by n gaps

SpliceC
(
X1
Y 1
, . . . ,Xn

Yn
;XY
)

= C(X;X1)×
n−1∏
k=1

C(Yk, Xk+1)× C(Yn;Y);

70 2. CONTEXT THEORY

which we write as f0 #� # . . . #� # fn. That is, the sequence goes from X to Y , with
holes typed by {Xi → Y i}0<i≤n. Composition is defined by substitution

(f0 #� # . . . #� # fn)�i (g0 #� # . . . #� # gm) =

(g0 #� # . . . # gi # f0 #� # . . . #� # fn # gi+1 # . . . #� # gm),

and the identity morphism in (XY) is idX #� # idY .

Proposition 2.4.3. The multicategory of spliced arrows is a malleable multicate-
gory.

Proof. We will show that dinatural composition is invertible by exhibiting an
inverse to the composition operation, up to dinaturality. Consider a spliced arrow
h0 # � · · ·� # hn+m−1 with (n + m + 1) holes; we can decompose n of its holes at
position i with the following operation.

decompni (h0 #� · · ·� # hn+m−1)

= (h0 #� · · ·hi #� # hi+n · · ·� # hn+m−1) | (id #� # hi+1 · · ·hi+n−1 #� # id)

= (h0 #� · · · id #� # id · · ·� # hn+m−1) | (hi #� # hi+1 · · ·hi+n−1 #� # hi+n).

This operation is an inverse to dinatural composition. It follows by construction
that (�)i # decompi = id, and we now check that decompi #(�)i is an identity up to
dinaturality. Let f0 #� · · ·� # fn and g0 #� · · ·� # gm be two spliced arrows,

decompni ((f0 #� . . .� # fn)�i (g0 #� . . .� # gm))

= decompni (g0 #� . . . # gi # f0 #� # . . .� # fn # gi+1 #� · · ·� # gm))

= (g0 # . . . # gi # f0 #� # fn # gi+1 # . . . # gm) | (id #� # f1 # . . . # fn−1 #� # id)

= (g0 # . . . # gi #� # gi+1 # . . . # gm) | (f0 #� # f1 # . . . # fn−1 #� # fn).

We have shown that dinatural composition is invertible. �

2.4.3. Splice-Contour Adjunction. A first explicit account of splice-contour
adjunction is due to Melliès and Zeilberger [MZ22]. In later joint work with Earn-
shaw and Hefford [EHR23], we showed that this adjunction produced not only
multicategories but malleable multicategories.

Theorem 2.4.4. Splice is right adjoint to contour.

Proof. Let M be a multicategory. We will show that any multifunctor to
a spliced arrow multicategory, F : M → Splice(C), factors through a canonical
multifunctor T : M → Splice(Contour(M)) that is followed by a unique functor
F] : Contour(M) → C. First, we construct T : M → Splice(Contour(M)), the mul-
tifunctor that sends any object X to the pair of polarized objects

(
X◦

X•
)
; and that

sends any multimap f ∈M(X0, . . . , Xn;Y) to the spliced arrow

f0 #� # . . . #� # fn ∈ Splice(C)
(
X◦0
X•0
, . . . ,

X◦n
X•n

;
Y ◦

Y •

)
.

We check now that T is indeed a multifunctor: by construction, it sends T (f #Xi
g) =

f �i g and it sends T (idX) = (idX◦ #� # idX•).
We will now show that there exists a unique functor F] : Contour(M) → C

factoring the multifunctor F , such that F = T # Splice(F]). The contour is a
category presented by some generators and equations: to define a functor from it,
it suffices to define it on the generators and show that it preserves the equations of
the presentation. We do so next. Consider the objects, for each X ∈Mobj , assume
F (X) = (AB). We must have that

Splice(F])(T (X)) = Splice(F])
(
X◦

X•
)

=
(
F]X◦

F]X•

)
= (AB) ,

2.4. THE SPLICE-CONTOUR ADJUNCTION 71

which forces F](X◦) = A and F](X•) = B. Consider now the morphisms, for each
f ∈M(X0, . . . , Xn;Y). We must have that

Splice(F])(T (f)) = Splice(F])(f0 # . . . # fn) = F]f0 #� # . . . #� # F]fn,

which forces F](fi) = F (f)i. This uniquely determines the value of F] in all of
the morphisms of the contour. We must finally check that that F] satisfies the
equations. We first notice that, by functoriality of F , we have

F]((f #Xi g)j) = F (f #Xi g)j = (F (f) #FXi F (g))j ,

and, using this and the previous F](fi) = F (f)i, we simply check the five cases of
contour composition,

F]((f #Xi
g)j) =

F (g)j
F (g)i # F (f)0

F (f)j−i
F (f)n # F (g)i+1

F (gj−n+1)

 =

F](gj)
F](gi) # F](f0)
F](f)j−i
F](f)n # F](g)i+1

F](g)j−n+1

 .

This proves the existence of F], but it also proves that it is the unique possible
functor such that F = T # Splice(F]). �

2.4.4. Promonoidal Splice-Contour. We have commented on how any mal-
leable multicategory induces a promonoidal category. The malleable multicategory
of spliced arrows induces a promonoidal category of spliced arrows. This promo-
noidal category is precisely the one that arises from the adjunction between any
category and its opposite category in the monoidal bicategory of profunctors.

Remark 2.4.5. The promonoidal splice could be seen as a particular case of the
more general multicategorical splice. However, we will see that it is usually better
behaved: technically, it is the 2-monoid arising from the 2-duality of a category
with its opposite category, C aCop, in the monoidal bicategory of profunctors. We
will not use this particular fact too much, but it will inspire its generalization. In
the next chapter, we repeat a monoidal version of the splice-contour adjunction
that, by default, uses only the malleable version.

Proposition 2.4.6 (Promonoidal spliced arrows). Let C be a category. The pro-
monoidal category of spliced arrows, SpliceC, has as objects pairs of objects of C.
It uses the following profunctors to define morphisms, splits and units.

(1) Splice(C) (XY ; AB) = C(A;X)× C(Y,B);

(2) Splice(C)(XY C
X′

Y ′
; AB) = C(A;X)× C(Y ;X ′)× C(Y ′;B);

(3) Splice(C)(N ; AB) = C(A;B).

In other words, morphisms are pairs of arrows f : A → X and g : Y → B.
Splits are triples of arrows f : A → X, g : Y → X ′ and h : Y ′ → B. Units are
simply arrows f : A→ B. We use the following notation for

(1) morphisms, (f #� # g) : (XY)→ (AB);
(2) joins, (f #� # g #� # h) : (XY) /

(
X′

Y ′

)
→ (AB);

(3) and units, f : N→ (AB).

Definition 2.4.7. The contour of a promonoidal category P is the category Contour(P)
presented by two polarized objects, X◦ and X•, for each object X ∈ Pobj ; and
generated by the arrows that arise from contouring the decompositions of the pro-
monoidal category.

Specifically, the contour is the category presented by the following generators,
as depicted in Figure 5:

(1) a0 : Y ◦ → X◦ and a1 : X• → Y •, for each morphism a ∈ P(X;Y);

72 2. CONTEXT THEORY

Figure 5. Contour of a promonoidal category.

(2) b0 : X◦ → X•, for each unit b ∈ P(N ;X);
(3) a triple of generators, c0 : Z◦ → X◦, c1 : X• → Y ◦ and c2 : Y • → Z•, for

each split c ∈ P(X / Y ;Z).
We impose several equations over these generators, all depicted in Figure 6. The
equations come from the decomposition of categories and they form the theory of
contour.

Figure 6. Theory of contour.

CHAPTER 3

Monoidal Context Theory

Monoidal Context Theory

This section develops a theory of context, or incomplete parts, for arbitrary
monoidal categories. In the same way that the theory of context for categories
required malleable multicategories or promonoidal categories; the theory of context
for monoidal categories will require duoidal categories and produoidal categories.

Duoidal categories combine a sequential tensor (/) with a parallel tensor (⊗);
and it is well known that they can be used for process description [GF16, SS22].
However, lifting context theory to monoidal categories will come with a few technical
surprises that we develop; the most important one is a normalization monad in
the category of produoidal categories: this becomes a crucial step in creating a
theory of monoidal context that allows incomplete morphisms to take any shape.
The morphisms of the produoidal category of contexts have been called lenses and
combs in the literature, and we characterize them by a universal property.

We revisit the literature on duoidal categories and normalization in Sections 3.1
and 3.2. Produoidal categories and their splice-contour adjunction are introduced in
Section 3.3. We take a technical aside in Section 3.4 to construct the normalization
monad, and we immediately use it in Section 3.5.

73

74 3. MONOIDAL CONTEXT THEORY

3.1. Duoidal categories

3.1.1. Duoidal Categories. Duoidal categories result from the interaction
of two monoidal categories. By the Eckmann-Hilton argument, each time we have
two monoids (∗, ◦) such that one is a monoid homomorphism over the other, (a◦b)∗
(c◦d) = (a∗c)◦(b∗d), we know that both monoids coincide in a single commutative
monoid.

However, an extra dimension helps us side-step the Eckmann-Hilton argument.
If, instead of equalities or isomorphisms, we use directed morphisms, both monoids
(which now may become 2-monoids) do not necessarily coincide, and the resulting
structure is that of a duoidal category.

Definition 3.1.1 (Duoidal category). A duoidal category [AM10] is a category C
with two monoidal structures, (C,⊗, I, α, λ, ρ) and (C,C, N, β, κ, ν) such that the
latter distribute over the former. In other words, it is endowed with a duoidal
tensor, (C) : C× C→ C, together with natural distributors

ψ2 : (X C Z)⊗ (Y CW)→ (X ⊗ Y)C (Z ⊗W),

ψ0 : I → I C I,

ϕ2 : N ⊗N → N, and
ϕ0 : I → N,

satisfying the following coherence equations (Appendix 0.1, Figures 1 to 5). A
duoidal category is strict when both of its monoidal structures are.

Remark 3.1.2. In other words, the duoidal tensor and unit are lax monoidal
functors for the first monoidal structure, which means that the laxators must satisfy
the following equations.

(1) (ψ2 ⊗ id) # ψ2 # (αC α) = α # (id⊗ ψ2) # ψ2, for the associator;
(2) (ψ0 ⊗ id) # ψ2 # (λC λ) = λ, for the left unitor; and
(3) (id⊗ ψ0) # ψ2 # (ρC ρ) = ρ, for the right unitor;
(4) α # (id⊗ ϕ2) # ϕ2 = (ϕ2 ⊗ id) # ϕ2, for the associator;
(5) (ϕ0 ⊗ id) # ϕ2 = λ, for the left unitor; and
(6) (id⊗ ϕ0) # ϕ2 = ρ, for the right unitor.

3.1.2. Communication via Duoidals. The operations of a posetal duoidal
structure can be interpreted as speaking about the communication of processes
[SS22]. Let (⊗, i) and (/, n) form a duoidal structure on a poset. We read the
elements of this poset as being processes and we interpret

(1) x⊗ y as “x and y happen together, in parallel and independently”;
(2) x / y as “y happens after x, and may depend on it”;
(3) i as a process that “interrupts communication”;
(4) n as a process that “does nothing”;
(5) x→ y as “channels of x are included in channels of y”.

Under this interpretation, the rules of a duoidal category say that
(1) (x / y)⊗ (z / w)→ (x⊗ z) / (y ⊗ w), adds intermediate communication;
(2) i→ i / i, allows to interrupt an interrupted process;
(3) n⊗ n→ n, simplifies parallelism that does nothing; and
(4) i→ n, allows new communications.

We can already picture this interpretation in terms of communication diagrams.
Processes are boxes, and wires represent the information flow: a path from a process
to another one means that the first can communicate to the second (Figure 1).

The axioms of a duoidal category impose the following transformations of com-
munication diagrams (Figure 2).

3.1. DUOIDAL CATEGORIES 75

Figure 1. Communication diagrams.

We can take these diagrams seriously: they are string diagrams of a monoidal
bicategory where processes are endocells. The only structure that we ask of the
single object generator is that of an adjoint monoid.

Figure 2. Communication diagram axioms.

3.1.3. Duoidals via adjoint monoids. Let (C,⊗, I) be a monoidal category;
let (A, ,) be a monoid and let (B, ,) be a comonoid. The set of morphisms
C(A;B) forms a monoid with the operation of convolution, f ∗ g = # (f ⊗ g) #
and the biunit, e = # , as in Figure 3.

Figure 3. Convolution monoid.

Convolution and composition interact duoidally whenever the monoid and the
comonoid are adjoint to each other. This is the notion of an adjoint monoid.

Definition 3.1.3. An adjoint monoid, in a monoidal bicategory B, is an object
endowed with both 2-monoid and 2-comonoid structure (A, , , ,), such that the
multiplication is adjoint to the comultiplication (a) and the unit is adjoint to
the counit (a).

Figure 4. Adjoint monoid.

This means that there exist 2-cells, ε⊗ : # → id and η⊗ : id→ # , witnessing
the adjunction (a); and that there exist 2-cells, εI : # → id and ηI : id→ #
witnessing the adjunction (a), as in Figure 4.

76 3. MONOIDAL CONTEXT THEORY

Theorem 3.1.4 (Garner, López Franco [GF16]). The endocells of an adjoint
2-monoid form a duoidal category with convolution and composition.

Proof. Let (A, , , ,) be an adjoint monoid, and let X,Y ∈ B(A;A) be
endocells. We define the sequential tensor as the composition, X /Y = X ;Y , with
the unit being the identity, N = I. We define the parallel tensor as the convolution,
X ⊗ Y = # (X � Y) # , with the unit being the pair of monoid units, I = # .
The duoidal interchangers are constructed out of the 2-cells of the adjoint monoid,
taking Figure 2 seriously as the string diagrams of a monoidal bicategory.

(1) The first interchanger, (X / W) ⊗ (Y / Z) → (X ⊗ Y) / (W ⊗ Z), is
constructed from the tensor adjunction unit, η⊗ : id→ # ;

(2) the second interchanger, I → I / I, is constructed from the unit of the
unit adjunction, ηI : id→ # ;

(3) the third interchanger, I → N , is constructed from the counit of the unit
adjunction, εI : # → id; and

(4) the fourth interchanger, N ⊗ N → N , is constructed from the tensor
adjunction counit, ε⊗ : # → id.

Finally, we need to check that all of the structure diagrams commute. This is usually
left to the reader [GF16]; we can visualize the equations as surface diagrams. �

Remark 3.1.5 (Day convolution). A particular case is the convolution of two par-
allel profunctors P,Q : C → D between monoidal categories. A monoidal category
determines an adjoint monoid in the monoidal bicategory of profunctors. Convolu-
tion is the operation that constructs a profunctor P ∗Q : C→ D defined by

(P ∗Q)(A,B) =
∫X,X′,Y,Y ′C(A,X ⊗ Y)× P (X,X ′)×Q(Y, Y ′)× D(X ′ ⊗ Y ′, B).

Whenever we particularize to presheaves over a monoidal category C, we recover
Day convolution of presheaves.

(F ∗G)(A) =
∫X,Y C(A,X ⊗ Y)× F (X)×G(Y).

In particular, the endoprofunctors over any monoidal category form a duoidal cat-
egory, this is the duoidal category that we study in Section 3.3.

3.1.4. Be Careful with Duoidal Coherence. Monoidal categories possess
a coherence theorem that determines that any two parallel morphisms constructed
out of structure isomorphisms commute. In contrast, duoidal categories do not
satisfy that same statement. This causes some confusion around coherence for
duoidal categories. I bring an example of how this confusion may arise, hoping that
it will help the interested reader and that it may further justify the importance of
expository category theory.

We could be tempted to provide an alternative definition of duoidal categories
that avoids asking for a bunch of commutative diagrams by simply asking that any
formal such diagram commutes. In fact, this may possible for the physical duoidal
categories studied by Spivak and Shapiro [SS22], who comment that

alternatively, duoidal categories can be defined by the two mo-
noidal structures along with the generating structure maps [...]
(4) natural in a, b, c, d which satisfy equations guaranteeing that
any two structure maps built from those in (4) between the same
two expressions in y⊗, y/,⊗, / are equal.

One of the first, most complete and comprehensive accounts of duoidal cat-
egories is the monograph by Aguiar and Mahajan [AM10]. It includes a passing
comment that could suggest that this version can be proven correct. It says that

3.1. DUOIDAL CATEGORIES 77

“[...] if two morphisms A→ B are constructed out of the struc-
ture maps in C (including the structure constraints of the mo-
noidal categories (C, �, I) and (C, ?, J)), then they coincide.”

However, intepreted literally and strictly, this turns out to not be true. Two
parallel morphisms constructed out of the structure maps of a duoidal category do
not need to coincide.

Proposition 3.1.6. There exist two different maps of type I / I → I constructed
out of the structure maps of a duoidal category.

Proof. We can consider two maps of type I / I → I, depending on which of
the two parallel units we decide to convert to a sequential unit using the laxators.
Explicitly, we are saying that (I / ϕ0) # ρ/ and (ϕ0 / I) # λ/ do not coincide; and
the more intuitive string diagrams for bicategories for adjoint monoids confirm this
(Figure 5). We will construct an explicit example of this phenomenon.

Figure 5. Bicategorical string diagrams for the two coherence maps.

Consider the duoidal category of endoprofunctors over a monoidal category.
This is one of the first examples of duoidal category described by Street [Str12]; it
is also described by Garner and López Franco [GF16], even when the axioms are
not explicitly checked in print. In this category of endoprofunctors over C, parallel
tensor is the profunctor I(X;Y) = C(X; I)×C(I;Y), and sequencing two of them
gives

(I / I)(X;Y) = hom(X; I)× hom(I; I)× hom(I;Y).

In this case, the two maps send the triple (f, a, g) to (f # a, g) and (f, a # g), re-
spectively. However, these two pairs do not need to be equal if a ∈ hom(I; I) is a
non-identity morphism. �

Example 3.1.7 (Graded spaces). We look for a more classical source of examples in
the theory of graded spaces. Let (V,⊗, I) be a monoidal category with coproducts
that are preserved by the tensor; let (G,+, 0) be a commutative monoid. We
say that the functor category [G,V] is the category of G-graded V-spaces. This
category has a rich structure; we highlight two of its tensor products: the pointwise
or Hadamard tensor product

(V ⊗W)n = Vn ⊗Wn, for each n ∈ G, with unit In = I;

and the convolution or Cauchy tensor product

(V •W)n =
∑

k+m=n
V k ⊗Wm, with unit 1n = 0 except for 10 = I.

These two tensors interact in a duoidal category with a laxator as follows; see for
instance the work of López Franco and Vasilakopoulou [FV20].∑
k+m=n

V k⊗W k⊗Um⊗Zm →

(∑
k1+m1=n1

Vk1 ⊗ Um1

)
⊗

(∑
k2+m2=n2

Wk2 ⊗ Zm2

)
.

Proposition 3.1.8. Dually, there exist two different maps of type J → J ⊗ J
constructed out of the structure maps of a duoidal category.

78 3. MONOIDAL CONTEXT THEORY

Proof. This follows from the previous Proposition 3.1.6, by considering the
opposite duoidal category. However, let us comment a second example [AM]. Con-
sider the duoidal category of graded spaces over a monoid G. The two maps,
I → I ⊗ 1 → I ⊗ I and I → 1 ⊗ I → I ⊗ I, correspond to inclusions of the vector
space graded by g ∈ G into the summand indexed by (g, 0) or (0, g), respectively;
these are different in general. �

In fact, the stronger statement of coherence does not seem to be used explicitly
in any of these two texts, and the definition of duoidal categories as completely
coherent strucutres is not usually found in the literature. Most authors, like Aguiar
and Mahajan [AM10], and Garner and López Franco [GF16], revert to the definition
of duoidal category as a 2-monoid in the monoidal bicategory of monoidal categories.

Aguiar and Mahajan [AM10] do actually point out that the expected coherence
theorem should follow from the coherence theorem for lax monoidal functors. The
confusion can arise if we do not realize that this coherence theorem does not actually
prove that any two parallel maps coincide: in particular, coherence for lax monoidal
functors does not prove that the two maps F (I) ⊗ F (I) → F (I) coincide. In this
case, however, the problem is better known – it is mentioned by Malkiewich and
Ponto [MP21], who cite a short mention in the original proof by Lewis [Lew06] and
Kelly and Laplaza [KL80].

3.1.5. Bibliography. I thank Marcelo Aguiar and Swapneel Mahajan [AM]
for their generosity, helping me confirm the problem and specially for providing
the second counterexample; I thank Brandon Shapiro and David Spivak for helping
me follow this same idea on their work. I thank Matt Earnshaw for sharing his
knowledge of the literature on duoidal categories.

3.2. NORMAL DUOIDAL CATEGORIES 79

3.2. Normal Duoidal Categories

Duoidal categories seem to contain too much structure: of course, we want
to split things in two different ways, sequentially (C) and in parallel (⊗); but
that does not necessarily mean that we want to keep track of two different types of
units, parallel (I) and sequential (N). The atomic components of our decomposition
algebra could be the same, without having to care if they are atomic for sequential
composition or atomic for parallel composition; when this is the case, we talk of
normal duoidal categories.

Definition 3.2.1. A normal duoidal category is a duoidal category in which the
map ϕ0 : I → N is an isomorphism.

While duoidal categories are useful to track communication between processes;
symmetric normal duoidal categories track dependencies – whether a process’ input
depends on the output of another – structuring a dependency poset. This idea is
explored by Garner and López Franco [GF16] and Spivak and Shapiro [SS22], and
it has a formal counterpart in Theorem 3.2.9.

Most duoidal categories we have seen so far – and particularly those arising from
adjoint monoids – have two different units. There exists a well-known abstract pro-
cedure that, starting from some duoidal category, constructs a new duoidal category
that is normal: both units are identified. This procedure is known as normalization,
and it can only be applied to duoidal categories with certain coequalizers preserved
by the tensor.

3.2.1. Normalization of duoidal categories. Garner and López Franco
construct the normalization of a well-behaved duoidal category, using a new duoidal
category of bimodules [GF16].

Remark 3.2.2. Let M be a bimonoid in the duoidal category (V,⊗, I,C, N),
with maps e : I → M and m : M ⊗ M → M ; and with maps u : M → N and
d : M →M CM . Consider now the category of M⊗-bimodules. This category has
a monoidal structure lifted from (V,C, N):

(1) the unit, N , has a bimodule structure with

M ⊗N ⊗M u⊗id⊗u−→ N ⊗N ⊗N −→ N ;

(2) the sequencing of two M⊗-bimodules is a M⊗-bimodule with

M ⊗ (ACB)⊗M
→ (M CM)⊗ (ACB)⊗ (M CM)

→ (M ⊗A⊗M)C (M ⊗B ⊗M)→ ACB.

Moreover, whenever V admits reflexive coequalizers preserved by (⊗), the category
of M⊗-bimodules is monoidal with the tensor of bimodules: the coequalizer

A⊗M ⊗B ⇒ A⊗B � A⊗M B.

In this case (Bimod⊗M ,⊗M ,M,C, N) is a duoidal category.

Theorem 3.2.3 (Normalization of a duoidal, [GF16]). Let (V,⊗, I,C, N) be
a duoidal category with reflexive coequalizers preserved by (⊗). The category of
N -bimodules is then a normal duoidal category,

N (V) = (Bimod⊗N ,⊗N , N,C, N).

We call this category the normalization of the duoidal category V.

80 3. MONOIDAL CONTEXT THEORY

3.2.2. Physical duoidal categories. The interaction of dependent and in-
dependent composition of normal duoidal categories is a recurrent idea in physical
models: categorical models of spacetime exhibit this structure [HK22, SS22]; but it
is also exhibited by parallel and sequentially composing programs [HS23]; or more
simply, by the category of partially ordered sets.

In most of these cases, the normal duoidal category has an extra property: the
parallel tensor (⊗) is symmetric. This is what motivates the name physical duoidal
category for the ⊗-symmetric normal duoidal categories.

Definition 3.2.4. A physical duoidal category is a normal duoidal category en-
dowed with a symmetric monoidal category structure for its parallel tensor.

Posets are a canonical example of a physical duoidal category: in fact, it is
known that a subcategory of the category of posets and poset inclusions forms
the free physical duoidal category over a generator. In that precise sense, duoidal
expressions are dependency tracking posets.

Definition 3.2.5. The category of poset shapes, PosetSh, is the skeleton of the
category of finite posets with bijective-on-objects monotone functions. Objects are
isomorphism classes of finite posets, and morphisms are inclusions.

Proposition 3.2.6. Poset shapes form a physical duoidal category.

Proof. The sequential tensor is constructed by sequentially joining the posets.
Let (P,≤P) and (Q,≤Q) be two posets; their sequentiation, P / Q, is a poset that
contains a copy of P , a copy of Q, and an edge pi ≤ qj for each pi ∈ P and qj ∈ Q;
that is,

P / Q = (P +Q,≤P + ≤Q +{pi ≤ qj | pi ∈ P, qj ∈ Q}).
The parallel tensor, P ⊗Q, is defined to be the disjoint union of posets, P ⊗Q =
(P + Q,≤P + ≤Q), which defines a symmetric monoidal structure. The empty
poset is the unit for both sequential and parallel tensoring, making PosetSh a
physical duoidal category. �

The category of poset shapes is not posetal: there are, for instance, two possible
inclusions of the discrete two-element poset into itself. This prompts us to label
the nodes to indicate inclusions, as in Figure 6, but we work up to relabelling, or
α-equivalence.

Figure 6. Poset inclusion.

What makes this physical duoidal category particularly relevant is that it
contains the free physical duoidal category over a generator. Every formal nor-
mal duoidal expression constructs a poset: we simply substitute each variable
by the singleton poset and we interpret the expression in the duoidal category
of poset shapes. Every formal structure map between normal duoidal expressions
corresponds to an inclusion; for instance, Figure 6 documents the structure map
(p / q)⊗ (r / s)→ (p⊗ r) / (q ⊗ s).

Formalizing this result needs a bit of care, though: while all formal physical
duoidal expressions correspond to posets, not every poset shape corresponds to a
physical duoidal expression. The poset shapes that arise from applying duoidal op-
erations to the singleton poset are called expressible, and we have a characterization
result for them.

3.2. NORMAL DUOIDAL CATEGORIES 81

Definition 3.2.7. Expressible poset shapes are those inductively constructed from
(1) the empty poset, N;
(2) the singleton poset, {A};
(3) the union of posets, P ⊗Q = (P +Q,≤P + ≤Q); and
(4) the sequencing of posets,

P / Q = (P +Q,≤P + ≤Q +{pi ≤ qj | pi ∈ P, qj ∈ Q}).

Expressible poset shapes form a full duoidal subcategory of the physical duoidal
category of poset shapes, ExprSh.

Proposition 3.2.8 (Grabowski, [Gra81]). Not every poset shape is expressible. In
fact, a poset shape is not expressible if and only if it admits an inclusion of the
Z-poset shape defined by Figure 7.

Figure 7. The Z poset shape.

Theorem 3.2.9 (Shapiro and Spivak, [SS22]). The physical duoidal category
ExprSh of expressible poset shapes is the free physical duoidal category on a single
object. There exists exactly one structure map between any two objects of the free
physical duoidal category for each inclusion of their associated expressible posets.

Remark 3.2.10 (Coherence for normal duoidal categories). Coherence for duoidal
categories needs some care: not any two morphisms between distinctly-typed ex-
pressions in the free duoidal category are equal (Proposition 3.1.6). However, the
previous theorem implies that the same statement is true for normal duoidal cate-
gories.

Corollary 3.2.11. Any two morphisms between distinctly typed expressions in the
free duoidal category over a set of objects are equal.

3.2.3. Physical Lax Tensor of a Physical Duoidal Category. Let us
recap our interpretation of physical duoidal categories: they track an underlying
poset of dependencies. The sequential tensor, X / Y , says that X occurs before Y ,
but Y / X says that Y occurs before X; consequently, it is not symmetric. The
parallel tensor, X ⊗ Y , states that both X and Y occur independently. This final
section of our introduction to physical duoidal categories shows what happens when
we want to consider both X and Y but we do not know at all how they interact:
the tensor that tracks this case is a derived operation, the physical tensor, X � Y .

The physical tensor simply says that both occur at some point: it does not
impose independence, but it does not impose any particular dependency either.
The physical tensor X � Y says that X may occur before Y , or Y before X, or
both in parallel and in that case it does not matter how we regard the dependency.
This is a tool that we will employ later to discuss a version of monoidal context
that does not track dependency: wiring diagrams ([Spi13], Conjecture 3.5.11).

Remark 3.2.12. The binary physical tensor, X � Y , is easy to define: it is the
pushout of the two structure maps X ⊗Y → X /Y and X ⊗Y → Y /X. However,
unlike most tensors, its n-ary version cannot be deduced from its binary and nullary
versions; the physical tensor is only a lax tensor.

82 3. MONOIDAL CONTEXT THEORY

Definition 3.2.13 (Leinster [Lei04]). A lax monoidal category is a category C
endowed with a family of lax tensor n-fold tensor functors (�) : Cn → C – written
as X1 � . . . � Xn, with the 0-ary case E – and a family of associator natural
transformations that unbias the application of the lax tensor,

α : �ni=0

(
�kij=0X

i
j

)
→ X1

1 � . . .�X
1
k1 � . . .�X

n
1 � . . .�X

n
kn ,

such that all formally well-typed equations hold.

Definition 3.2.14. Let (C,⊗, I, /,N) be a physical duoidal category. The physical
tensor, (�), is an additional lax monoidal tensor, defined as the glueing of the
sequential tensor (/) along the parallel tensor (⊗); that is, it is the pushout on the
following family of structure maps, indexed by permutations

lσ : X1 ⊗ . . .⊗Xn → Xσ1 / . . . / Xσn, for σ ∈ P (n).

Remark 3.2.15. This only forms a lax tensor for a good reason. Consider the
simpler case of three elements, X�Y �Z. This expression allows all of the possible
six permutations to occur: (i) X/Y /Z; (ii) X/Z/Y ; (iii) Y /X/Z; (iv) Y /Z/X;
(v) Z /X /Y ; and (vi) Z /Y /X. However, when we consider (X �Y)�Z, we are
only allowing a certain subset of these cases to occur. Namely, only those where Z
does not happen between X and Y : (i) X/Y /Z; (ii) Y /X /Z; (iii) Z /X /Y ; and
(iv) Z /Y /X. This is why the physical tensor is only lax. We have two inclusions:
(X � Y) � Z → X � Y � Z and X � (Y � Z) → X � Y � Z, but these are not
isomorphisms.

Proposition 3.2.16. The physical tensor defines a lax monoidal structure. Given
any physical duoidal category (C,⊗, /,N), the physical tensor defines a lax monoidal
category (C,�, N).

Proof. The definition of the laxator follows from the universal property of the
pushout; the coherence equations hold by uniqueness of the maps constructed out
of this universal property. �

3.2.4. Bibliography. The original monograph on duoidal categories is due
to Aguiar and Mahajan [AM10] – duoidal categories were originally known as “2-
monoidal categories”; Street first described multiple examples that we recall [Str12],
and Garner and López Franco mention for the first time the connection to adjoint
monoids [GF16]. The reason duoidal categories do not have a correspondence in
lower dimensional algebra is the Eckmann-Hilton argument [EH61, Theorem 1.12].

Physical duoidal categories follow the definition and nomenclature of Spivak
and Shapiro [SS22]; their work makes the case for interpreting them as expressing
dependencies between processes and argues initiality of the category of expressible
posets. It seems originally due to Grabowski [Gra81] that expressible posets are
precisely those not containing a Z, and Gischer recognized the lax interchange of
normal duoidal categories as subsumption of posets [Gis88]. Even if the physical
lax tensor does not seem to appear in the related literature, its definition and its
consideration as a lax tensor follow the work of Leinster [Lei04] and the abstraction
of commutativity by Garner and López Franco [GF16]. I thank Matt Earnshaw for
multiple pointers to the literature.

3.3. PRODUOIDAL DECOMPOSITION OF MONOIDAL CATEGORIES 83

3.3. Produoidal Decomposition of Monoidal Categories

3.3.1. Produoidal categories. Produoidal categories, first defined by Booker
and Street [BS13], provide an algebraic structure for the interaction of sequen-
tial and parallel decomposition. A produoidal category V not only contains mor-
phisms, V(X;Y), as in a category, but also sequential joints, V(X0 CX1;Y), and
sequential units, V(N ;X), provided by a promonoidal structure; and parallel joints,
V(X0⊗X1;Y) and parallel units, V(I;X), provided by another promonoidal struc-
ture.

These splits must be coherent. For instance, imagine we want to join X0,
X1 and X2 (sequentially) into Y . Joining X0 and X1 into something (•), and
then joining that something with X2 to produce Y should be doable in essentially
the same ways as joining X1 and X2 into something (•), and then joining that
something with X0 to produce Y . Formally, we are saying that

V(X0 / X1; •) � V(• / X2;Y) ∼= V(X1 / X2; •) � V(X0 / •;Y),

and, in fact, we just write V(X0 CX1 CX2;Y) for the set of such transformations.
This is precisely what we ask for in a promonoidal structure.

Definition 3.3.1 (Produoidal category). A produoidal category is a category V
endowed with two promonoidal structures,

V(• ⊗ •; •) : V× V→ V, and V(I; •) : 1→ V,
V(•C •; •) : V× V→ V, and V(N ; •) : 1→ V,

such that one laxly distributes over the other. This is to say that it is endowed
with the following natural lax interchangers:

(1) ψ2 : V((X C Y)⊗ (Z CW); •)→ V((X ⊗ Z)C (Y ⊗W); •),
(2) ψ0 : V(I; •)→ V(I C I; •),
(3) ϕ2 : V(N ⊗N ; •)→ V(N ; •), and
(4) ϕ0 : V(I; •)→ V(N ; •).

Interchangers, together with unitors and associators, must satisfy coherence con-
ditions (see Appendix 0.1). We denote by ProDuo the category of produoidal
categories and produoidal functors.

Proposition 3.3.2. Let V be a produoidal category, then its category of copreshea-
ves, [V,Set], is a duoidal category.

Remark 3.3.3 (Nesting profunctorial structures). Notation for nesting functorial
structures, say (C) and (⊗), is straightforward: we use expressions like (X1 ⊗
Y1) C (X2 ⊗ Y2) without a second thought. Nesting the profunctorial (or virtual)
structures (/) and (⊗) is more subtle: defining V(X⊗Y ; •) and V(XCY ; •) for each
pair of objects X and Y does not itself define what something like V((X1 ⊗ Y1)C
(X2 ⊗ Y2); •) means. Recall that, in the profunctorial case, X1 C Y1 and X1 ⊗ Y1

are not objects themselves: they are just names for the profunctors V(X1 C Y1; •)
and V(X1 ⊗ Y1; •), which are not representable.

Instead, when we write V((X1 ⊗ Y1) C (X2 ⊗ Y2); •), we formally mean the
composition of profunctors V(X1 ⊗ Y1; •1) � V(X2 ⊗ Y2; •2) � V(•1 C •2; •). By
convention, nesting profunctorial structures means profunctor composition in this
text.

Remark 3.3.4. Should we reverse the direction of the interchangers? Depend-
ing on the author, promonoidal categories and produoidal categories are reversed.
It seems that both conventions have their advantages. The one we follow here
[DPS05] makes intuitive sense: it follows the multicategorical and operadic point
of view – multiple ingredients produce a result. The opposite one [EHR23] gets the

84 3. MONOIDAL CONTEXT THEORY

interchangers to be those of a duoidal category and it becomes clear that there is
a correspondence between produoidal categories and closed duoidal categories on
preshaves.

3.3.2. Monoidal Contour of a Produoidal Category. Any produoidal
category freely generates a monoidal category, its monoidal contour. Contours
form a monoidal category of paths around the decomposition trees of the produoidal
category. Contours follow a pleasant geometric pattern where we follow the shape
of the decomposition, both in the parallel and sequential dimensions, to construct
both sequential and parallel compositions for a monoidal category.

Definition 3.3.5 (Monoidal contour). The contour of a produoidal category B is
the monoidal category mContour(B) presented by two polarized objects, X◦ and
X•, for each object X ∈ Bobj; and generated by arrows that arise from contouring
both sequential and parallel decompositions of the promonoidal category.

Figure 8. Generators of the monoidal category of contours.

Specifically, monoidal contour is the monoidal category presented by the fol-
lowing generators in Figure 8:

(1) a0 : Y ◦ → X◦ and a1 : X• → Y •, for each morphism a : X → Y ;
(2) b0 : X◦ → X•, for each sequential unit, b : N→ X;
(3) c0 : X◦ → I and c1 : I → X•, for each parallel unit, c : I → X;
(4) a triple of generators d0 : Z◦ → X◦, d1 : X• → Y ◦ and d2 : Y • → Z•, for

each sequential join d : X / Y → Z; and
(5) a pair of generators e0 : Z◦ → X◦ ⊗ Y ◦ and e1 : X• ⊗ Y • → Z• for each

parallel join, e : X ⊗ Y → Z.
We impose all the equations of the theory of contour. Additionally, we also

impose all of the equations depicted in Figure 9. Together, these form the theory of
monoidal contour, which adds to the theory of sequential contour a new monoidal
dimension.

Proposition 3.3.6. Monoidal contour extends to a functor

mContour : ProDuo→MonCat.

Proof. Definition 3.3.5 defines how the functor acts on objects. We define
the action on produoidal functors, the morphisms of the category of produoidal
categories. Given a produoidal functor, F : V→W, let us define the strict monoidal
functor mContour(F) : mContour(V) → mContour(W) by the following morphism
of generators:

(1) objects X◦ and X• are mapped to F (X)◦ and F (X)•;
(2) for each a : X → Y , the morphisms a0 : X◦ → X◦, a1 : X• → Y • are

mapped to F (a)0 and F (a)1;
(3) for each b : I → X, both b0 : X◦ → I and b1 : I → X• are mapped to

FI(b)0 and FI(b)1;
(4) for each c : N→ X, the morphism c0 : X◦ → X• is mapped to FN(c)0;

3.3. PRODUOIDAL DECOMPOSITION OF MONOIDAL CATEGORIES 85

Figure 9. Extra equations for the theory of monoidal contour.

(5) for each d : X / Y → Z, the morphisms d0 : Z◦ → X◦, d1 : X• → Y ◦ and
d2 : Y • → Z• are mapped to FC(d)0, FC(d)1 and FC(d)2;

(6) for each e : X / Y → Z, the morphisms e0 : Z◦ → X◦ ⊗ Y ◦, and e1 :
X• ⊗ Y • → Z• are mapped to F/(e)0, and FC(e)1.

To show that this defines a morphism of presentations, we need to prove that
the assignment of generators preserves the equations of the theory of contour, in
Definition 2.4.1. Because F : V → W is a produoidal functor, the images of the
generators do satisfy all of the contour equations of the target category. As a
consequence, this assignment extends to a strict monoidal functor.

Finally, when idV : V → V is an identity, the resulting functor is an identity
because it is the identity on generators. Let G : U → V be another produoidal
functor, then mContour(G # F) = mContour(G) # mContour(F) follows from the
composition of produoidal functors. �

3.3.3. Produoidal Splice of a Monoidal Category. We want to go the
other way around: given a monoidal category, what is the produoidal category that
tracks the decomposition of arrows in that monoidal category? This subsection
finds a right adjoint to the monoidal contour construction: the produoidal category
of spliced monoidal arrows.

86 3. MONOIDAL CONTEXT THEORY

Figure 10. Spliced monoidal arrows.

Definition 3.3.7. Let (C,⊗, I) be a monoidal category. Its produoidal category of
spliced monoidal arrows, mSplice(C), has objects formed by pairs, mSplice(C)obj =
(Cop × C)obj , and is defined by the following profunctors, depicted in Figure 10.

(1) mSplice(C) (XY ; AB) = C(A;X)× C(Y,B),
(2) mSplice(C)(XY C

X′

Y ′
; AB) = C(A;X)× C(Y ;X ′)× C(Y ′;B);

(3) mSplice(C)(XY ⊗ X′

Y ′
; AB) = C(A;X ⊗X ′)× C(Y ⊗ Y ′;B);

(4) mSplice(C)(N; AB;) = C(A;B);
(5) mSplice(C)(I; AB) = C(A; I)× C(I;B).

Proposition 3.3.8. Spliced monoidal arrows indeed form a produoidal category.

Proof sketch. The complete proof constructs all of the necessary natural
isomorphisms using coend calculus. We refer to joint work of this author with
Earnshaw and Hefford, where the equations are proven in full detail [EHR23]. �

Remark 3.3.9. The produoidal algebra of spliced arrows is a natural construction:
abstractly, we know that there exists a duoidal structure on the endomodules of
any monoidal category [Day70, Str12] – monoidal spliced arrows form its explicitly
constructed produoidal counterpart. What may be more surprising is that spliced
arrows have themselves a universal property as part of an adjunction.

Theorem 3.3.10. Spliced monoidal arrows form a produoidal category with
their sequential and parallel splits, units, and suitable coherence morphisms and lax-
ators. Spliced monoidal arrows extend to a functor mSplice : MonCat→ ProDuo.
The monoidal contour and the produoidal splice are left and right adjoints to each
other, respectively.

Proof. Monoidal contour mContour(B) is presented by generators and equa-
tions: to specify a strict monoidal functor mContour(B)→M, it is enough to specify
images of the generators and then prove that they satisfy the equations.

Let (M,⊗M , IM) be a monoidal category. Then a strict monoidal functor
mContour(B)→M amounts to the following data satisfying some extra conditions.

(1) For each object X ∈ Bobj, a pair of objects X◦, X• ∈Mobj;
(2) for each element f : N→ X, a morphism f0 : X◦ → X•;
(3) for each unit f : I → X, a choice of f0 : X◦ → I and f1 : I → X•;
(4) for each morphism f : X → Y , a choice of f0 : Y ◦ → X◦ and f1 : X• → Y •;
(5) for each sequential split f : X / Y → Z, a choice of morphisms f0 : Z◦ →

X◦, plus f1 : X• → Y ◦ and f2 : Y • → Z•;
(6) for each parallel split f : X ⊗ Y → Z, a choice of morphisms f0 : Z◦ →

X◦ ⊗ Y ◦ and f1 : X• ⊗ Y • → Z•.
In order to construct a well-defined strict monoidal functor, the previous as-

signments must satisfy the following conditions for each one of the two promonoidal
categories:

3.3. PRODUOIDAL DECOMPOSITION OF MONOIDAL CATEGORIES 87

(1) α(a #1 b) = (c #2 d) in the promonoidal category implies a0 # (b0 ⊗ id) =
c0 # (id⊗ d0) and (b1 ⊗ id) # a1 = (id⊗ d1) # c1 in the monoidal category;

(2) λ(a #1 b) = c = ρ(d #2 e) in the promonoidal category implies a0 #(b0⊗ id) =
c0 = d0 # (id⊗ e0) and (b1 ⊗ id) # a1 = c1 = (id⊗ e1) # d1 in the monoidal
category;

Moreover, they must also satisfy the following conditions for the produoidal cate-
gory.

(1) ψ2(a | b | c) = (d | e | f) in the promonoidal category implies a0#(b0⊗c0) =
d0 # e0, b1 ⊗ c1 = e1 # d1 # f0 and (b2 ⊗ c2) # a1 = f1 # d2 in the monoidal
category;

(2) ψ0(a) = (b | c | d) in the promonoidal category implies a0 = b0 # c0,
id = c1 # b1 # d0, and a1 = d1 # b2 in the monoidal category;

(3) ϕ2(a | b | c) = d in the promonoidal category implies a0 # (b0⊗c0) #a1 = d0

in the monoidal category;
(4) ϕ0(a) = b in the promonoidal category implies a0 #a1 = b0 in the monoidal

category.
On the other hand, a produoidal functor B→ mSplice(M), also amounts to the

following data. We will state it in multiple points and finally confirm that each one
of these points has a correspondence on the first part of the proof, finishing the
definition.

(1) For each object X ∈ Bobj, an object (X◦, X•) ∈ mSplice(M)obj;
(2) for each element f : N→ X, a morphism f0 : N→

(
X◦

X•
)

;

(3) for each unit, f : I → X, a unit 〈f0 ‖ f1〉 : I →
(
X◦

X•
)
;

(4) for each morphism f : X → Y , a splice 〈f0 #� # f1〉 :
(
X◦

X•
)
→
(
Y ◦

Y •
)
;

(5) for each seq. join f : X / Y → Z, a spliced arrow

〈f0 #� # f1 #� # f2〉 :
(
X◦

X•
)
/
(
Y ◦

Y •
)
→
(
Z◦

Z•
)

;

(6) for each par. join f : X ⊗ Y → Z, a spliced arrow

〈f0 #�⊗� # f1〉 :
(
X◦

X•
)
⊗
(
Y ◦

Y •
)
→
(
Z◦

Z•
)
.

The following conditions must hold for each one of the promonoidal categories.
These correspond definitionally to the conditions for the two promonoidal structures
we imposed before.

(1) α(a | b) = (c | d) in the produoidal category implies α(Fa | Fb) = (Fc |
Fd) for the spliced arrows;

(2) λ(a | b) = c = ρ(d | e) in the produoidal category implies λ(Fa | Fb) =
Fc = ρ(Fd | Fe) for the spliced arrows.

Finally, all the following conditions must also hold for the produoidal category.
These are definitionally equal to the conditions for the produoidal category we
imposed before.

(1) ψ2(a | b | c) = (d | e | f) in the produoidal category implies

ψ2(Fa | Fb | Fc) = (Fd | Fe | Ff);

(2) ψ0(a) = (b | c | d) in the produoidal category implies

ψ0(Fa) = (Fa | Fc | Fd);

(3) ϕ2(a | b | c) = d in the produoidal category implies

ϕ2(Fa | Fb | Fc) = Fd;

(4) ϕ0(a) = b in the produoidal category implies ϕ0(Fa) = Fb.

88 3. MONOIDAL CONTEXT THEORY

Each of these points is exactly equal by definition to the relative point in the
first part of the proof: this establishes the desired adjunction. In other words,
the definition of monoidal splice is precisely the one that makes this proof hold
definitionally – even when we gave multiple different characterizations of it. �

3.3.4. A Representable Parallel Structure. A produoidal category has
two tensors, and neither is, in principle, representable. However, the cofree pro-
duoidal category over a category we have just constructed happens also to have a
representable tensor, (⊗): spliced monoidal arrows form a monoidal category.

Remark 3.3.11. This means mSplice(C) has the structure of a virtual duoidal
category [Shu17] or monoidal multicategory, defined by Aguiar, Haim and López
Franco [AHLF18] as a pseudomonoid in the cartesian monoidal 2-category of mul-
ticategories.

Proposition 3.3.12. Parallel joins and parallel units of spliced monoidal arrows
are representable profunctors. Explicitly,

mSplice(C)
(
X
Y ⊗ X′

Y ′
; AB
) ∼= mSplice(C)

(
X⊗X′
Y⊗Y ′ ;

A
B

)
, and

mSplice(C) (I; AB) ∼= mSplice(C) (II;
A
B) .

In fact, these sets are equal by definition. However, we argue that there is a
reason to work in the full generality of produoidal categories: produoidal categories
can always be normalized.

Remark 3.3.13. Normalization is a procedure to mix both tensors of a duoidal
category, (⊗) and (/), but not every duoidal category has a normalization [GF16]. It
is folklore that one loses nothing by regarding non-representable produoidal struc-
tures as representable duoidal structures on presheaves, dismissing that they are
moreover closed [Day70]; thus, one would expect only some produoidal categories
to be normalizable – after all, only some duoidal categories are. Against folklore,
we prove that every produoidal category, representable or not, has a universal nor-
malization, a normal produoidal category which may be again representable or not.

3.3.5. Bibliography. Motivated by language theory and the representation
theorem of Chomsky and Schützenberger, Melliès and Zeilberger [MZ22] were the
first to present the multicategorical splice-contour adjunction. We are indebted to
their exposition, which we extend to the promonoidal and produoidal cases. Our
contribution is to show how monoidal contexts arise from an extended produoidal
splice-contour adjunction; unifying these two threads.

Street already noted that the endoprofunctors of a monoidal category had a
duoidal structure [Str12]; Pastro and Street described a promonoidal structure on
lenses [PS07] and Garner and López-Franco contributed a partial normalization
procedure for duoidal categories [GF16]. We build on top of this literature, putting
it together, spelling out existence proofs, popularizing its produoidal counterpart
and providing multiple new results and constructions that were previously missing
(e.g. Theorems 3.3.10, 3.4.6 and 3.5.3).

This section takes its main ideas from joint work of this author with Matt Earn-
shaw and James Hefford [EHR23]. Earnshaw and Sobociński [ES22] have described
a syntactic congruence on formal languages of string diagrams using monoidal con-
texts.

3.4. INTERLUDE: PRODUOIDAL NORMALIZATION 89

3.4. Interlude: Produoidal Normalization

3.4.1. Normal Produoidal Categories. Produoidal categories seem to con-
tain too much structure: of course, we want to split things in two different ways,
sequentially (C) and in parallel (⊗); but that does not necessarily mean that we
want to keep track of two different types of units, parallel (I) and sequential (N).
The atomic components of our decomposition algebra should be the same, without
having to care if they are atomic for sequential composition or atomic for parallel
composition.

Remark 3.4.1. The monoidal spliced arrows we just introduced are a perfect
example: if we simply want a hole in a string diagram, the type it may take depends
on the wires we want to leave to each side (see Figure 35). We would prefer
to construct a new category – a Kleisli category on top of this one – where the
bureaucracy of the units was already handled for us.

Figure 11. Multiple units complicate types.

3.4.2. The Normalization Monad. Fortunately, there exists an abstract
procedure that, starting from any produoidal category, constructs a new produoidal
category where both units are identified. This procedure is known as normalization,
and the resulting produoidal categories are called normal.

Definition 3.4.2 (Normal produoidal category). A normal produoidal category
is a produoidal category where the unit interchanger n : V(I; •) → V(N; •) is an
isomorphism.

Normal produoidal categories form a category with produoidal functors between
them, nProDuo. As a consequence, it is endowed with a fully faithful forgetful
functor U : nProDuo→ ProDuo.

Theorem 3.4.3. Let V⊗,I,C,N be a produoidal category. The profunctor

Nor(V)(•; •) = V(N⊗ • ⊗ N; •)

forms a promonad. Moreover, the Kleisli category of this promonad is a normal
produoidal category with the following profunctors.

(1) Nor(V)(X ⊗N Y ;Z) = V(N⊗X ⊗ N⊗ Y ⊗ N;Z);
(2) Nor(V)(X /N Y ;Z) = V((N⊗X ⊗ N) / (N⊗ Y ⊗ N);Z); and
(3) Nor(V)(IN;X) = Nor(V)(NN;X) = V(N;X).

Proof. Let us prove that Nor(V) is a promonad. We now define the multipli-
cation and unit for the promonad, Nor(V). They are constructed out of laxators
of the produoidal category V and Yoneda isomorphisms; thus, they must be asso-
ciative and unital by coherence. The unit is defined by (i) unitality of V, (ii) the
laxator of V, and (iii) by definition of Nor(V).

V(X;Y) ∼= V(I ⊗X ⊗ I;Y)→ V(N⊗X ⊗ N;Y) ∼= Nor(V)(X;Y).

90 3. MONOIDAL CONTEXT THEORY

Multiplication is constructed as follows, using (i) the definition of Nor(V), (ii)
Yoneda reduction, (iii) the laxators of V, and (iv) the definition of Nor(V).∫ Y ∈V

Nor(V)(X;Y)× Nor(V)(Y ;Z) =
∫ Y ∈VV(N⊗X ⊗ N;Y)× V(N⊗ Y ⊗ N;Z)

∼= V(N⊗ N⊗X ⊗ N⊗ N;Y)→ V(N⊗ Y ⊗ N;Z) = Nor(V)(X;Z).

Associativity and unitality follow from those of the produoidal category.
The second part of this proof will show that Nor(V) is indeed a produoidal

category: we will construct its associators, unitors and laxators from those of V and
Yoneda isomorphisms. The right unitor is constructed as follows; the left unitor is
constructed in a similar way: (i) by definition of Nor(V), (ii) by associativity, (iii)
by definition, (iv) by Yoneda reduction, (v) by definition, and (vi) by unitality.∫M∈Nor(V)

Nor(V)(N;M)× Nor(V)(X ⊗N M ;Y) =∫M∈Nor(V)
Nor(V)(N;M)× V(N⊗X ⊗ N⊗M ⊗ N;Y) ∼=∫M∈Nor(V),P∈V

Nor(V)(N;M)× V(N⊗M ⊗ N;P)× V(N⊗X ⊗ P ;Y) =∫M∈Nor(V),P∈V
Nor(V)(N;M)× Nor(V)(M ;P)× V(N⊗X ⊗ P ;Y) ∼=∫ P∈V

Nor(V)(N;P)× V(N⊗X ⊗ P ;Y) =∫ P∈VV(N;P)× V(N⊗X ⊗ P ;Y) ∼=
V(N⊗X ⊗ N;Y).

Let us now construct the associator in two steps: we will show that both sides of
the following equation∫ P∈Nor(V)

Nor(V)(Y ⊗N Z;P)× Nor(V)(X ⊗N P ;A) ∼=∫M∈Nor(V)
Nor(V)(X ⊗N Y ;M)× Nor(V)(M ⊗N Z;A)

are isomorphic to V(N⊗X ⊗ N⊗ Y ⊗ N⊗ Z ⊗ N;A). The first side is isomorphic
by (i) definition of Nor(V), (ii) associativity of V, (iii) definition of Nor(V), (iv)
Yoneda reduction, (v) definition of Nor(V), and (vi) associativity. The second side
is analogous.∫M∈Nor(V)

Nor(V)(Y ⊗N Z;M)× Nor(V)(X ⊗N M ;A) =∫M∈Nor(V)
Nor(V)(Y ⊗N Z;M)× V(N⊗X ⊗ N⊗M ⊗ N;A) ∼=∫M∈Nor(V),P∈V

Nor(V)(Y ⊗N Z;M)× V(N⊗M ⊗ N;P)× V(N⊗X ⊗ P ;A) =∫M∈Nor(V),P∈V
Nor(V)(Y ⊗N Z;M)× Nor(V)(M ;P)× V(N⊗X ⊗ P ;A) ∼=∫ P∈V

Nor(V)(Y ⊗N Z;P)× V(N⊗X ⊗ P ;A)× =∫ P∈VV(N⊗ Y ⊗ N⊗ Z ⊗ N;P)× V(N⊗X ⊗ P ;A) ∼=
V(N⊗X ⊗ N⊗ Y ⊗ N⊗ Z ⊗ N;A).

Finally, let us construct the four interchangers that define the produoidal category.
Three of them are immediate: they are either identities or unitors: Nor(V)(IN, A) ∼=
Nor(V)(IN / IN;A) is the first, Nor(V)(N⊗N;A) ∼= Nor(V)(N;A) is the second, and
Nor(V)(IN;A) ∼= Nor(V)(NN;A) is the last one. We note here that this produoidal
category is natural because of these isomorphisms. Thus, we only need to construct
the first interchanger morphism of a produoidal category,

Nor(V)((X1 / Y 1)⊗ (X2 / Y 2);A) −→ Nor(V)((X1 ⊗X2)C (Y 1 ⊗ Y 2);A),

which is defined by the following reasoning. Here, we abbreviate N ⊗ X ⊗ N by
X⊗N, and we apply (i) the definition of the tensors of Nor(V), (ii) the interchanger

3.4. INTERLUDE: PRODUOIDAL NORMALIZATION 91

of V, (iii) unitality in V, and (iv) the definition of tensors of Nor(V).

Nor(V)((X1 /N Y 1)⊗N (X2 /N Y 2);A) =

V(N⊗ (X⊗N1 / Y ⊗N1)⊗ N⊗ (X⊗N2 / Y ⊗N2)⊗ N;A) →

V((N⊗X⊗N1 ⊗ N⊗ Y ⊗N1 ⊗ N) / (N⊗X⊗N2 ⊗ N⊗ Y ⊗N2 ⊗ N);A) →

V((N⊗X1 ⊗ N⊗ Y1 ⊗ N)⊗N / (N⊗X2 ⊗ N⊗ Y2 ⊗ N)⊗N;A) →
Nor(V)((X1 ⊗N Y1) /N (X2 ⊗N Y2);A).

The structure equations of the laxators follow from those of the base category V.
This finishes the construction of a produoidal category on the Kleisli category of
the promonad. �

Lemma 3.4.4. Normalization extends to an idempotent monad.

Proof. The first part of the proof will show that Nor(V) is the free normal
produoidal category over V by constructing the a monad structure on top of the
functor Nor : nProDuo→ nProDuo. Let us construct the unit and the multipli-
cation of the monad. The unit ηV : V→ Nor(V) is defined as the identity-on-objects
functor associated to the promonad; it and acts on morphisms by the unit of the
promonad. Let us show that this is a produoidal functor by constructing the fol-
lowing components; all of them use the map I → N from the base produoidal
category,

(1) η⊗ : V(X⊗Y ;A)→ V(I⊗X⊗ I⊗Y ⊗ I;A)→ V(N⊗X⊗N⊗Y ⊗N;A);
(2) ηI : V(I;A)→ V(N;A);
(3) η/ : V(X / Y ;A) → V((I ⊗X ⊗ I) / (I ⊗ Y ⊗ I);A) → V((N ⊗X ⊗ N) /

(N⊗ Y ⊗ N);A);
(4) ηN : V(N;A)→ V(N;A) is simply an identity.

these preserve laxators and coherence maps since they are constructed only from
laxators and coherence maps.

Let us construct now the multiplication of the monad, µV : Nor(Nor(V)) →
Nor(V), and show that it is an isomorphism, making it an idempotent monad. The
underlying functor is identity on objects, and it acts on morphisms by the normality
of the already normalized produoidal category,

Nor(Nor(V))(X;Y) = Nor(V)(N⊗N X ⊗N N;Y) ∼= Nor(V)(X;Y).

The following components make this functor a produoidal functor, they are con-
structed again from the normality of the already normalized produoidal category:

(1) µ⊗ : Nor(Nor(V))(X ⊗NN Y ;A) = Nor(V)(N⊗N X ⊗N N⊗N Y ⊗N N;A) ∼=
Nor(V)(X ⊗N Y ;A);

(2) µ/ : Nor(Nor(V))(X /NN Y ;A) = Nor(V)((N ⊗N X ⊗N N) /N (N ⊗N Y ⊗N

N);A) ∼= Nor(V)(X /N Y ;A);
(3) µI : Nor(Nor(V))(N;A) = Nor(V)(N;A);
(4) µN : Nor(Nor(V))(N;A) = Nor(V)(N;A),

Finally we verify the monad laws. ηNV #µV is an identity-on-objects; on morphisms,
it applies left and right unitors followed by their inverses; as a consequence, its
underlying functor is the identity. The components of the natural transformations
are also identities, since the interchanger I → N is an identity for the normalized
produoidal category Nor(V); they are otherwise composed of unitors followed by
their inverses. The last step is to check the associativity of the monad, µNor(V) # µV
and Nor(µV) #µV; this is simply the identity on objects, so we simply apply left and
right unitors twice on morphisms and their components. �

92 3. MONOIDAL CONTEXT THEORY

Lemma 3.4.5. A produoidal category V has exactly one algebra structure for the
normalization monad when it is normal, and none otherwise.

Proof. Let (F, F⊗, FI , FN, FN) : Nor(V) → V be an algebra. This means that
the following commutative diagrams with the unit and multiplication of the nor-
malization monad must commute.

V Nor(V) Nor(Nor(V)) Nor(V)

V Nor(V) V

η

id
F

µ

Nor(F) F

F

Now, consider how the interchanger ψ0 : V(I; •)→ V(N; •) is transported by these
maps.

V(N; •)

V(I; •) V(N; •) V(I; •)

V(N; •) V(N; •)

FI
id

ηI

ψ0

id
FN

ψ0
id

id

We conclude that ηI = ψ0, but also that FN = id. As a consequence, ψ0 is invertible
and FI must be its inverse. We have shown that any produoidal category that is
an algebra for the normalization monad must be normal.

We will now show that this already determines all of the functor F . We know
that η⊗, ηC, η are isomorphisms because they are constructed from the unitors, as-
sociators, and the laxator ψ0, which is an isomorphism in this case. This determines
that F⊗, F/, F must be their inverses. By construction, these satisfy all structure
equations. �

Theorem 3.4.6 (Free normal produoidal). Normalization determines an ad-
junction between produoidal categories and normal produoidal categories,

Nor : ProDuo
 nProDuo : Forget.

That is, Nor(V) is the free normal produoidal category over V.

Proof. We know that the algebras for the normalization monad are exactly the
normal produoidal categories (Lemma 3.4.5). We also know that the normalization
monad is idempotent (Theorem 3.4.6). This implies that the forgetful functor
from its category of algebras is fully faithful, and thus, the algebra morphisms are
exactly the produoidal functors. As a consequence, the canonical adjunction to
the category of algebras of the monad is exactly an adjunction to the category of
normal produoidal categories. �

Remark 3.4.7. Garner and López Franco [GF16] introduced a partial normal-
ization procedure for duoidal categories. We contribute a general normalization
procedure for produoidal categories and we characterize it universally. Produoidal
normalization behaves slightly better than duoidal normalization: it always suc-
ceeds, and we prove that it forms an idempotent monad (Theorem 3.4.6). The
technical reason for this improvement is that the original duoidal normalization
required the existence of certain coequalizers in V; produoidal normalization uses
coequalizers in Set.

3.4. INTERLUDE: PRODUOIDAL NORMALIZATION 93

In the previous Section 3.3.3, we constructed the produoidal category of spliced
monoidal arrows, which distinguishes between morphisms and morphisms with a
hole in the monoidal unit. This is because the latter hole splits the morphism in
two parts. Normalization equates both; it sews these two parts. In Section 3.5,
we explicitly construct monoidal contexts, the normalization of spliced monoidal
arrows. Before that, let us also introduce the symmetric version of normalization.

3.4.3. Symmetric Normalization. Normalization is a generic procedure
that applies to any produoidal category, it does not matter if the parallel join
(⊗) is symmetric or not. However, when ⊗ happens to be symmetric, we can also
apply a more specialized normalization procedure: symmetric normalization.

Definition 3.4.8 (Symmetric produoidal category). A symmetric produoidal cat-
egory is a produoidal category VC,N,⊗,I endowed with a natural isomorphism
σ : V(X ⊗ Y ;Z) ∼= V(Y ⊗X;Z) satisfying the symmetry and hexagon equations.

Theorem 3.4.9. Let V be a symmetric produoidal category. The profunctor

sNor(V)(•; •) = V(N ⊗ •; •)
forms a promonad. Moreover, the Kleisli category of this promonad is a normal
symmetric produoidal category with the following profunctors.

(1) sNor(V)(X ⊗N Y ;Z) = V(N ⊗X ⊗ Y ;Z);
(2) sNor(V)(X /N Y ;Z) = V((N ⊗X)C (N ⊗ Y);Z); and
(3) sNor(V)(IN;X) = sNor(V)(NN;X) = V(N;X).

Theorem 3.4.10. Normalization determines an adjunction between symmetric
produoidal and normal symmetric produoidal categories,

sNor : symProDuo
 nSymProDuo : U .
That is, sNor(V) is the free normal symmetric produoidal category over V.

3.4.4. Bibliography. Garner and López-Franco contributed a partial nor-
malization procedure for duoidal categories [GF16], all of the credit for this elegant
idea goes there.

We contribute its produoidal counterpart. The reader could think that this is
an automatic process: extending an argument by Day [Day70], produoidal cate-
gories could be understood as closed duoidal categories in some sense. However, we
show that there are some technical differences that make this case important: in
the work of Garner and López-Franco, not every duoidal category has a normaliza-
tion, and this prevents us from constructing a monad. We prove that produoidal
normalization is always possible and defines an idempotent monad.

94 3. MONOIDAL CONTEXT THEORY

3.5. Monoidal Lenses

Monoidal lenses – the name we give to monoidal contexts [PGW17, Ril18,
CEG+20] – formalize the notion of an incomplete morphism in a monoidal category.
The category of monoidal lenses will have a rich algebraic structure: we shall be
able to still compose contexts sequentially and in parallel and, at the same time, we
shall be able to fill a context using another monoidal context. Perhaps surprisingly,
then, the category of monoidal lenses is not even monoidal.

We justify this apparent contradiction in terms of profunctorial structure: the
category is not monoidal, but it does have two promonoidal structures that precisely
represent sequential and parallel composition. These structures form a normal
produoidal category. In fact, we show it to be the normalization of the produoidal
category of spliced monoidal arrows. This section constructs explicitly this normal
produoidal category of monoidal lenses.

3.5.1. The Category of Monoidal Lenses. A monoidal lens – an element
of type (XY) → (AB) – represents a process from A to B with a hole admitting a
process from X to Y . In this sense, monoidal lenses are similar to spliced monoidal
arrows. The difference with spliced monoidal arrows is that monoidal lenses allow
for communication to happen to the left and to the right of this hole.

Definition 3.5.1 (Monoidal lens). Let (C,⊗, I) be a monoidal category. Monoidal
lenses are the elements of the profunctor

mLens (XY ; AB) =

∫ M1,M2

C(A;M1 ⊗X ⊗M2)× C(M1 ⊗ Y ⊗M2;B).

In other words, a monoidal lens from A to B, with a hole from X to Y , is an
equivalence class consisting of a pair of objectsM,N ∈ Cobj and a pair of morphisms
f ∈ C(A;M ⊗X ⊗N) and g ∈ C(M ⊗ Y ⊗N ;B), quotiented by dinaturality of M
and N .

Definition 3.5.2. Let (C,⊗, I) be a monoidal category. Its normal produoidal
category of monoidal lenses, mLens(C), has objects formed by pairs, mLens(C)obj =
(Cop × C)obj , and is defined by the following profunctors.

(1) Morphisms are diagrams with a single typed hole.

mLensC (XY ; AB) =

∫ M1,M2

C(A;M1 ⊗X ⊗M2)× C(M1 ⊗ Y ⊗M2;B),

(2) Sequential joins are diagrams with a pair of sequential holes.

mLensC(XY /
X′

Y ′
; AB;) =

∫ M1,M2

C(A;M1 ⊗X ⊗M2)× C(M1 ⊗ Y ⊗M2;

M3 ⊗X ′ ⊗M4)× C(M3 ⊗ Y ′ ⊗M4;B);

(3) Parallel joins are diagrams with a pair of parallel holes.

mLens(C)(XY ⊗ X′

Y ′
; AB) =

∫ M1,M2,M3

C(A;M1 ⊗X ⊗M2 ⊗X ′ ⊗M3)×

C(M1 ⊗ Y ⊗M2 ⊗ Y ′ ⊗M3;B)

(4) Units are complete diagrams with no holes, mLens(C)(N;XY) = C(X;Y).

Reading the profunctorial notation can be unenlightening. We provide the incom-
plete string diagrams for these profunctors in Figure 12 [Rom20b].

Theorem 3.5.3. The category of monoidal lenses forms a normal produoidal
category with its units, sequential and parallel joins. Monoidal lenses are the free

3.5. MONOIDAL LENSES 95

Figure 12. Monoidal lenses.

normalization of the cofree produoidal category over a category. In other words,
monoidal lenses are the normalization of spliced monoidal arrows,

mLens(C) ∼= Nor(mSplice(C)).

Proof. The core of this result is in Theorem 3.4.6, which says that the nor-
malization procedure yields the free normalization over a produoidal category. It
is only left to check that this produoidal category of monoidal lenses that we have
explicitly constructed in this section is precisely the normalization of the produoidal
category of spliced arrows. We do so for morphisms, the rest of the proof is similar;
the proof shows that mSplice(C) (N⊗ X

Y ⊗ N; AB), the normalization of spliced mo-
noidal arrows, is isomorphic to monoidal lenses, mLens(C) (AB;XY). We employ the
Yoneda lemma on both V and V ′.∫ U,V,U ′,V ′∈C

C(A;U ⊗X ⊗ U ′)× C(V ⊗ Y ⊗ V ′;B)× C (U ;V)× C (U ′;V ′) ∼=∫ U,U ′∈C
C (A;U ⊗X ⊗ U ′)× C(U ⊗ Y ⊗ U ′;B)

The rest of the profunctors follow a similar reasoning. �

3.5.2. Symmetric Monoidal Lenses. A symmetric monoidal lens of type
smLens(C)(XY ; AB) represents a process in a symmetric monoidal category with a hole
admitting a process from X to Y .

Symmetric monoidal lenses are monoidal lenses, but we stop caring where the
hole is. Again, the category of symmetric monoidal lenses has a rich algebraic struc-
ture; and again, most of this structure exists only virtually in terms of profunctors.
In this case, though, the monoidal tensor does indeed exist: contrary to monoidal
lenses, symmetric monoidal lenses form also a monoidal category. This is perhaps
why applications of monoidal lenses have grown popular in recent years [Ril18], with
applications in decision theory [GHWZ18], supervised learning [CGG+22, FJ19] and
most notably in functional data accessing [Kme12, PGW17, BG18, CEG+20]. The
promonoidal structure of optics was ignored, even when, after now identifying for
the first time its relation to the monoidal structure of optics, we argue that it could
be potentially useful in these applications: e.g. in multi-stage decision problems,
or in multi-stage data accessors.

This section explicitly constructs the normal symmetric produoidal category of
symmetric monoidal lenses. We describe it for the first time by a universal property:
it is the free symmetric normalization of the cofree produoidal category.

96 3. MONOIDAL CONTEXT THEORY

Definition 3.5.4. Let (C,⊗, I) be a symmetric monoidal category. Symmetric
monoidal lenses are the elements of the profunctor

smLensC (XY ; AB) =

∫ M

C(A;M ⊗X)× C(M ⊗ Y ;B).

In other words, a symmetric monoidal lens from A to B, with a hole from X to
Y , is an equivalence class consisting of a pair of objects M ∈ Cobj and a pair of
morphisms f ∈ C(A;M ⊗X) and g ∈ C(M ⊗ Y ;B), quotiented by dinaturality of
M .

Definition 3.5.5. Let (C,⊗, I) be a symmetric monoidal category. Its normal
symmetric produoidal category of symmetric monoidal lenses, smLens(C), has ob-
jects formed by pairs, smLens(C)obj = (Cop×C)obj , and is defined by the following
profunctors.

(1) Morphisms are diagrams with a single typed hole.

smLens(C) (XY ; AB) =

∫ M

C(A;M ⊗X)× C(M ⊗ Y ;B),

(2) Sequential joins are diagrams with a pair of sequential holes.

smLens(C)(XY /
X′

Y ′
; AB) =

∫ M1,M2

C(A;M1 ⊗X)× C(M1 ⊗ Y ;

M2 ⊗X ′)× C(M2 ⊗ Y ′;B);

(3) Parallel joins are diagrams with a hole encompassing parallel wires.

smLens(C)(XY ⊗ X′

Y ′
; AB) =

∫ M

C(A;M ⊗X ⊗X ′)× C(M ⊗ Y ⊗ Y ′;B).

(4) Units are complete diagrams with no holes, smLens(C)(N; AB) = C(A;B).

Reading the profunctorial notation can be unenlightening. We provide the in-
complete string diagrams for these profunctors in Figure 12 [Rom20b]. The only
substantial difference with monoidal lenses is that we do not need to keep track of
where the hole is placed.

Figure 13. Symmetric monoidal lenses.

The term “monoidal lenses” has usually been reserved for the morphisms of this
category; in the literature, the sequential splits – the lenses with multiple holes – get
a name from their distinctive shape: these are combs or quantum combs [CFS16].

3.5. MONOIDAL LENSES 97

3.5.3. Towards Message Theories. Lenses, or combs, can be interpreted
as incomplete morphisms, but also as morphisms that send and receive resources.
The next chapter will exploit this intuition.

Remark 3.5.6 (Session notation for combs). We will write A◦ = (AI) and B• = (IB)
for the objects of the symmetric produoidal category of lenses that have a monoidal
unit as one of its objects. Thanks to A◦ ⊗ B• = (AB), these are enough to express
all objects.

Proposition 3.5.7. Let (C,⊗, I) be a symmetric monoidal category. There exist
monoidal functors

(◦) : C→ smLens(C), and (•) : Cop → smLens(C).

Moreover, they satisfy the following properties definitionally: C(A• / B•; •) ∼=
C(A• ⊗ B•; •); (A⊗B)

◦
= A◦ ⊗ B◦; C(A◦ / B◦; •) ∼= C(A◦ ⊗ B◦; •); (A⊗B)

•
=

A• ⊗B•; and C(A◦ / B•; •) ∼= C(A◦ ⊗B•; •).

Proof. We define f◦ = (f # � # idI) and g• = (idI # � # g), and then check
that compositions and tensoring of morphisms are compatible with composition
and tensoring of monoidal lenses, this is straightforward. Moreover, we can see
that, by definition,

(A⊗B)
◦

=
(
A⊗B
I

)
= (AI)⊗ (BI) = A◦ ⊗B◦, and

(A⊗B)
•

=
(

I
A⊗B

)
= (IA)⊗ (IB) = A• ⊗B•.

This proof appears with a different language in the work of Riley [Ril18, Propo-
sition 2.0.14]. In fact, there, the combined identity-on-objects functor (◦× •) : C×
Cop → smLens(C) is shown to be monoidal. �

Example 3.5.8. Let us give a first example of how to employ combs for the
description of concurrent protocols. Broadbent and Karvonen [BK22] propose a
formalization of the one-time pad encryption protocol in a symmetric monoidal
category endowed with a Hopf algebra with an integral.

Figure 14. Theory of a Hopf algebra with an integral.

98 3. MONOIDAL CONTEXT THEORY

Definition 3.5.9. A Hopf algebra with an integral, (X, , , , , i, d), is a commu-
tative bialgebra endowed with an antipode map i : X → X, representing inversion;
and endowed with an integral map, d : I → X, representing a non-determined value,
or pure noise. These must satisfy the equations in Figure 14.

The one-time pad is a mathematically secure encryption technique. It works as
follows: (i) the two parties communicating – say, Alice and Bob – start by preparing
some random bits and sharing them; (ii) when the message is ready, Alice applies
bitwise XOR with the random bits to encrypt the message, and then broadcasts the
encrypted message – a potential attacker, Eve, will receive this encrypted message;
(iii) finally, Bob receives the encrypted message and applies again bitwise XOR
with the random bits to decrypt the message (Figure 15).

Figure 15. Description of the one-time pad.

Proposition 3.5.10. The one-time pad is secure, meaning that it is equal to the
process that sends a message from Alice to Bob and outputs random noise through
the attacker’s channel.

Proof. We repeat the proof from Broadbent and Karvonen [BK22]. We em-
ploy string diagrams of symmetric monoidal categories, in Figure 16, to show that
the morphism is equal to an identity tensored by the integral of the Hopf algebra.

�

Figure 16. Correctness of the one-time pad.

The interesting part comes when we want to split the morphism into its different
constituents: there should be a stage where the three actors play; Alice does not
control the fact that the encrypted message will be broadcast; Eve, the attacker, can
only attack at the end; Bob will need to keep a bit in memory. These considerations
are part of the problem statement the one-time pad is solving. It is easy to come up
with a morphism that connects an input to an output: the problem the one-time
pad is solving is to do so on a stage that has been preset.

The components of the one time pad are not simply morphisms of a monoidal
category (Figure 17). They must be understood as monoidal lenses. After this
section, we can declare that a possible typing for these components is the following:

(1) Alice : N→
(
X⊗X
X

)
;

3.5. MONOIDAL LENSES 99

(2) Bob : X• / X◦ → (IX);
(3) Eve : N→ (XX);
(4) Stage : X◦ / X• / X• / X◦ / X• / X• / X◦ / X◦ →

(
X

X⊗X
)
;

Figure 17. Components of the one-time pad.

Still, at this stage it is not easy to talk about message passing with this syntax.
It is true that the new produoidal types can track all the exchanges that happen
along a boundary; but these types are tedious – see, for instance, the long type
of Stage – and it is not clear how to compose them. What we are missing is a
combinatorial description of the different ways we can combine elements of this
produoidal algebra.

This is what the next chapter will solve: we will propose a combinatorial algebra
of message passing and show that lenses, the normalized cofree produoidal algebra
over a symmetric monoidal category have a second universal property – they also
constitute the free message theory.

3.5.4. Bibliography. Lenses [FGM+07] are a notion of bidirectional trans-
formation that can be cast in arbitrary monoidal categories. The first mention of
monoidal lenses separate from their classical database counterparts [JRW12] is due
to Pastro and Street [PS07], who identify them as an example of a promonoidal cat-
egory. However, it was with a different monoidal structure [Ril18] that they became
popular in recent years, spawning applications not only in bidirectional transfor-
mations [FGM+07] but also in functional programming [PGW17, CEG+20], open
games [GHWZ18], polynomial functors [NS22] and quantum combs [HC22]. Re-
lating this monoidal category of lenses with the previous promonoidal category of
lenses was an open problem; and the promonoidal structure was mostly ignored
in applications. We solve this problem, proving that lenses are a universal normal
symmetric produoidal category (the symmetric monoidal lenses), which endows
them with a novel algebra and a novel universal property. This also extends work
on the relation between incomplete diagrams, comb-shaped diagrams, and lenses
[Rom20a, Rom20b].

Lenses themselves have been applied to protocol specification [VC22]. Spivak
[Spi13] also discusses the multicategory of wiring diagrams, later used for incomplete
diagrams [PSV21] and related to lenses [SSV20]; we conjecture that this multicate-
gory of wiring diagrams is precisely the produoidal category of lenses, once we stop
tracking dependencies explicitly.

Conjecture 3.5.11. Each physical produoidal category induces a multicategory
given by its physical lax tensor (Section 3.2.3). The multicategory of wiring dia-
grams [Spi13] of symmetric monoidal categories is the multicategory induced by the
produoidal category of monoidal lenses.

100 3. MONOIDAL CONTEXT THEORY

The promonoidal categories we use can be seen as multicategories with an extra
coherence property. In this sense, we contribute the missing algebraic structure of
the universal multicategory of wiring diagrams relative to a monoidal category.

CHAPTER 4

Monoidal Message Passing

Monoidal Message Passing

This chapter develops message passing in monoidal categories following the
theory of context we just constructed. We have already defined what incomplete
morphisms in monoidal categories are: we will now study the structure of all their
possible compositions. This includes not only the obvious operations of composition
but any possible wiring of a diagram that could combine them while respecting the
acyclicity of string diagrams.

Studying seriously the combinatorial structure of string diagram composition
arrives at the same conclusion as axiomatizing a naive theory of message passing:
message theories. Indeed, we prove that the polarized shufflings that describe string
diagram composition have as algebras precisely the message theories.

Section 4.1 introduces our minimalistic theory of message passing, with axioms
that should hopefully be acceptable to any reader. Section 4.2 starts developing
the categorical semantics for message theories, based on physical monoidal multi-
categories (a variant of duoidal categories); it then shows that shufflings from the
free physical monoidal multicategory. Section 4.3 provides the second ingredient
for this categorical semantics: polarization. We then combine both ingredients
in Section 4.4: polar shuffles form the combinatorial structure that combines in-
complete string diagrams; message theories are precisely the algebras of physical
monoidal multicategory of polar shuffles. This chapter ends with an adjunction
between message theories and symmetric monoidal categories, which ensures that
we can construct a free message theory on top of any symmetric monoidal category.

101

102 4. MONOIDAL MESSAGE PASSING

4.1. Message Theories

4.1.1. Message Theories. Message passing requires the interplay of at least
two mathematical structures: the ability to interleave events in time and the ability
to connect a sender and a receiver. Let us propose a minimally axiomatized algebra
of interleaving and sending/receiving: interleaving will correspond to a normal
duoidal algebra, and sending/receiving will correspond to polarization.

Definition 4.1.1. A message theory M consists of a set of types, Mobj with extra
structure: a send/receive session type is a polarized list of types; for each session
type, we have a collection of sessions with that type,

M(X•◦11 , . . . , X
•◦n
n), for each X1, . . . , Xn ∈Mobj , and each polarization •◦ i ∈ {◦, •}.

A message theory must contain operations for (i) binary shuffling, (ii) and nullary
shuffling, (iii) linking a sent message to immediately receive it, and (iv) spawning
a channel that receives a message and sends it immediately.

(1) shfσ : M(Γ)×M(∆)→M(σ(Γ,∆)), shuffling two processes;
(2) nop : M(), a no-operation, doing nothing;
(3) lnkΓ;∆

x : M(Γ, X•, X◦,∆)→M(Γ,∆), linking send to receive;
(4) spwΓ;∆

x : M(Γ,∆)→M(Γ, X◦, X•,∆), a receive to send channel.

Message theories may be better understood in the notation of a logic, as in Figure 1.
Types form a free polarized monoid; each term describes a possible communication
protocol.

Γ ∆

[Γ,∆]σ
(shfσ)

Γ, X•, X◦,∆

Γ,∆
(lnk)

Γ,∆

Γ, X◦, X•,∆
(spw)

ε
(nop)

Figure 1. Type-theoretic presentation of a message theory.

A message theory must satisfy the following axioms: (i) shuffles compose as in
their symmetric malleable multicategory, where we write (σ # 1τ) to be the same by
associativity as (τ ′ # 2σ

′), we write (∗) for the trivial shuffle, and we write σ̃ for the
symmetric counterpart of σ; (ii) linking is natural with respect to the shuffles; (iii)
spawning is natural with respect to the shuffles; (iv) linking is dual to spawning;
and (v) independent linkings and spawnings commute.

(1a) shfτ (shfσ(m1m2),m3) = shfσ′(m1, shfτ ′(m2,m3));
(1b) shf∗(m,nop) = m;
(1c) shfσ(m1,m2) = shfσ̃(m2,m1);
(2a) shfσ,τ (lnkΓ1,Γ2

x (m1),m2) = lnkΓ1,∆1;Γ2,∆2
x (shfσ,x,τ (m1,m2));

(2b) shfσ,τ (m1, lnk∆1,∆2
x (m2)) = lnkΓ1,∆1;Γ2,∆2

x (shfσ,x,τ (m1,m2));
(3a) shfσ,τ (spwΓ1,Γ2

x (m1),m2) = spwΓ1,∆1;Γ2,∆2
x (shfσ,τ (m1,m2));

(3b) shfσ,τ (m1, spw∆1,∆2
x (m2)) = spwΓ1,∆1;Γ2,∆2

x (shfσ,τ (m1,m2));
(4a) lnkΓ,X◦;∆

x (spwΓ;X◦,∆
x (m)) = m;

(4b) lnkΓ;X•,∆
x (spwΓ,X•;∆

x (m)) = m;
(5a) lnkΓ1;Γ2Y Γ3

x (spwΓ1XΓ2;Γ3
y (m)) = spwΓ1Γ2;Γ3

y (lnkΓ1;Γ2Γ3
x (m));

(5b) lnkΓ1XΓ2;Γ3
y (spwΓ1;Γ2Y Γ3

x (m)) = spwΓ1;Γ2Γ3
x (lnkΓ1XΓ2;Γ3

y (m));
(5c) spwΓ1;Γ2Y Γ3

x (spwΓ1Γ2;Γ3
y (m)) = spwΓ1XΓ2;Γ3

y (spwΓ1;Γ2Γ3
x (m));

(5d) lnkΓ1;Γ2Γ3
x (lnkΓ1XΓ2;Γ3

y (m)) = lnkΓ1Γ2;Γ3
y (lnkΓ1;Γ2Y Γ3

x (m)).

These axioms are again better understood in logic notation, as equations between
derivations, see Figure 2.

4.1. MESSAGE THEORIES 103

Figure 2. Axioms of a message theory.

Definition 4.1.2. A message functor F : M → N between two message theories,
M and N, is a function on objects Fobj : Mobj → Nobj that extends to a family of
functions on session sets,

F : M(X•◦1 , . . . , X
•◦
n)→ N(FX•◦1 , . . . , FX

•◦
n).

This function must (i) preserve shuffling, F (shfσ(f, g)) = shfσ(Ff, Fg); (ii) pre-
serve spawning, F (spwx) = spwFx; (iii) connecting, F (lnkx(f)) = lnkx(Ff);
and (iv) the no-operation, F (nop) = nop. Message theories form a category Msg
with message functors between them.

4.1.2. Properties of a Message Theory. Our goal is to prove a coherence
theorem for message theories. Building up to this result, let us reason with message
theories to understand the basic properties that can be derived from the axioms.

Proposition 4.1.3. Message theories have a derived operation for each shuffling;
moreover, these operations compose as in the multicategory of shufflings.

shufΓ1,...,Γn
σ : M(Γ1)× . . .×M(Γn)→M([Γ1, . . . ,Γn]σ)

Proof. We have defined an operation for binary and nullary shufflings, and
we have defined them to compose exactly as shufflings do. Because shufflings form
a malleable multicategory, each n-ary shuffling can be recovered uniquely from the
binary and nullary shufflings. �

Proposition 4.1.4. A session can always send later and receive sooner, but it
cannot send sooner nor receive later. Formally, there exist derived operations

waitΓ,∆,ΨX : M(Γ, X•,∆,Ψ)→M(Γ,∆, X•,Ψ),

rushΓ,∆,Ψ
X : M(Γ,∆, X◦,Ψ)→M(Γ, X◦,∆,Ψ).

104 4. MONOIDAL MESSAGE PASSING

Γ, X•,∆,Ψ X◦, X•
(spw)

Γ, X•, X◦,∆, X•,Ψ

Γ,∆, X•,Ψ
(com)

(shf)
Γ,∆, X◦,Ψ X◦, X•

(spw)

Γ, X◦,∆, X◦, X•,Ψ

Γ, X◦,∆,Ψ
(com)

(shf)

Figure 3. Derivation of wait and rush.

Proof. We can construct the derivation trees of both operations. They both
spawn a new channel, shuffle its ends to the origin and target position, and they
connect the channel.

The explicit construction is in Figure 3. Note how, thanks to polarization,
it is not possible to use the same technique to send sooner nor receive later.
In fact, we can reason by contradiction that sending sooner, M(Γ,∆, X•,Ψ) →
M(Γ, X•,∆,Ψ), is impossible: the only possible operations we can apply in an ar-
bitrary message theory to an arbitrary session are shufflings with a spawned channel
and connections; we require at least a connection to eliminate the X•, but because
the X◦ must come from shuffling a spawned channel, the corresponding X• must
be placed strictly after it. �

Proposition 4.1.5. In particular, we can always swap the order of objects with
the same polarity,

swapΓ;X;Y ;∆
◦ : M(Γ, X◦, Y ◦,∆)→M(Γ, Y ◦, X◦,∆),

swapΓ;X;Y ;∆
• : M(Γ, X•, Y •,∆)→M(Γ, Y •, X•,∆).

These are self-inverses, forming not only braidings but symmetries in the underlying
monoidal category of positively or negatively polarized objects.

Proof. Swaps are constructed from rushing and waiting (Proposition 4.1.4);
explicitly,

swapΓ;X;Y ;∆
◦ = rushΓ,X◦,Ψ

Y , and swapΓ;X;Y ;∆
• = waitΓ,Y

•,Ψ
Y .

Figure 4. Swaps are self-inverses.

4.1. MESSAGE THEORIES 105

Let us prove that they are self-inverses; we do so with the negatively-polarized
one (Figure 4), the other case is analogous. We reason using naturality of linking,
(i,iv), that shuffles compose as shuffles (ii,iii) (Proposition 4.1.3), the interaction
between shuffling and spawning (v), and the duality between spawning and linking
(vi). �

Proposition 4.1.6. We can link sooner or later without changing the result. For-
mally, the equations in Figure 5 hold.

Figure 5. Linking sooner or later does not change the restult.

Proof. We will prove the first one (Figure 6), the second one follows anal-
ogously. We reason using (i) the definition of wait; (ii,iii) that shuffles compose
as shuffles (Proposition 4.1.3); (iv) naturality of linking; and (v) that swaps are
self-inverses (Proposition 4.1.5). �

Figure 6. Proof of Proposition 4.1.6.

Proposition 4.1.7. Any spawning factors as the spawning of a single channel
followed by a shuffling. Formally,

spwΓ,∆
X (m) = shfΓ,X◦,X•,∆(m, spw;

X(nop)).

106 4. MONOIDAL MESSAGE PASSING

Proof. This is a direct consequence of Axioms (3a,3b). �

Theoretically, it would be possible to reason with message theories at the level of
derivations. However, as we have done through this text, we will try to find better
categorical semantics and a better combinatorial expression of the free message
theory. We will be most interested in the categorical semantics of message theories
and how do they interplay with process theories, in the sense of monoidal categories.
We introduce specialized semantics in terms of physical monoidal multicategories,
which are another instance of the idea of partially representing a physical duoidal
category. For all of this, we will need a coherence theorem.

4.1.3. Coherence for Message Theories. Symmetric monoidal categories
are not perfectly coherent : easily, we can find that there are two formally well-typed
structure maps A⊗A→ A⊗A, the identity and the swap. However, what is indeed
true is that any two distinctly typed structure maps in the free symmetric monoidal
category are equal. “Distinct typing” is a notion that only makes sense in the free
symmetric monoidal category over some generators; it means that the generators
comprising the lists that are our objects appear only once with each variance:
arrows A⊗B ⊗ C → B ⊗ C ⊗ A are distinctly typed, but arrows A⊗ A→ A⊗ A
are not, because A appears twice with each variance.

Shufflings satisfy a similar form of coherence: there is a unique way of shuffling
two words into a third one if these words are distinctly typed. This section proves
that message theories satisfy the same form of coherence. It is not true that any
two parallel formal arrows are equal in any message theory: for instance, there are
two ways of deriving X◦, X◦ from X◦ and X◦. It is true, however, that there is a
unique arrow for any distinctly typed domains and codomain.

Theorem 4.1.8. Message theories are coherent. In the free message theory
over a set of objects, there is at most a single derivation between any distinctly
typed premises and conclusion.

Proof. Consider distinctly typed premises and conclusion. There must be
three different classes of types in this derivation: (1) those that appear twice on
the conclusions with different polarity, (2) those that appear twice on the premises
with different polarity, and (3) those that appear once in the premises and once in
the conclusions with the same polarity.

We will construct a non-unique normal form for derivations in a message theory,
taking into account each one of these cases.

(1) In the first case, the types must have been created by spawning a channel.
Using naturality of spawning (Axioms 3a, 3b, 5c), we can move these
spawning operations to be shuffled at the end of the derivation. Note that
it is not true that we can move all spawning to the end of the derivation,
but if the types appear only in the conclusions, then we can always do so.

(2) In the second case, these variables must get linked to each other. We can
always move the linkings to the end of the derivation (before spawning
new objects) using again the naturality of the linkings (Axioms 2a, 2b,
5a).

(3) For the third case, only a shuffling, rushing and waiting can be involved
(any linking or spawning that does not involve rushing or waiting has
already been moved to the end). Rushing and waiting can be moved to
the beginning of the derivation because of naturality of spawning and
linking (Axioms 2a, 2b, 3a, 3b).

4.1. MESSAGE THEORIES 107

All of this argues that we can always factor a derivation in a message theory as (i)
rushing and waiting, (ii) a shuffle, (iii) linkings, (iv) spawnings and shufflings of
new variables; but we have not yet shown that this derivation is unique.

Imagine that we know the premises (Γ1, . . . ,Γn) and the conclusion (∆) of
a derivation in a message theory. Let us argue that there is at most a unique
derivation between these two.

(1) Removing the objects that appear twice in the conclusion (∆), we ob-
tain a new conclusion (∆1); there is, at most, a unique way of getting
from (∆1) to (∆) using spawnings and shufflings: spawning all the possi-
ble variables in any order and employing the only possible shuffle (using
Proposition 4.1.3, axioms 1a, 1b, 1c); the order of spawning does not
matter because shuffles are symmetric (Axioms 1c, 5c).

(2) Adding all of the objects that get linked and appear twice with different
polarities on the premises, in any order, we obtain a new conclusion (∆2).
There is a unique way of getting from (∆2) to (∆1) because of the in-
terchanging axioms of linking (Axioms 5b and 5d). The only obstruction
to uniqueness here is that we could choose different conclusions (∆2) de-
pending on where they place the variables that will be linked; however,
we have already shown that all possible choices lead to the same result
(Proposition 4.1.6).

(3) We are left with a shuffle and some rushings and waitings. From the
conclusion (∆2) we obtain now a sequence of premises (Γ′1, . . . ,Γ

′
n) that

are the same as the original premises (Γ1, . . . ,Γn) with the only difference
that the objects appear ordered as in the conclusion (∆2). There is a
unique possible shuffling from (Γ′1, . . . ,Γ

′
n) to (∆2).

(4) Finally, for each premise, there will be rushings and waitings. Rushings
and waitings interchange (Proposition 4.1.5), and so there is a unique way
of going from the original premise Γi to the new premise Γ′i.

A summary of the proof can be found in Figure 7: ∆1 is determined from ∆; ∆2 is
not, but all the possible choices lead to the same result (Figure 5); Γ′1, . . . ,Γ

′
n are

determined from ∆2 and Γ1, . . . ,Γn; we have argued that in each one of the steps
of the proof there is a single possible derivation. �

Figure 7. Schema for the proof of uniqueness.

Bibliography. Honda pioneered binary session types in the 90s [Hon93]; and
further work with Yoshida and Carbone extended them to the multi-party case
[HYC08]. Session types [Hon93, HYC08] are the mainstay type formalism for com-
munication protocols, and they have been extensively applied to the π-calculus
[SW01]. Our approach is not set up to capture all of the features of a fully-fledged

108 4. MONOIDAL MESSAGE PASSING

session type theory [KPT96]. Explicitly, our framework of message theories can
be compared to asynchronous session types without choice. Arguably, this makes
it more general: it always provides a universal way of implementing send (A◦)
and receive (A•) operations in an arbitrary process theory represented by a mo-
noidal category. For instance, recursion and the internal/external choice duality
[GH99, PS93] are not discussed, although they could be considered as extensions
in the same way they are to monoidal categories: via trace [Has97] and linear
distributivity [CS97b].

4.2. PHYSICAL MONOIDAL MULTICATEGORIES, AND SHUFFLINGS 109

4.2. Physical Monoidal Multicategories, and Shufflings

Physical monoidal multicategories are physical duoidal categories [Spi13] where
the parallel tensor (⊗) is not representable. They follow the same idea of produoidal
categories, but they will be a better framework for message passing. The theory
of physical monoidal multicategories will need of three ingredients: (i) symmetric
multicategories, which correspond to the symmetry of the parallel tensor (⊗); (ii)
monoidal multicategories, which correspond to the half-representable sequential
tensor (/); and (iii) normality, which we will need to reinterpret in this setting.

4.2.1. Symmetric Multicategories. Symmetric multicategories [BD98, CS09,
Shu16] are to multicategories what symmetric monoidal categories are to monoidal
categories. Let us write σ ∈ S(n) for an element of the permutation group on n
points. Let us write σ1 +σ2 ∈ S(n+m) for the disjoint union of two permutations,
σ1 ∈ S(n) and σ2 ∈ S(m). Let us write as σ o (k1, . . . , kn) : kσ1 + . . .+ kσn → k1 +
. . .+kn the thickening of a permutation σ ∈ S(n) to a permutation S(k1 + · · ·+kn)
that applies it considering each block of kn elements separately.

Definition 4.2.1. A symmetric multicategory is a multicategory M together with
the following family of functions

σ∗ : M(Xσ1, . . . , Xσn;Y)→M(X1, . . . , Xn;Y), for each σ ∈ S(n),

that moreover satisfy the following axioms: (i) functoriality, (τ #σ)∗(f) = τ∗(σ∗(f))
and id∗(f) = f ; (ii) preservation of disjoint unions, σ∗1(f1) #1 . . . #n−1 σ

∗
n(fn) #n g =

(σ1 + . . .+σn)(f1 #1 . . . #n−1 fn #n g); and (iii) naturality, f1 #1 . . . #n−1 fn #n σ∗(g) =
(σ o (k1, . . . , kn))∗(fσ1 #1 . . . #n−1 fσn #n g), for any fn having arity kn.

In physical monoidal multicategories, symmetry appears with the non repre-
sentable parallel tensor (⊗); while the sequential tensor will still form a repre-
sentable monoidal category, this is the notion of monoidal multicategory.

4.2.2. Monoidal Multicategories. Multicategories helped us describe typed
algebras: the objects of the multicategory were the types, and the multimorphisms
were the operations we were allowed to use in that algebra. As we saw with pro-
duoidal categories, we need a second dimension if we want to study parallelism:
what happens when the types themselves form a monoid? Monoidal multicate-
gories are the monoidal version of algebra.

A monoidal category was a 2-monoid on the 2-category of categories, functors
and natural transformations. Analogously, a monoidal multicategory, sometimes
called a virtual duoidal category [Shu17] or monoidal operad, is a 2-monoid of the 2-
categoryMult of multicategories, multifunctors, and multinatural transformations.

Definition 4.2.2. A monoidal multicategory (M, /,N,m, i, #) is a multicategory
(M, #) with a tensor and a unit both on objects (/) : Mobj × Mobj → Mobj and
N : Mobj , and a tensor and unit on multimorphisms,

mn : M(X1, ..., Xn;Y)×M(X ′1, ..., X
′
n;Y)→M(X1 / X

′
1, ..., Xn / X

′
n;Y / Y ′),

nn : 1→M(N, n. . ., N ;N).

These are associative and unital up to multinatural transformations αX,Y,Z ∈M(X/
(Y / Z); (X / Y) / Z), λX ∈ M(I / X;X) and ρX ∈ M(X / I;X), satisfying the
pentagon and triangle equations.

Remark 4.2.3. Any monoidal multicategory has an underlying monoidal category.
Multifunctors between representable multicategories are lax monoidal functors, and
multinatural transformations are lax monoidal transformations. This implies that
a representable monoidal multicategory is exactly a duoidal category [Shu17].

110 4. MONOIDAL MESSAGE PASSING

4.2.3. Physical Monoidal Multicategories. Bringing the notion of nor-
mality to the context of monoidal multicategories is not completely trivial: here,
there is no map between the two units I → N . Instead, what we will have is a map
between the hom-sets, given by the precomposition of the multimap n0 ∈ M(;N)
that we have because of the monoidality of the unit.

Definition 4.2.4. A physical monoidal multicategory is a symmetric multicategory
(M, #, id) that is moreover monoidal forming a virtual duoidal category (M, /,N)
and that contains an invertible composition with the unit map. That is, the fol-
lowing composition is an isomorphism,

(n0 # •)−1 : M(X0, n. . ., Xn;Y)→M(X0, . . . , N, . . . ,Xn;Y).

Remark 4.2.5. We know the structure we need, but we will need to be able to
compute with it. A better combinatorial description of physical monoidal multicat-
egories will be possible once we characterize the free ones. The next section shows
that the physical monoidal multicategory of shufflings is the free normal symmetric
monoidal multicategory over a set of objects.

4.2.4. Shuffling. Shuffling events is the principle on which we have based our
definition of message theories. The first step towards endowing them with categor-
ical semantics is to show that shuffling arises naturally in a categorical setting: if
physical duoidal categories represented inclusions of posets, physical monoidal mul-
ticategories will represent inclusions of linear posets, which correspond to shuffling.

Definition 4.2.6. Let A be an alphabet. The monoidal multicategory of shuffling
words, wShufA, has as objects the set A∗ of words on the alphabet A. The multi-
morphisms wShufA(w1, . . . , wn;w) are precisely the shufflings of the letters of the
words w1, . . . , wn that result into the word w. The monoidal tensor is given by
concatenation of words.

Remark 4.2.7. This multicategory is not posetal: for instance, there exist two
multimaps wShufA(a, a; aa) for any letter a ∈ A. More generally, the number of
shuffles of a repeated letter is given by the binomial coefficients,

#wShuf(an1 , . . . , ank ; an1+...+nk) =
(n1 + . . .+ nk)!

n1! . . . nk!
.

However, it is true that, if each letter appears at most once on the component
words, then the shuffle, if it exists, must be unique. For instance, there exists a
unique shuffle wShuf(xy,wz;xwyz), and so we can refer to it without explicitly
specifying it. In other words, there exists at most one morphism between formal
distinctly-typed expressions; shuffles are coherent.

Remark 4.2.8. This monoidal multicategory is symmetric and normal. In other
words, it is a physical monoidal multicategory.

Proposition 4.2.9. Shuffling words are the free physical monoidal multicategory
on a set of objects.

Proof. We have already shown how they form a physical monoidal multicate-
gory; we need to show that it is the free one. Let V be any physical duoidal category,
for each map A → Vobj there must exist a unique physical monoidal multifunctor
wShufA → V that factors on objects through the former map.

First, we argue that the physical monoidal multifunctor is forced. Any shuffle
can be reconstructed from the operations of a physical monoidal multicategory, and
so any shuffle must be mapped accordingly. For instance, if we want to reconstruct
the shuffle V(xy, z;xzy), we multiply together: first V(x, i;x), then V(i, z; z), and
finally V(y, i; y).

4.2. PHYSICAL MONOIDAL MULTICATEGORIES, AND SHUFFLINGS 111

Let us do this in general. Assume a shuffle wShuf(w1, . . . , wn;w), where the
words are wj = aj,1 . . . aj,kj . We position each one of the letters in their position: for
instance, if aj,i appears in the jth-word, we can use the normalization isomorphism

V(aj,i; aj,i) ∼= V(I, . . . , a
(j)
j,i , . . . , I; aj,i)

to position it in the jth input, via the identity multimorphism. Then, we can
multiply all of the letters forming the shuffle, using monoidality, and obtain the
desired shuffle in any physical monoidal multicategory,∏

aj,i∈w
V(I, . . . , a

(j)
j,i , . . . , I; aj,i)→ V(w0, . . . , wn;w).

We have used exactly one factor for each letter of the resulting word.
Finally, we need to prove that this assignment is well-defined and that it de-

fines a physical monoidal multifunctor. These will be both a consequence of the
same fact: there exists at most a unique shuffle between words with different let-
ters and there exists at most a unique formally distinctly typed map between any
poset shapes. To prove this, we use the characterization of the free duoidal cate-
gory as poset shapes: there is a single formally well-typed map between any two
poset shapes, so there is a single formally well-typed map between any two duoidal
expressions; in particular, there exists at most one multimorphism between any
words with distinct letters in a physical monoidal multicategory. This renders the
map well-defined: there is at most one way of constructing any shuffle, and we
have shown that it is possible. On the other hand, this also makes the map a
physical monoidal multifunctor: all the equations are formal and thus they hold
automatically. �

Shuffling takes care of the first and most important aspect of message theories:
message theories are algebras for the shuffling words physical monoidal multicate-
gory of their objects. However, message theories do have an extra structure: each
object is a left dual, naturally with respect to these shufflings – the second ingre-
dient for message theories is polarization.

4.2.5. Bibliography. This formulation of symmetric multicategories is a par-
ticular case of Shulman’s definition of multicategory over a faithful cartesian club
[Shu16, §2]. The theory of symmetric multicategories is less developed than the
theory of cartesian multicategories, which are well-known to correspond to Lawvere
theories. Monoidal multicategories are also not particularly explored, but Shulman
has a note relating them directly to duoidal categories and proposing the name
virtual duoidal category for them [Shu17].

112 4. MONOIDAL MESSAGE PASSING

4.3. Polarization

Polarization is not a property of our structures, but more of a particular way of
constructing free structures. This is, we do not say that a monoid is “polarized”; but
we have constructed free polarized monoids when talking about message theories.
Saying that a monoid is polarized would seem to imply that all of its elements
have a sign, which is not what happens in the free polarized monoid: generators
do appear with a sign, but the words on the monoid are combinations without a
particular sign.

Remark 4.3.1 (Polarization of a monoid). Given any monoid M , we can consider
its polarization, Polar(M), to be the monoid generated by two copies of each element
of M , denoted a• ∈ Polar(M) and a◦ ∈ Polar(M), and quotiented by the equations
a•b• = (ab)• and a◦b◦ = (ab)◦.

Taking seriously this idea, we will not regard polarization as part of an algebraic
structure (as it happens with monoidal categories). Instead, polarization will arise
as a left adjoint. To quip, polarization is left adjoint to taking left adjoints. Let us
see first how this works in the context of monoidal categories; we will later extend
it to physical monoidal multicategories.

4.3.1. Monoidal Polarization. Every monoidal category has a notion of du-
ality inside it. It does not suffice to say that some objects have duals: a duality
is not only a property. Instead, we need to specify the maps that constitute the
duality. Dualities in a monoidal category form a monoidal category themselves.
Polarization is the left adjoint to taking this category of dualities.

Definition 4.3.2 (Category of dualities). Let (C,⊗, I) be a monoidal category. We
define the category of left duals, Duals(C) to have objects the dualities (LaR, ε, η)
of the monoidal category and morphisms

(fL, fR) : (L aR, ε, η)→ (L′ aR′, ε′, η′)
to be pairs of morphisms fL : L → L′ and fR : R′ → R such that the equations in
Figure 8 hold.

Figure 8. Morphism of adjunctions.

The category of left duals is a monoidal category where the tensor of two
dualities, (L aR, ε, η) and (L′ aR′, ε′, η′), is defined to be

(L⊗ L′ aR′ ⊗R, (id⊗ ε⊗ id) # ε′, η # (id⊗ η ⊗ id)).

Taking the left duals extends to an endofunctor Duals : MonCat→MonCat.
This endofunctor has a right adjoint Polar : MonCat→MonCat.

Definition 4.3.3 (Polarization). Let (C,⊗, I) be a strict monoidal category. Its
polarization, Polar(C), is a monoidal category presented by the following data.

The polarization contains two objects, A• and A◦, for each object of the original
category A ∈ Cobj , and quotiented by equalities for tensors (A⊗B)• = A•⊗B• and
(A ⊗ B)◦ = B◦ ⊗ A◦ and units I• = I◦ = I. It also contains a pair of morphisms

4.3. POLARIZATION 113

εA : A• ⊗ A◦ → I and ηA : I → A◦ ⊗ A• constructing an adjunction A• a A◦:
that is, εA # ηA = id and ηA # εA = id. The duality is monoidal, satisfying both
εA⊗B = εA # εB and ηA⊗B = ηB # ηA, and finally εI = ηI = idI .

The polarization contains two dual morphisms, f• : A• → B• and f◦ : B◦ →
A◦, for each morphism f : A → B. These are quotiented by equations explicitly
asking for functoriality: f• # g• = (f # g)• and id• = id, and also f◦ # g◦ = (g # f)◦

and id◦ = id. These are tensored as (f ⊗ g)• = f• ⊗ g• and (f ⊗ g)◦ = g◦ ⊗ f◦.

Proposition 4.3.4. Polarization is left dual to taking left duals.

Proof. We already know that Duals : MonCat →MonCat is a functor; we
only need to construct a universal arrow ηM : M→ Duals(Polar(M)). The universal
arrow will be given by η(X) = (X• a X◦, εX , ηX), which uses the fact that X• a
X◦ determines an adjunction. This assignment extends to a functor that sends
a morphism f : X → Y to a morphism of dualities (f•, f◦) : (X• a X◦, ε, η) →
(Y • a Y ◦, ε, η), where f◦ : Y ◦ → X◦ is the dual of f• : X• → Y •. This constructs
the candidate universal arrow.

Let us show that it is indeed universal. Consider a functor H : M→ Duals(N).
We will show that there is a unique H∗ : Polar(M) → N such that H = ηM #
Duals(H∗). Let us pick an object X ∈Mobj that is sent to H(X) = (AaA′, εA, ηA).
To make this equation hold, it is necessary that H∗(X◦) = A and H∗(X•) = A′,
but also H∗(εX) = εA and H∗(ηX) = ηA. Let us pick a morphism f : A → B
that is sent to H(f) = (gL, gR) : (A a A′, εA, ηA) → (B a B′, εB , ηB); this forces
H∗(f•) = gL and H∗(f◦) = gR. Because (A a A′, εA, ηA) forms a duality and the
maps gL and gR are duals, this assignment satisfies all necessary equations. This
determines the value of H∗ on all of the generating maps while satisfying all of the
equations of Polar(M). �

4.3.2. Monoidal Polarization is Not Enough. An important insight of
some works into the categorical semantics of message passing is the importance
of polarization. Given this, one could expect that the polarization of a process
theory is its corresponding message theory. Indeed, this chapter will claim that the
polarization of a symmetric monoidal category exhibits the necessary structure to
discuss message passing; however, at the same time, it will claim that the algebraic
structure that allows it to do so is not that of a polarized monoidal category: it is
that of a message theory.

Remark 4.3.5. Some simpler interleavings of events can be expressed using du-
alities in a monoidal category. For instance, let us consider the polarization of a
symmetric monoidal category: wires with the same sign can be swapped, but wires
with different sign cannot. We can interleave two maps f : I → X◦ / Y ◦ / Z• and
g : I → U◦ / V • to produce a map h : I → X◦ / U◦ / V • / Y ◦ / Z• as in Figure 9 –
note how we use the adjunction to contort the wires and allow wires to pass over
wires with different polarization.

Figure 9. A shuffling, using polarization.

114 4. MONOIDAL MESSAGE PASSING

In general, thanks to the dualities, a receiving resource can be used later, X◦ /
A→ A/X◦, and a sending resource can be sent sooner, A/X• → X• /A, but not
the other way around. These two laws govern which wires can pass over other wires.
A natural question, then, is to ask if all possible interleavings can be expressed in
the same way: polarizing objects, and using dualities.

Proposition 4.3.6. It is not the case that every shuffling of events can be expressed
in a category with polarized objects and dualities.

Proof. Consider two cells as in Figure 10, with types

f : I → X• / Y ◦ / Z• / W ◦, and g : I → A• / B◦ / C◦ / D• / E• / F ◦

and imagine we want to interleave them into A• / B◦ / X• / Y ◦ / C◦ / D• / Z• /
W ◦ /E• / F ◦ using only the dualities. There are two possible cases: (i) we place f
before g and we try to position the wires of f correctly; or (ii) we place g before f
and we try to do the same.

In the first case, we will find that we can pass the wire X◦ over A• / B◦ – but
the same cannot be done with the wire Y •. Therefore, we are forced to pass the
wire Y • over C◦ / D• / E• / F ◦, using the dualities; but then there will be no way
of moving the wire Z• to its place.

Figure 10. A shuffling that cannot be expressed.

In the second case, the first two wires, A• / B◦, are automatically correctly
placed. The third, C◦, must pass over Z• / W ◦ because it could not do the same
with X• / Y ◦; so D• would be forced to do the same, but it cannot. �

Then, if this algebra is not what we are using about the polarization of a
monoidal category, what are we using exactly? It happens that the polarization
of a monoidal category posesses extra structure: its states (the morphisms without
input) can always be split into morphisms that take negative objects on the left
and produce positive objects on the right. This property is what makes it possible
to express any interleaving of events.

With this in mind, the polarization of a monoidal category seems interesting not
only because it produces a category with duals (or, in the work of Nester [Nes21],
a proarrow equipment, or a cornering), but because it constructs a full message
theory. We do not only care about the free polarization, we care about its message
theory.

4.3.3. Polarization of a Physical Monoidal Multicategory. Every phys-
ical monoidal multicategory has a notion of dual, inherited from that of its under-
lying monoidal category. The next section will construct the free polarized physical
monoidal multicategory over a set of objects. Let us define here the right adjoint:
the functor that picks the set of left adjoints of a physical monoidal multicategory.

4.3. POLARIZATION 115

Definition 4.3.7. Let (M, /, I) be a physical monoidal multicategory. We define
the set of left duals, Duals(M), to have objects the dualities (L a R, ε, η) where
ε ∈ M(L / R; I) and η ∈ M(I;R / L) are 1-to-1 multimorphisms satisfying the
adjoint equations, (ε / idL) # (idR / η) = idL and (idR / ε) # (η / idR) = idR.

4.3.4. Bibliography. A categorical treatment of polarization appears in the
work of Cockett and Seely [CS07], which points to the connection with Abramsky-
Jagadesaan games [AJ94]. “Polarized category” takes a different meaning there: it
is a pair of categories endowed with a profunctor between them. However, we do
follow the same core idea: using walking adjunctions for sending and receiving.

Nester notices the importance of polarization for message passing [Nes21] via a
single-object proarrow equipment; and all the credit for this idea should go there.
This was later extended by Nester and Voorneveld [NV23] to include iteration and
choice. The reader will find a discussion of its relationship with lenses in a joint
paper of this author with Nester and Boisseau [BNR22]. The graphical calculus of
proarrow equipments was described by Myers [Mye16]; we can reuse this calculus
to explain polarization in monoidal categories. Here, we prefer to avoid discussing
polarization through proarrow equipments, noticing that this adjunction already
works at the level of monoidal categories.

116 4. MONOIDAL MESSAGE PASSING

4.4. Polar Shuffles

4.4.1. Polar Shuffles. Polarization in a physical monoidal multicategory leads
us to consider polar shuffles: shufflings endowed with a polarization for each one
of its elements. This section will show that polar shuffles are the free polarized
monoidal multicategory.

The objects of the category of shuffles could be seen as the finite ordinals: finite
linear posets with inclusions on each other, preserving the ordering. Similarly, the
objects of the category of polar shuffles are polarized finite ordinals.

Definition 4.4.1. A polar list over a set of types T is a list of types X ∈ T ∗

endowed with a function p : X → {◦, •}. In any polar list, we consider the negative
elements, X◦ = p−1(◦), and the positive elements, X• = p−1(•).

Definition 4.4.2. A polar shuffle over a set of types T , from a multiset of polar
lists X0, . . . , Xn to a single polar list Y , is a bijection

f : X•1 + . . .+X•n + Y ◦ → Y • +X◦1 + . . .+X◦n

preserving the types and such that the directed graph containing all polar lists (as
linear posets) and an edge x → f(x) for each element in X•1 + . . . + X•n + Y ◦, is
acyclic.

For instance, an untyped polar shuffle (or typed over the singleton set) of shape
pShuf(◦ • ◦•, ◦◦ • •, ◦; ◦◦ • •◦), is given by the following acyclic graph in Figure 11.
In black, we depict the edges that come from the graph of a function. In blue, the
edges that come from the linear finite posets.

Figure 11. A polar shuffle.

4.4.2. Encoding of polar shuffles. Polar shuffles are ultimately graphs, and
they can be encoded as such. We propose a notation suggestive of multiparty session
calculi.

The session encoding of polar shuffles assigns a variable name to each po-
lar list (say, f, g, h, . . .) and to each edge of the graph outside a polar list (say,
a, b, c, x, y, z, . . .). The encoding of a polar shuffle starts by declaring the list of
edges incident to the output polar list, together with their polarization. Then,
enclosed in braces, we write the polar lists and the edges that incide on them.

For instance, the encoding of the polar shuffle in Figure 11 is in Figure 12.

(a?,b?,c!,d!,e?) {
f(a?,x!,y?,d!),
g(b,x?,y!,c!),
h(e?) }

Figure 12. Encoding of a polar shuffle.

4.4. POLAR SHUFFLES 117

Remark 4.4.3. Parsing this notation requires checking whether the graph is
acyclic. Checking if a graph is acyclic can be done in linear time on the sum
of vertices and edges, O(v + e). The number of vertices in a polar shuffle is the
sum of the lengths of all of the polar lists involved, e = #X1 + . . . + #Xn + #Y,
and each vertex receives at most three edges, giving a bound e ≤ 2v. This means
that checking if a polar shuffle is valid is linear in the length of its polar lists,
O(#X1 + . . .+ #Xn + #Y).

The second implication of this encoding is that, if we label the vertices of a
polar shuffle with types, there exists at most one polar shuffle with any distinctly
typed sources and targets.

Proposition 4.4.4. Polar shuffles are coherent. There exists at most a single polar
shuffle between some distinctly typed polar lists: we say that a polar list is distinctly
typed if each variable (each type) appears in the premises and the conclusion exactly
twice, each time with a different variance.

Proof. In this combinatorial structure, coherence works almost by definition.
Note that a polar shuffle is ultimately a bijection satisfying certain extra properties;
but the distinct typing already forces where each element must be sent: to the only
element with different variance but same type. Whether the polar shuffle exists at
all depends on whether it satisfies the acyclicity property. �

4.4.3. The Multicategory of Polar Shuffles. Polar shuffles form a mul-
ticategory, as their shape already suggests. The composition and the rest of the
structure follow that of the category of shufflings. For instance, the composition of
polar shuffles is defined to be the substitution of the resulting polar list of a shuffle
into the input polar list of another shuffle. See Figure 13 for an example.

Figure 13. Composition of two polar shuffles.

Proposition 4.4.5. The composition of two polar shuffles, s ∈ pShuf(X1, . . . , Xn;Y)
and t ∈ pShuf(Y1, . . . , Y, . . . , Ym;Z), along a polar list Y , is a polar shuffle obtained
by substituting the entire graph of the former into the polar list of the latter,

s #Y t ∈ pShuf(Y1, . . . , X1, . . . , Xn, . . . , Ym;Z).

Substituting a polar shuffle into the inputs of a polar shuffle forms again a polar
shuffle. That is, composition is well-defined and preserves acyclicity.

Proof. Composition happens across the resulting polar list of a polar shuffle,
which coincides with one of the input polar lists of another polar shuffle; we say
that this polar list is the border. The proof argues that two acyclic graphs glued
along a linear graph are again acyclic.

Let us prove this by contradiction. Imagine there was a cycle in the multicate-
gorical composition of polar shuffles. It must contain edges on both components of
the composition, simply because each component is itself acyclic. This means that
the cycle should cross the border between both components of the polar shuffle

118 4. MONOIDAL MESSAGE PASSING

at least twice and always an even number of times – it must take two different
directions.

Figure 14. Composition along the borders of two polar shuffles.

Because the border is a linear poset, it must split the cycle (at least) in two
parts, creating two undirected cycles to the two sides of the border. At least one
of these two is forced to be directed, thus contradicting acyclicity on that side of
the composition. �

Proposition 4.4.6. The tensoring of two polar shuffles of the same arity,

s ∈ pShuf(X0, . . . , Xn;Y) and t ∈ pShuf(X ′0, . . . , X
′
n;Y ′),

is a polar shuffle on the pointwise concatenation of the polar lists

(s / t) : pShuf(X0X
′
0, . . . , XnX

′
n;Y Y ′),

defined by the disjoint union of the two acyclic graphs determining the polar shuffles.
The tensoring of two polar shuffles is well-defined and it is again a polar shuffle.
See Figure 15 for an example.

Figure 15. Parallel composition of polar shuffles.

Proof. The graph of the tensoring is the disjoint union of two acyclic graphs,
together with the edges determined by the polar lists. The directed edges coming
from the polar lists always go from the first graph to the second; thus, they will
not create cycles and the resulting graph with be acyclic. �

Theorem 4.4.7. Polar shuffles over a set of types are the morphisms of a
physical monoidal multicategory, pShuf, that has the polar lists as objects.

Proof. We define the identity polar shuffle on a polar list to be the identity
bijection linking each sign to itself. The identity polar shuffle is acyclic because the
identity bijection preserves the linear ordering. We have already defined the compo-
sition and shown that it is acyclic in Proposition 4.4.5. Associativity of composition
follows from associativity of glueing graphs; unitality follows by construction. We
have already defined the tensoring in Proposition 4.4.6, and the tensor on objects
is the concatenation of polar lists. The unit for the tensoring is the empty po-
lar list, and because it does not appear in a polar shuffle, it makes the monoidal
multicategory normal. �

4.4. POLAR SHUFFLES 119

4.4.4. Message Theories are Algebras of Polar Shuffles. What makes
polar shuffles relevant to the discussion of message-passing is that they promise us
a better syntax for message theories. Instead of thinking of the operations of a
message theory as generated by a few primitives satisfying equations, we can give
them a combinatorial characterization in terms of polar shuffles. This section shows
that message theories are precisely the algebras for the operations given by polar
shuffles.

Definition 4.4.8. An algebra over a multicategory, (M, #, id), is the assignment of
a set S(X) to each object X ∈Mob, and the assignment of a function

S(f) : S(X1)× . . .× S(Xn)→ S(Y),

for each multimorphism f ∈ S(X1, . . . , Xn;Y). The assignment must preserve
compositions, S(f #X g) = S(f) #X S(g) and identities, S(id) = id. Alternatively, it
is a multifunctor to the cartesian monoidal category of sets and functions.

Proposition 4.4.9. Message theories are precisely the algebras of the free polarized
physical monoidal multicategory over their respective sets of types. In other words,
the derivations of a message theory form the free polarized physical monoidal mul-
ticategory over its set of types.

Proof. This will follow almost by definition. The definition of message theo-
ries includes an operation for each shuffling, and these operations compose as shuf-
flings (Proposition 4.1.3 and Axioms 1a, 1b, and 1c); equivalently, this is saying
that message theories are in particular algebras of the multicategory of shufflings,
the free physical monoidal multicategory over their set of types.

The rest of the axioms of message theories are exactly asking that each object
is a left adjoint: the spawning and linking operations are describing the unit and
the counit of the adjunction; the rest of the axioms are saying that: the unit of the
adjunction is natural with respect to shufflings (Axioms 2a and 2b); the counit of
the is natural with respect to shufflings (Axioms 3a and 3b); unit and counit satisfy
the snake equations (4a and 4b); and they are natural with respect to each other
(Axioms 5a, 5b, 5c and 5d). �

Corollary 4.4.10. Polarized physical monoidal multicategories are coherent; there
exists at most one multimorphism between any distinctly typed objects of the free
physical monoidal multicategory over some objects.

Proof. This is now a consequence of Proposition 4.4.9 and Theorem 4.1.8.
The derivations of a message theory form the free polarized physical monoidal
multicategory, but we have already shown that they are coherent. �

Theorem 4.4.11. Polar shuffles form the free polarized physical monoidal mul-
ticategory over a set of types.

Proof. Polar shuffles are coherent (Proposition 4.4.4), and polarized physical
monoidal multicategories are coherent as well (Corollary 4.4.10); this simplifies
the proof because, to show that they coincide, we only need to show that a polar
shuffle between some types exists if an only if a multimorphism in the free polarized
physical monoidal multicategory exists.

If a multimorphism of a certain type exists in the free polarized physical monoi-
dal multicategory, then it exists in all polarized physical monoidal multicategories
and, in particular, in polar shuffles (Theorem 4.4.7).

Let us prove the converse implication: if a polar shuffle between some types
does exist, then there is a multimorphism in the free polarized physical monoidal
multicategory between these types. For this, we will use that a polar shufflecan be

120 4. MONOIDAL MESSAGE PASSING

always factored (not necessarily uniquely!) in the following way: (i) we exchange
positions inside each polar list to get them to their final relative position; (ii) we
use a series of spawnings, or polar shuffles I → X◦ / X•; (iii) we use a pure, non-
polarized shuffle; and (iv) some final linkings of type X• / X◦ → I. This is easy
to verify topologically: we can always ‘pull down the linkings’ and ‘pull up’ the
spawnings, and we can always factor any shuffle in two parts – a pure shuffle and a
shuffle internal to each one of the components. For instance, consider the following
example in Figure 16, adapted from Figure 15 with an extra spawning.

Figure 16. Factored polar shuffle.

Spawning, linking, shuffling, waiting and rushing are all operations on a physical
monoidal multicategory (see Section 4.1); so this proves that there is at least one
multimorphism in the free physical monoidal multicategory with these types. We
do not care about the specific choice of multimorphism because polar shuffles are
coherent (Proposition 4.4.4), and polarized physical monoidal multicategories are
coherent as well (Corollary 4.4.10) �

Corollary 4.4.12. Message theories are the algebras of the physical monoidal mul-
ticategory of polar shuffles.

Proof. We will use that polar shuffles are the free polarized physical monoi-
dal multicategory (Theorem 4.4.11) and that message theories are precisely the
algebras of the free polarized physical monoidal multicategory over their objects
(Proposition 4.4.9). �

4.4.5. Bibliography. The definition – and the notation – of polar shuffles
takes inspiration from a different concept: Hughes’ partial leaf functions [Hug12].
Partial leaf functions are the Int-construction – the free compact closed category
over a traced monoidal category – applied to the category of finite sets and partial
functions [AM99]; here we follow a similar idea, but we work over finite sets and
bijections, which are not traced. Not only the Int-construction, but also the idea
of shuffling two traces point back to game semantics [MS18].

4.5. PROCESSES VERSUS SESSIONS 121

4.5. Processes versus Sessions

4.5.1. Processes of a message theory. Inside of a message theory, we call
processes the sessions that happen in two parts: (i) first they ask for some inde-
terminate number of resources (possibly zero), X◦1, . . . X◦n and (ii) then, they give
some indeterminate number of resources (possibly zero), Y •1, . . . , Y •m. This simple
definition builds a symmetric monoidal category inside any message theory, and we
will find a left adjoint to this construction.

Proposition 4.5.1. Let M be a message theory. There exists a symmetric monoidal
category, Proc(M), whose objects are the lists of objects of the message theory,
Proc(M)obj = M∗obj, and whose morphisms are the sessions that first ask some
resources and then provide some resources,

Proc(M)(X1 ⊗ . . .⊗Xn;Y 1 ⊗ . . .⊗ Ym) = M(X?
n, . . . X

?
1 ;Y !

1 , . . . , Y
!
m).

Note how we reverse the order of inputs; this will make reasoning easier even if it
is unnecessary: the monoidal category will be symmetric in any case.

Proof. Let us define the composition and identities. Composition is given
by the polar shuffle that connects the middle outputs to inputs, see Figure 17;
because message theories are algebras of polar shuffles, such a polar shuffle defines
an operation, composition, that takes two sessions to a third one.

Figure 17. Composition of processes of a message theory.

Identities are created by spawning channels, see Figure 18. Again, because
message theories are algebras of polar shuffles, each message theory must contain
a constant given by the polar shuffle that spawns a list of channels. Composition
and identities are associative and unital: it can be checked from the definition that
we are using the duality from spawning and connecting channels.

Figure 18. Identity process of a message theory.

Symmetries are given by the polar graph that spawns a channel for each one of
the objects and then shuffles them so that the inputs and the outputs are divided
in two blocks and positioned in reverse order, see Figure 23.

Tensoring is given by the polar shuffle that preserves all outputs and inputs
but passes the outputs of a process pass the inputs of the other, see Figure 20.

122 4. MONOIDAL MESSAGE PASSING

Figure 19. Symmetries of processes in a message theory.

Figure 20. Tensor of processes in a message theory.

This operation is again associative and unital with the empty polar shuffle that
represents the monoidal unit.

It concludes the proof to check, by following the connections of the polar shuf-
fles, that tensoring behaves functorially with composition so that the interchange
law of monoidal categories holds. �

Proposition 4.5.2. The construction of the symmetric monoidal category of pro-
cesses extends to a functor

Proc : Msg→ SymMonCatStr.

Proof. We will show that any message functor F : M → N induces a strict
symmetric monoidal functor Proc(F) : Proc(M) → Proc(N). Because the category
of processes is freely generated on objects, it suffices to explain that the object
X ∈Mob is sent to the object FX ∈ Nob. On morphisms, we already have a map

F : M(X?
n, . . . , X

?
1, Y

!
1, . . . , Y

!
m)→ N(FX?

n, . . . , FX
?
1, FY

!
1, . . . , FY

!
m)

that gets reinterpreted as a map

Proc(M)(X1⊗. . .⊗Xn;Y 1⊗. . .⊗Ym)→ Proc(N)(F (X1⊗. . .⊗Xn);F (Y 1⊗. . .⊗Ym)).

Composition, identities and tensoring are operations constructed as polar shuffles,
and so they must be preserved by a message functor; this means that Proc(F)
becomes a strict monoidal functor. �

4.5.2. Sessions of a process theory. We will now construct message ses-
sions over an arbitrary process theory, and we will do so in a minimalistic theory.
Message passing consists of two effects: sending and receiving. Premonoidal cate-
gories already are a framework for effectful computation in process theories, so we
employ them here.

Definition 4.5.3. The effectful category of sessions over a strict symmetric mo-
noidal category C is the effectful category C→ Session(C) generated by

4.5. PROCESSES VERSUS SESSIONS 123

(1) all of the morphisms of the original monoidal category, C, quotiented by
the equations of the original monoidal category, as pure morphisms;

(2) and a pair of send and receive generators for each object X ∈ Cobj im-
posing no further equations. We write these generators as (◦)X : X → I
and (•)X : I → X.

Figure 21. Session runtime generators.

This naive theory of message passing on top of a monoidal category may remind
us of the combs that we were studying before: instead of using incomplete diagrams,
we are marking the interchanges explicitly now. This intuition can be made formal:
we will now prove that combs of type X•◦1 / . . . / X•◦n → (AB) correspond to sessions
A→ B where the events are exactly X•◦1 , . . . , X•◦n, and happen in that specific order.
First, note that we can define a sequence of events associated with a particular
session.

Definition 4.5.4. The sequence of events of a session is the list of effectful gener-
ators obtained by following only the effectful wire on the diagram. Formally, it is
defined by structural induction over the premonoidal category of sessions as follows.

(1) It is the empty list for a pure morphism.
(2) It is invariant to whiskering.
(3) It contains a single element [X◦] for each generator (◦)X : I → X.
(4) It contains a single element [X•] for each generator (•)X : X → I.
(5) It concatenates the lists for a composition of morphisms.

It becomes straightforward to check that the sequence of events is well-defined. We
write Session(A;B)[X•◦1 , . . . , X

•◦
n] for the set of sessions A → B with a sequence of

events X•◦1 , . . . , X•◦n.

Proposition 4.5.5 (Combs are sessions). Sessions from A to B with a sequence of
events X•◦1 , . . . , X•◦n are in bijective correspondence with combs with the same events
happening sequentially,

Session(A;B)[X•◦1 , . . . , X
•◦
n] ∼= mLens (X•◦1 / . . . / X

•◦
n; AB) .

Proof. We proceed by structural induction over the presentation of the cteogry
of sessions. The base case consists of a morphism that is pure: by definition, those
are the combs mLens(N; AB).

The inductive case considers a morphism A→ B with at least one first occur-
rence of the effectful generators, (◦)X or (•)X . We assume without loss of generality
that this is (•)X : I → X, so its sequence of events is X•,Γ – the other case is anal-
ogous. We consider it as a string diagram for a monoidal category, quotiented by
the equations of the base monoidal category C, the symmetries and only up to in-
terchange by isotopy. We may split the diagram into two parts (as in Figure 22); we
leave everything before the generator (•)X to one side, f ∈ C(A;X ⊗M), and ev-
erything after the generator to the other side g ∈ Session(M,B)[Γ]. This procedure
constructs the following comb,∫ M∈C

C(A;M ⊗X)f × Session(A;B)[Γ]g.

124 4. MONOIDAL MESSAGE PASSING

Figure 22. Splitting the diagram of a session.

Of course, the usual problem with this kind of definitions that split a string
diagram is that we need to prove that they are well-defined. We need to show that
this definition is invariant to isotopy; we do so by cases: (i) if the isotopy inter-
changes two boxes before the cutting line, then there were two pure morphisms
and it is captured by an equation of C; (ii) if the isotopy interchanges two boxes
after the cutting line, then it is defining an equation of sessions; (iii) if the iso-
topy interchanges two morphisms across the cutting line, then it is captured by
dinaturality.

At the same time, note that these are exactly all of the equations imposed to
combs: those of the original symmetric monoidal category and dinaturality; so the
correspondence is bijective. Finally, by the induction hypothesis,

Session(A;B)[X•,Γ] ∼=
∫M∈C C(A;X ⊗M)× Session(A;B)[Γ]

∼=
∫M∈C C(A;X ⊗M)×mLens (Γ; AB)

∼= mLens (X• / Γ; AB) ,

which concludes the proof. �

The next step is to show that sessions over a process theory actually define a
message theory. For this, we will only need sessions with no inputs or outputs: we
write Session[Γ] for Session(I; I)[Γ].

Proposition 4.5.6. Sessions over a strict symmetric monoidal category, Session(C),
form a message theory. This construction extends to a functorial assignemnt

Session : SymMonCatStr → Msg.

Proof. We will show that sessions over a strict symmetric monoidal category,
Session(C), form an algebra for the multicategory of polar shuffles. Consider a
family of sessions, si ∈ Session(Γi); and consider a polar shuffle

p ∈ pShuf(Γ1, . . . ,Γn; ∆),

we need to construct a new session of type ∆.
The construction follows a topological intuition: consider the hypergraph defin-

ing the string diagrams of the sessions; and consider at the same time the acyclic
graph defined by the polar shuffle. We glue the string diagram of each si, along its
runtime wire, to the inputs and outputs, Γi, of the polar shuffle, removing these
nodes on the process. The crucial step happens now: we have a graph containing
nodes of the premonoidal category of sessions, and it has been constructed by glu-
ing acyclic graphs along linear boundaries – it must be acyclic, and it must be a
string diagram.

We define the composition of the sessions si ∈ Session(Γi) along the polar shuffle
p ∈ pShuf(Γ1, . . . ,Γn; ∆), to be the session represented by the string diagram here
obtained. This assignment preserves the composition of polar shuffles – which is
also defined topologically by gluing – and thus it determines an algebra.

Finally, the assignment is functorial with respect to the base monoidal category
because (i) the construction of the sessions is functorial and (ii) we only apply

4.5. PROCESSES VERSUS SESSIONS 125

operations of a symmetric premonoidal category when we build a string diagram
over this premonoidal category of sessions. �

Example 4.5.7. Consider two morphisms, f : A → M ⊗X and g : M ⊗ Y → B,
determining a session of type [A◦, X•, Y ◦, B•]; and consider two other morphisms,
h : X⊗U → N and k : N → Y ⊗V , determining a session of type [X◦, U◦, V •, Y •].
They can compose along the polar shuffle we defined in Figure 12; the result is in
Figure 23.

Figure 23. Two sessions compose along a polar shuffle.

4.5.3. Sessions versus Processes. The final result of this section is to prove
that sessions over a process theory are the free message theory over a symmetric
monoidal category.

Lemma 4.5.8. There exists a strict symmetric monoidal functor

inProc : C→ Proc(Session(C))

that includes a monoidal category in the processes of its message theory.

Proof. The functor will act as the identity on objects. We already know that
combs are sessions (Proposition 4.5.5), and we can use this fact to construct the
assignment on morphisms.

Proc(Session(C)(A;B)) = Session(C)[A◦, B•] ∼= mLens(A◦, B•; II)
∼= C(A;B).

It only remains to show that this assignment defines a strict symmetric monoidal
functor: we need to show that it preserves composition, tensoring, identities and
symmetries. This is straightforward, as we only need to check that the operations
that we defined for the process theory of a message theory, Proc(M), correspond to
the operations of a symmetric monoidal category. Let us explicitly check compo-
sition, inProc(f) # inProc(g) = inProc(f # g), in Figure 24, the rest follow a similar
pattern.

Figure 24. The inclusion of processes preserves composition.

Checking the rest of the cases concludes the construction. �

Theorem 4.5.9. Sessions and processes form an adjunction, Session a Proc;
where sessions, Session : SymMonCatStr → Msg, construct the free message theory
over a symmetric monoidal category, and where processes, Proc : Msg→ SymMonCatStr,
construct the cofree symmetric monoidal category over a message theory.

126 4. MONOIDAL MESSAGE PASSING

Proof. Consider a strict symmetric monoidal category, C, and a message
theory, M, endowed with a strict symmetric monoidal functor F : C → Proc(M).
We will construct a message functor F] : mLens(C) → M and prove that it is the
unique one satisfying inProc # Proc(F]) = F .

Let us show that such a message functor, if it were to exist, would be unique.
Firstly, the image on message types is already determined to be F](A) = F (A). Sec-
ondly, the image on sessions consisting on a single morphism, inProc(f) : [A◦, B•],
is determined, F](inProc(f)) = F (f) : [FA◦, FB•]. We will show now that this rea-
soning can be extended to all sessions: we know that sessions of type [X•◦1 , . . . , X

•◦
n]

are combs (Proposition 4.5.5) of type

(f0| . . . |fn) : X•◦1 / . . . / X
•◦
n → (II) .

This determines their image: combs can be factored as the composition, in the
message theory of multiple sessions consisting of a single morphism (Figure 25).
Accordingly, their image, F](f0| . . . |fn), should be the composition, on the message
theory, of these pieces (Figure 25).

Figure 25. Image of a comb under the message functor.

Let us now show that we have constructed a well-defined assignment. Our con-
struction should preserve the dinaturality equivalence relation imposed to combs.
This happens, indeed, and the proof simply checks that the images of two combs,

(f0 # (id⊗ h0)|f1 # (id⊗ h1)| . . . |fn) = (f0|(id⊗ h0) # f1| . . . |(id⊗ hn−1) # fn),

are equal (Figure 26). We have constructed a well-defined assignment on sessions.

Figure 26. The assignment of combs to sessions preserves dinaturality.

Finally, we need to check that F] is a message functor preserving all of the opera-
tions determined by polar shuffles. In the theory of combs, applying a polar shuffle
corresponds to a rewiring into another comb; applying the polar shuffle in M must

4.5. PROCESSES VERSUS SESSIONS 127

result in the same rewiring of the pieces forming the comb – which, as we have
already shown, is precisely the image of that comb. This forces F] to preserve the
application of a polar shuffle.

We have shown that F] is indeed a message functor and that it is the only
possible one satisfying inProc # Proc(F]) = F . �

4.5.4. Example: One-Time Pad, as a Message Session. Let us come
back to Example 3.5.8, where we discussed a decomposition of the one-time pad.
We now know that there is an adjunction between symmetric monoidal categories
and message theories, let us use it to provide semantics to the decomposition of the
one-time pad example.

The theory for the one-time pad problem can be expressed in a message theory
O where we have a single object generator for the type of a message, X, and a
single session generator for each one of the actors.

(1) Stage : X◦ / X• / X•,
(2) Bob : X• / X◦ / X•,
(3) Alice : X◦ / X◦ / X•,
(4) Eve : X◦ / X•.

We will interpret these generators in the free message theory over the category of
finite sets and stochastic maps: thanks to the adjunction, we know that, if we could
interpret each one of the components presenting the category of finite sets in any
message theory, then we can interpret this whole example inside it.

We already gave an interpretation to each one of the components in terms of
combs. We rewrite now the example explicitly separating each one of the parts that
form it (Figure 27).

Proposition 4.5.10. The session describing the one-time pad protocol is equal to
a session where Alice and Bob communicate the message directly and Eve attacks a
signal representing pure noise.

Figure 27. One-time pad, complete session.

128 4. MONOIDAL MESSAGE PASSING

Proof. Evaluating the session that describes the one-time pad example using
the components described before, in Example 3.5.8, obtains the following polar
shuffle applied to multiple combs. Evaluating the polar shuffle, as in Figure 27,
produces the desired result. �

Remark 4.5.11. This discussion is not restricted to the modularity of the string
diagrams: it affects the modularity of the code itself. Recall that we have a notation
for sessions and polar shuffles; we use it in Figure 28 to write the one-time pad.

Figure 28. Notation for the one-time pad session.

At the same time, we have second a notation for sessions: sessions are ulti-
mately morphisms of an effectful category, so we can use do-notation without the
interchange axiom to represent them. The sending and receiving effects can be
written as (!/?) respectively. Lenses are tuples of morphisms, and they can be rep-
resented in do-notation using that exact characterization. The following Figure 29
shows a modular implementation of the one-time pad that separates each one of
the actors into a different module.

Figure 29. Do-notation for the one-time pad.

Which notation should we settle for? It seems that both interplay nicely to-
gether: the best way of writing a message session seems to be to write its underlying
polar shuffle, as in Figure 28, while the best way of writing processes may be the
usage of do-notation as in Figure 29, which is well-known and imposes a human-
readable order on the operations.

4.5.5. Case Study: Causal versus Evidential Decision Theories. Leib-
niz’s dream was to see philosophical debates reduced to mathematical calculation,
to have a formal language for decision theory and an algorithm to solve any dispute.

4.5. PROCESSES VERSUS SESSIONS 129

"[...] if controversies were to arise, there would be no more need
of disputation between two philosophers than between two cal-
culators. For it would suffice for them to take their pencils in
their hands and to sit down at the abacus, and say to each other
(and if they so wish also to a friend called to help): calculemus
(let us calculate)."

However, our modern decision theory seems far from this dream. For instance,
Monty Hall’s problem caused famous controversies and confident blunders of some
experts [vS] while being relatively simple to describe. It could seem that the passage
from the statement to its formal encoding is more of an art than a science.

Let us try to understand one of these debates: causal versus evidential decision
theory on Newcomb’s problem [Noz69, Ahm14, YS17]. We will use message theories
to set up the scene and partial Markov categories to compute the solution.

Definition 4.5.12. Newcomb’s problem [Noz69] is a famous decision problem that
sets apart Evidential and Causal Decision Theory. An agent () is in front of two
boxes: a transparent box filled with 1e and an opaque box (). The agent is given
the choice between taking both boxes (two-boxing, T) and taking just the opaque
box (one-boxing, O). However, the opaque box is controlled by a “perfectly accu-
rate” predictor (). The predictor placed 1000e in the opaque box if it predicted
that the agent would one-box and left it empty otherwise. The agent knows this.
Which action should the agent choose?

Figure 30. Newcomb’s problem: table of utilities.

At the risk of oversimplifying, most philosophers are divided in two schools
[Ahm14, YS17]. Those that follow causal decision theory would claim that no mat-
ter what the predictor does, the lower row of the table in Figure 30 contains strictly
more utility; they prescribe two-boxing. Those that follow evidential decision the-
ory claim that, because the predictor is omniscient, one-boxing is the only way of
ensuring the biggest prize is on the box.

The analysis of the problem starts by dividing it into different parties: (i) the
agent () must only make a choice on whether to one-box or two-box; (ii) the
stage () takes the choice of the agent, the prediction of the predictor, broadcasts
the choice of the agent and computes the final utility of the agent, and (iii) the
predictor () sends a prediction and, only afterwards, can see the choice of the
agent. Let us call X = {O,T} to the set containing one-boxing or two-boxing ; we
are claiming to have three elements of a message theory: the agent, () : X•; the
predictor, () : X• / X◦; and the stage, () : X◦ / X◦ / X• / X•.

Figure 31. Newcomb’s problem: components of a message theory.

130 4. MONOIDAL MESSAGE PASSING

The Evidential Decision Theory Solution: Let us take as an axiom that these
components are constructed out of total stochastic channels; in other words, the
message theory we use is the free message theory over the Kleisli category of the
subdistribution monad, Session(Kleisli(D≤1)).

We cannot assume anything about the agent, but because of the construction
of out free message theory (Definition 4.5.3), it must be given by a single stochastic
channel () : I → X. Even without assuming anything about the predictor, because
of the construction of the free message theory (Definition 4.5.3), we know that must
be constructed of two parts: the one that sends the prediction, ()1 : I →M ⊗X,
and the one that receives the choice of the agent, ()2 : M⊗X → I; of the first part
we know nothing, but we have postulated that we will observe it to be perfectly
accurate with the prediction, meaning that the second part will fail if it is not.
Thus, we deduce it must factor as in Figure 32.

Figure 32. Evidential reading of the predictor.

The wiring of the components is given by the statement: agent and predictor
send choice and prediction to the stage, which answers giving back the choice to the
predictor and computing the output (Figure 35). We then reason (i) computing
the polar shuffle; (ii) we analyze the agent by cases, the agent two-boxes (T) with
probability a or one-boxes (O) with probability (1−a); (iii) because both cases are
deterministic, they can be copied; (iv) we analyze then the predictor, it two-boxes
(T) with probability p or one-boxes (O) with probability (1 − p); (v) we compute
according to Figure 30, canceling the incompatible equality checks; and vi assuming
that the first term is just an order of magnitude larger than the second, we can
bound it by p · 1000e, where we take a = 1: the agent should one-box.

Figure 33. Newcomb’s problem: the solution from Evidential Deci-
sion Theory.

4.5. PROCESSES VERSUS SESSIONS 131

The Causal Decision Theory Solution: Let us assume the same components
(Figure 30). The only hypothesis over which we will place suspicion is that the pre-
dictor can be “perfectly accurate” without violating causality in some way. Causal
decision theory assumes that all processes are causal, or total. That means that,
after receiving the news of what the agent has chosen, the predictor can do nothing:
there must exist a unique total morphism X ⊗X → I.

Figure 34. Causal reading of the predictor.

The wiring of the components is again the same, but the computation is now
different: (i) we compute the polar shuffle; (ii) we analyze the agent by cases,
the agent two-boxes (T) with probability a or one-boxes (O) with probability (1−
a); (iii) we analyze in the same way the predictor; (iv) we compute according to
Figure 30, canceling the incompatible equality checks; and (v) we bound everything
by the case where a = 0: this time, to maximize utility, the agent must two-box.

Figure 35. Newcomb’s problem: the solution from Causal Decision
Theory.

Was this formal analysis better than a pure discussion? We can now claim that
the advantage is that the computations go from a starting diagram that represents
our reading of the problem to a utility that we can maximize. We have turned
most of the problem into a problem of computation: not only looking at the table
of utilities (Figure 30) but at the whole statement of the problem. Of course, our
formalization does not solve the debate on Newcomb’s paradox, but at least it moves
the controversy to a more fundamental point: are we fine with using the action of
the agent to reason acausally about the predictor? The algebra of partial Markov
categories provides a mathematical framework where it makes sense to assume so;
the algebra of message theories takes care of the rest of the discussion.

132 4. MONOIDAL MESSAGE PASSING

Bibliography. The idea of using send/receive effects for encoding sessions is
not new. Message passing can be also seen as a core component of game semantics,
which has a vast literature [AJ94, AM99, Hyl97]. Game semantics has the am-
bition to provide the mathematical structures that describe coordination between
distributed agents, starting from a duality between the Player’s moves and the Op-
ponent’s moves; one of its achievements is to provide syntax-independent semantics
for different extensions of PCF [McC00], including one with global state [AHM98].

Game semantics and session types [HYC08] have been called “two sides of the
same coin” [CY19]. Orchard and Yoshida [OY16] discuss two mutual embeddings
between an effectful λ-calculus (PCF) and a session π-calculus; further work also
implemented the corresponding do-notation [OY17]. In our framework, this corre-
spondence occurs between premonoidal categories and message theories; and thus
between do-notation and polar shuffles.

Particularly relevant is Melliès’ categorical approach to game semantics in the
form of template games [Mel19]. The crucial difference between the present pro-
posal and Melliès’ line of work is that it starts from labelled transition systems as
the basic notion. Melliès introduces asynchronous graphs – graphs with a set of
commuting squares – and many of the same ingredients that we use here. Asyn-
chronous graphs explain shuffles, polarization, and a failure of interchange in the
form of a Grey tensor product [Mel21]. We would be interested to compare our
approach to message passing with the framework of template games, and especially
the points where they diverge: we land on normal duoidal categories while template
games are based on Girard’s linear logic [Gir89].

Finally, Newcomb’s problem (or paradox) was first stated by Nozick [Noz69].
Evidential decision theory is defended in the work of Ahmad [Ahm14]; both Everitt,
Leike and Hutter [ELH15], and Yudkowsky and Soares [YS17] have formalized com-
parisons of evidential decision theory, causal decision theory, and further variants.

CHAPTER 5

Conclusions and Further Work

Conclusions

Monoidal Context Theory. We have universally characterized the normal
produoidal category of monoidal lenses (Theorem 3.5.3) as a free normalization of
the cofree produoidal category on top of a monoidal category. The interpretation
of this result is relevant: the splice-contour adjunction ([MZ22], Theorem 2.4.4)
relates each category to its cofree promonoidal category of incomplete terms; in the
same way, we have constructed a monoidal splice-contour adjunction relating each
monoidal category to its cofree produoidal category of incomplete processes. The
category underlying this universal produoidal category is familiar: it is the category
of monoidal lenses.

Monoidal lenses have gained recent popularity in applications of category the-
ory, apart from their classical counterparts in database theory [JRW12]: they have
spawned applications in bidirectional transformations [FGM+07] but also in func-
tional programming [PGW17, CEG+20], open games [GHWZ18], polynomial func-
tors [NS22] and quantum combs [HC22]. Moreover, a different promonoidal struc-
ture for lenses had been already studied in the past by Pastro and Street [PS07].
Apart from lenses, incomplete processes have appeared implicitly multiple times
in recent literature. Kissinger and Uijlen [KU17] describe higher-order quantum
processes using contexts with holes in compact closed monoidal categories. Ghani,
Hedges, Winschel and Zahn [GHWZ18] describe economic game theory in terms of
lenses and incomplete processes in cartesian monoidal categories. Bonchi, Piedeleu,
Sobociński and Zanasi [BPSZ19] study contextual equivalence in their monoidal
category of affine signal flow graphs. Di Lavore, de Felice and Román [DLdFR22]
define monoidal streams by iterating monoidal context coalgebraically. This situ-
ation prompted a question: why are lenses so prevalent? why do they appear in
seemingly unrelated applications? We can now claim a conceptual answer with a
mathematical justification. Lenses are the universal algebra for decomposing mor-
phisms in process theories. The recent applications of lenses all describe incomplete
processes.

Incomplete processes have two uses: on the one hand, they track the depen-
dencies between monoidal processes; on the other hand, they allow us to split the
multiple agents of a multi-party process. The former is quite useful in itself: duoidal
categories provide two different tensors – a sequential, (/), and a parallel one (⊗) –
that can track dependencies between different processes (as we saw in Section 3.1.2).
Signalling and non-signalling conditions are important to the study of quantum the-
ories, and recent work by Wilson and Chiribella [WC22] and Hefford and Kissinger
[HK22] has studied signalling using structures close to monoidal lenses; we hope
that the universal characterization of lenses as cofree produoidal categories may
help extracting the exact structure needed for these physical frameworks. Even
forgetting about dependencies explicitly, the theory of monoidal contexts allows
us to pursue branches of computer science that were classically restricted to 1-
dimensional syntaxes: the recent work of Eanrshaw and Sobocinski [ES22] studies

133

134 5. CONCLUSIONS AND FURTHER WORK

monoidal regular languages as the natural monoidal analogue of the classical notion
of regular language.

However, it is the second application of incomplete processes the one that this
author found more surprising: we can now separate the different agents of a multi-
party process in an arbitrary monoidal category. Message passing was not the main
goal of this thesis, but developing it has brought interesting connections to game
semantics.

Monoidal Message Passing. Symmetric monoidal categories have two oper-
ations: sequential composition (#) and parallel composition (⊗). Naively, we would
think then that there are two ways of decomposing monoidal processes: sequentially
and in parallel. This is not false, and for many applications this may be the simpler
way of dealing with this; after all, glueing sequentially and in parallel is the only
thing we need to separate a string diagram in its atomic parts. However, this misses
the rich algebra of incomplete morphisms and their compositions: monoidal lenses
can be composed according to any polar shuffle, and that is the algebra that we are
implicitly using when we cut a string diagram into pieces that do not necessarily
follow the sequential and parallel divisions. We can now argue that the algebra of
message passing for process theories is that of message theories. Message theories
try to be a minimalistic axiomatization of what it means to communicate different
processes that send and receive messages: we have argued for these axioms in Sec-
tion 4.1, in a way that should appeal any reader not familiar with the categorical
framework behind them. Their combinatorial characterization in terms of polar
shuffles only makes them more concrete.

We have developed a theory of context on top of monoidal categories and we
have used it to develop a canonical theory of message passing in monoidal cate-
gories. We have argued that this a fundamental structure for concurrency, and
we have characterized it universally; however, we could still argue that it does not
address the problem posed by Abramsky of finding the fundamental structures of
concurrency [Abr05]. The main limitation of this framework is that it does not pro-
vide most of the features that we expect from fully-fledged session types: how can
we model choice, or synchrony [Hon93, HYC08]? how can we model iteration, feed-
back, or other common programming constructs [McC00]? Minimalism, however,
may be a good thing to separate these concerns from the fundamental structure:
if we want to model choice, we can do so using distributive categories [CLW93], or
linear actegories [CP09]; if we want feedback and iteration, we can recall traced
categories [JSV96], categories with feedback [LGR+23], and notions of monoidal
automata [DLdFR22]. Precisely because our framework is minimal, it seems that
it is robust enough to support these additions; we will be interested in constructing
models of game semantics in further work.

Future Work. Monoidal game semantics was not the original goal of this
project but it became its most promising avenue; last section gives us a recipe to
construct a session do-notation calculus on top of any monoidal category, which
would include stochastic, non-deterministic and partial variants of a multi-party
do-notation calculus. Levy, Power and Thielecke [LPT03] discuss the correspon-
dence between premonoidal categories and call-by-value languages; we would be
interested in extending this correspondence into message passing [OY17]. Once
there, it seems plausible that we can connect this idea to the literature on game
semantics for fully-fledged programming semantics [McC00]. Specifically, we would
like to construct a model of probabilistic programming allowing for message pass-
ing, choice and iteration; multiple developments in categorical probability (such as
quasiborel spaces [HKS+18] or Markov categories [Fri20]) make this possible.

CONCLUSIONS 135

The existence of a vast literature on message passing in terms of linear actions
[CP09] makes it particularly important to understand exactly how duoidal cate-
gories and linear logic relate. We conjecture that physical duoidal categories also
form isomix linearly distributive categories [CS97a], and this may be a categorical
justification behind this connection.

For conciseness, we have not discussed approaches to iteration in monoidal
categories. Joint work of this author with Di Lavore and de Felice [DLdFR22]
has shown that it is possible to reason coinductively with automata in monoidal
categories, using precisely monoidal lenses to describe incomplete processes. It
seems plausible then, that mixing coinduction with message passing allows us to talk
about networks of stochastic iterative processes: these have remarkable applications
in scientific modelling, where we can write causal networks of stochastic processes
in which unknown components are approximated stochastically.

Bibliography

[Abr05] Samson Abramsky. What are the fundamental structures of concur-
rency?: We still don’t know! In Luca Aceto and Andrew D. Gordon,
editors, Proceedings of the Workshop "Essays on Algebraic Process Cal-
culi", APC 25, Bertinoro, Italy, August 1-5, 2005, volume 162 of Elec-
tronic Notes in Theoretical Computer Science, pages 37–41. Elsevier,
2005. 11, 134

[AC09] Samson Abramsky and Bob Coecke. Categorical quantum mechan-
ics. In Kurt Engesser, Dov M. Gabbay, and Daniel Lehmann, editors,
Handbook of Quantum Logic and Quantum Structures, pages 261–323.
Elsevier, Amsterdam, 2009. 18, 44

[AHLF18] Marcelo Aguiar, Mariana Haim, and Ignacio López Franco. Monads on
higher monoidal categories. Applied Categorical Structures, 26(3):413–
458, Jun 2018. 88

[AHM98] Samson Abramsky, Kohei Honda, and Guy McCusker. A fully ab-
stract game semantics for general references. In Proceedings. Thir-
teenth Annual IEEE Symposium on Logic in Computer Science (Cat.
No. 98CB36226), pages 334–344. IEEE, 1998. 132

[Ahm14] Arif Ahmed. Evidence, Decision and Causality. Cambridge University
Press, 2014. 129, 132

[AHS02] Samson Abramsky, Esfandiar Haghverdi, and Philip J. Scott. Geome-
try of interaction and linear combinatory algebras. Math. Struct. Com-
put. Sci., 12(5):625–665, 2002. 44

[AJ94] Samson Abramsky and Radha Jagadeesan. Games and full complete-
ness for multiplicative linear logic. The Journal of Symbolic Logic,
59(2):543–574, 1994. 115, 132

[Alu21] Paolo Aluffi. Algebra: Chapter 0, volume 104. American Mathematical
Society, 2021. 18

[AM] Marcelo Aguiar and Swapneel A. Mahajan. personal communication.
78

[AM99] Samson Abramsky and Guy McCusker. Game Semantics. In Ul-
rich Berger and Helmut Schwichtenberg, editors, Computational Logic,
NATO ASI Series, pages 1–55, Berlin, Heidelberg, 1999. Springer. 120,
132

[AM10] Marcelo Aguiar and Swapneel A. Mahajan. Monoidal functors, species
and Hopf algebras, volume 29. American Mathematical Society Provi-
dence, RI, 2010. 11, 74, 76, 78, 82

[BCST96] Robert F. Blute, Robin B. Cockett, Robert A. G. Seely, and Todd H.
Trimble. Natural deduction and coherence for weakly distributive cat-
egories. Journal of Pure and Applied Algebra, 113(3):229–296, 1996.
44

[BD98] John C. Baez and James Dolan. Higher-dimensional algebra III. n-
categories and the algebra of opetopes. Advances in Mathematics,
135(2):145–206, 1998. 109

137

138 Bibliography

[BE14] John C. Baez and Jason Erbele. Categories in control. arXiv preprint
arXiv:1405.6881, 2014. 37

[Bec23] Jorge Becerra. Strictification and non-strictification of monoidal cate-
gories. arXiv preprint arXiv:2303.16740, 2023. 24

[Bén67] Jean Bénabou. Introduction to bicategories. In Reports of the Mid-
west Category Seminar, pages 1–77, Berlin, Heidelberg, 1967. Springer
Berlin Heidelberg. 27

[Bén68] Jean Bénabou. Structures algébriques dans les catégories. Cahiers de
topologie et géometrie différentielle, 10(1):1–126, 1968. 36

[Bén00] Jean Bénabou. Distributors at work. Lecture notes written by Thomas
Streicher, 11, 2000. 58, 59

[BG18] Guillaume Boisseau and Jeremy Gibbons. What you needa know about
Yoneda: Profunctor optics and the Yoneda lemma (functional pearl).
Proceedings of the ACM on Programming Languages, 2(ICFP):1–27,
2018. 95

[BGK+16] Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Paweł Sobociński,
and Fabio Zanasi. Rewriting modulo symmetric monoidal structure.
In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in
Computer Science, pages 710–719, 2016. 28, 29, 30, 36

[BGMS21] John C. Baez, Fabrizio Genovese, Jade Master, and Michael Shulman.
Categories of nets. In 2021 36th Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS), pages 1–13. IEEE, 2021. 28

[BK22] Anne Broadbent and Martti Karvonen. Categorical composable cryp-
tography. In Patricia Bouyer and Lutz Schröder, editors, Foundations
of Software Science and Computation Structures - 25th International
Conference, FOSSACS 2022, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2022, Munich,
Germany, April 2-7, 2022, Proceedings, volume 13242 of Lecture Notes
in Computer Science, pages 161–183. Springer, 2022. 10, 97, 98

[BNR22] Guillaume Boisseau, Chad Nester, and Mario Román. Cornering op-
tics. In ACT 2022, volume abs/2205.00842, 2022. 16, 115

[BPS17] Filippo Bonchi, Dusko Pavlovic, and Pawel Sobocinski. Functorial
semantics for relational theories. CoRR, abs/1711.08699, 2017. 11

[BPSZ19] Filippo Bonchi, Robin Piedeleu, Pawel Sobocinski, and Fabio Zanasi.
Graphical affine algebra. In 34th Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2019, Vancouver, BC, Canada, June
24-27, 2019, pages 1–12. IEEE, 2019. 133

[BR23] Dylan Braithwaite and Mario Román. Collages of string diagrams.
arXiv preprint arXiv:2305.02675, 2023. 16, 62

[BS10] John C. Baez and Mike Stay. Physics, topology, logic and computation:
A Rosetta stone. In New Structures for Physics, pages 95–172. Springer
Berlin Heidelberg, 2010. 37

[BS13] Thomas Booker and Ross Street. Tannaka duality and convolution for
duoidal categories. Theory and Applications of Categories, 28(6):166–
205, 2013. 83

[BSS18] Filippo Bonchi, Jens Seeber, and Pawel Sobocinski. Graphical conjunc-
tive queries. In Dan R. Ghica and Achim Jung, editors, 27th EACSL
Annual Conference on Computer Science Logic, CSL 2018, September
4-7, 2018, Birmingham, UK, volume 119 of LIPIcs, pages 13:1–13:23.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. 18, 42, 44

Bibliography 139

[BSZ14] Filippo Bonchi, Paweł Sobociński, and Fabio Zanasi. A categorical
semantics of signal flow graphs. In International Conference on Con-
currency Theory, pages 435–450. Springer, 2014. 29

[BZ20] Nicolas Blanco and Noam Zeilberger. Bifibrations of polycategories and
classical linear logic. In Patricia Johann, editor, Proceedings of the 36th
Conference on the Mathematical Foundations of Programming Seman-
tics, MFPS 2020, Online, October 1, 2020, volume 352 of Electronic
Notes in Theoretical Computer Science, pages 29–52. Elsevier, 2020.
157

[Cam19] Alexander Campbell. How strict is strictification? Journal of Pure
and Applied Algebra, 223(7):2948–2976, 2019. 24, 26

[CEG+20] Bryce Clarke, Derek Elkins, Jeremy Gibbons, Fosco Loregiàn, Bartosz
Milewski, Emily Pillmore, and Mario Román. Profunctor optics, a
categorical update. CoRR, abs/2001.07488, 2020. 15, 60, 94, 95, 99,
133

[CFS16] Bob Coecke, Tobias Fritz, and Robert W. Spekkens. A mathematical
theory of resources. Inf. Comput., 250:59–86, 2016. 18, 22, 96

[CGG+22] Geoffrey S. H. Cruttwell, Bruno Gavranović, Neil Ghani, Paul Wilson,
and Fabio Zanasi. Categorical foundations of gradient-based learning.
In European Symposium on Programming, pages 1–28. Springer, Cham,
2022. 95

[CJ19] Kenta Cho and Bart Jacobs. Disintegration and Bayesian Inversion via
String Diagrams. Mathematical Structures in Computer Science, pages
1–34, March 2019. 18, 42, 43

[CLW93] Aurelio Carboni, Stephen Lack, and Robert F.C. Walters. Introduction
to extensive and distributive categories. Journal of Pure and Applied
Algebra, 84(2):145–158, 1993. 134

[CP09] Robin B. Cockett and Craig A. Pastro. The logic of message-passing.
Sci. Comput. Program., 74(8):498–533, 2009. 134, 135

[CS97a] Robin B. Cockett and Robert A. G. Seely. Proof theory for full intu-
itionistic linear logic, bilinear logic, and mix categories. Theory and
Applications of categories, 3(5):85–131, 1997. 135, 152

[CS97b] Robin B. Cockett and Robert A. G. Seely. Weakly distributive cat-
egories. Journal of Pure and Applied Algebra, 114(2):133–173, 1997.
108, 157

[CS07] Robin B. Cockett and Robert A. G. Seely. Polarized category theory,
modules, and game semantics. Theory and Applications of Categories,
18(2):4–101, 2007. 12, 115

[CS09] Geoffrey S. H. Cruttwell and Michael Shulman. A unified framework
for generalized multicategories. arXiv preprint arXiv:0907.2460, 2009.
109

[CW87] Aurelio Carboni and Robert F. C. Walters. Cartesian bicategories I.
Journal of pure and applied algebra, 49(1-2):11–32, 1987. 22

[CY19] Simon Castellan and Nobuko Yoshida. Two sides of the same coin:
session types and game semantics: a synchronous side and an asyn-
chronous side. Proceedings of the ACM on Programming Languages,
3(POPL):1–29, 2019. 132

[Day70] Brian Day. On closed categories of functors. In Reports of the Mid-
west Category Seminar IV, volume 137, pages 1–38, Berlin, Heidelberg,
1970. Springer Berlin Heidelberg. 86, 88, 93, 155, 157

[Dd09] Mariangiola Dezani-Ciancaglini and Ugo de’Liguoro. Sessions and ses-
sion types: An overview. In Cosimo Laneve and Jianwen Su, editors,

140 Bibliography

Web Services and Formal Methods, 6th International Workshop, WS-
FM 2009, Bologna, Italy, September 4-5, 2009, Revised Selected Pa-
pers, volume 6194 of Lecture Notes in Computer Science, pages 1–28.
Springer, 2009. 11

[DDR11] Jean-Guillaume Dumas, Dominique Duval, and Jean-Claude Reynaud.
Cartesian effect categories are Freyd-categories. Journal of Symbolic
Computation, 46(3):272–293, 2011. 47

[DGNO10] Vladimir Drinfeld, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik.
On braided fusion categories I. Selecta Mathematica, 16(1):1–119, 2010.
48

[DLdFR22] Elena Di Lavore, Giovanni de Felice, and Mario Román. Monoidal
streams for dataflow programming. In Proceedings of the 37th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS ’22, New
York, NY, USA, 2022. Association for Computing Machinery. 133, 134,
135

[DLLNS21] Ivan Di Liberti, Fosco Loregian, Chad Nester, and Paweł Sobociński.
Functorial semantics for partial theories. Proceedings of the ACM on
Programming Languages, 5(POPL):1–28, 2021. 11, 40

[DPS05] Brian Day, Elango Panchadcharam, and Ross Street. On centres
and lax centres for promonoidal categories. In Colloque International
Charles Ehresmann, volume 100, 2005. 83

[DS03] Brian Day and Ross Street. Quantum categories, star autonomy, and
quantum groupoids, 2003. 155, 157

[EH61] Beno Eckman and Peter Hilton. Structure maps in group theory. Fun-
damenta Mathematicae, 50(2):207–221, 1961. 82

[EHR23] Matt Earnshaw, James Hefford, and Mario Román. The produoidal
algebra of process decomposition. arXiv preprint arXiv:2301.11867,
2023. 16, 70, 83, 86, 88, 157

[ELH15] Tom Everitt, Jan Leike, and Marcus Hutter. Sequential extensions of
causal and evidential decision theory. In International Conference on
Algorithmic Decision Theory, pages 205–221. Springer, 2015. 132

[ES22] Matthew Earnshaw and Pawel Sobociński. Regular Monoidal Lan-
guages. In Stefan Szeider, Robert Ganian, and Alexandra Silva, ed-
itors, 47th International Symposium on Mathematical Foundations of
Computer Science (MFCS 2022), volume 241 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 44:1–44:14, Dagstuhl, Ger-
many, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. 11,
88, 133

[FB94] David J Foulis and Mary K Bennett. Effect algebras and unsharp
quantum logics. Foundations of physics, 24:1331–1352, 1994. 41, 43

[FGM+07] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Ben-
jamin C. Pierce, and Alan Schmitt. Combinators for bidirectional
tree transformations: A linguistic approach to the view-update prob-
lem. ACM Transactions on Programming Languages and Systems
(TOPLAS), 29(3):17–es, 2007. 99, 133

[FGP21] Tobias Fritz, Tomáš Gonda, and Paolo Perrone. De Finetti’s theorem
in categorical probability. Journal of Stochastic Analysis, 2(4), 2021.
43

[FJ19] Brendan Fong and Michael Johnson. Lenses and learners. arXiv
preprint arXiv:1903.03671, 2019. 95

[Fon13] Brendan Fong. Causal Theories: A Categorical Perspective on
Bayesian Networks. Master’s Thesis, University of Oxford. ArXiv

Bibliography 141

preprint arXiv:1301.6201, 2013. 43
[Fox76] Thomas Fox. Coalgebras and cartesian categories. Communications in

Algebra, 4(7):665–667, 1976. 38, 39, 42
[FP19] Tobias Fritz and Paolo Perrone. A probability monad as the colimit

of spaces of finite samples. Theory and Applications of Categories,
34(7):170–220, 2019. 43

[FPR21] Tobias Fritz, Paolo Perrone, and Sharwin Rezagholi. Probability, val-
uations, hyperspace: Three monads on top and the support as a mor-
phism. Mathematical Structures in Computer Science, 31(8):850–897,
2021. 43

[FR20] Tobias Fritz and Eigil Fjeldgren Rischel. Infinite products and zero-one
laws in categorical probability. Compositionality, 2:3, 2020. 43

[Fri20] Tobias Fritz. A synthetic approach to Markov kernels, conditional
independence and theorems on sufficient statistics. Advances in Math-
ematics, 370:107239, 2020. 18, 43, 134

[FS19] Brendan Fong and David I Spivak. Supplying bells and whistles in sym-
metric monoidal categories. arXiv preprint arXiv:1908.02633, 2019. 39

[FV20] Ignacio López Franco and Christina Vasilakopoulou. Duoidal cat-
egories, measuring comonoids and enrichment. arXiv preprint
arXiv:2005.01340, 2020. 77

[GF16] Richard Garner and Ignacio López Franco. Commutativity. Journal of
Pure and Applied Algebra, 220(5):1707–1751, 2016. 11, 73, 76, 77, 78,
79, 82, 88, 92, 93

[GG09] Richard Garner and Nick Gurski. The low-dimensional structures
formed by tricategories. In Mathematical Proceedings of the Cambridge
Philosophical Society, volume 146, pages 551–589. Cambridge Univer-
sity Press, 2009. 26

[GH99] Simon J. Gay and Malcolm Hole. Types and subtypes for client-server
interactions. In S. Doaitse Swierstra, editor, Programming Languages
and Systems, 8th European Symposium on Programming, ESOP’99,
Held as Part of the European Joint Conferences on the Theory and
Practice of Software, ETAPS’99, Amsterdam, The Netherlands, 22-28
March, 1999, Proceedings, volume 1576 of Lecture Notes in Computer
Science, pages 74–90. Springer, 1999. 108

[GHWZ18] Neil Ghani, Jules Hedges, Viktor Winschel, and Philipp Zahn. Com-
positional game theory. In Anuj Dawar and Erich Grädel, editors,
Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages
472–481. ACM, 2018. 95, 99, 133

[Gir89] Jean-Yves Girard. Geometry of Interaction 1: Interpretation of System
F. In R. Ferro, C. Bonotto, S. Valentini, and A. Zanardo, editors, Logic
Colloquium ’88, volume 127 of Studies in Logic and the Foundations of
Mathematics, pages 221–260. Elsevier, 1989. 44, 132

[Gis88] Jay L. Gischer. The equational theory of pomsets. Theoretical Com-
puter Science, 61(2-3):199–224, 1988. 82

[Gra81] Jan Grabowski. On partial languages. Fundamenta Informaticae,
4(2):427–498, 1981. 15, 81, 82

[Gro85] Alexandre Grothendieck. Récoltes et semailles: réflexions et té-
moignage sur un passé de mathématicien. Grothendieck Circle Page,
1985. 9

[Gui80] René Guitart. Tenseurs et machines. Cahiers de topologie et géométrie
différentielle catégoriques, 21(1):5–62, 1980. 45

142 Bibliography

[Had18] Amar Hadzihasanovic. Weak units, universal cells, and coherence via
universality for bicategories. arXiv preprint arXiv:1803.06086, 2018.
24

[Has97] Masahito Hasegawa. Models of sharing graphs: a categorical semantics
of let and letrec. PhD thesis, University of Edinburgh, UK, 1997. 108

[HC22] James Hefford and Cole Comfort. Coend optics for quantum combs.
arXiv preprint arXiv:2205.09027, 2022. 99, 133

[Hed19] Jules Hedges. Folklore: Monoidal kleisli categories, Apr 2019. 45
[Her00] Claudio Hermida. Representable multicategories. Advances in Mathe-

matics, 151(2):164–225, 2000. 68
[Her01] Claudio Hermida. From coherent structures to universal properties.

Journal of Pure and Applied Algebra, 165(1):7–61, 2001. 24
[HJ06] Chris Heunen and Bart Jacobs. Arrows, like monads, are monoids.

In Stephen D. Brookes and Michael W. Mislove, editors, Proceedings
of the 22nd Annual Conference on Mathematical Foundations of Pro-
gramming Semantics, MFPS 2006, Genova, Italy, May 23-27, 2006,
volume 158 of Electronic Notes in Theoretical Computer Science, pages
219–236. Elsevier, 2006. 13, 37, 61

[HJW+92] Paul Hudak, Simon L. Peyton Jones, Philip Wadler, Brian Boutel, Jon
Fairbairn, Joseph H. Fasel, María M. Guzmán, Kevin Hammond, John
Hughes, Thomas Johnsson, Richard B. Kieburtz, Rishiyur S. Nikhil,
Will Partain, and John Peterson. Report on the Programming Lan-
guage Haskell, A Non-strict, Purely Functional Language. ACM SIG-
PLAN Notices, 27(5):1, 1992. 13, 37

[HK22] James Hefford and Aleks Kissinger. On the pre- and promonoidal
structure of spacetime. arXiv preprint arXiv.2206.09678, 2022. 80,
133

[HKS+18] Chris Heunen, Ohad Kammar, Sam Staton, Sean Moss, Matthijs
Vákár, Adam Ścibior, and Hongseok Yang. The semantic structure
of quasi-borel spaces. In PPS Workshop on Probabilistic Programming
Semantics, 2018. 134

[HMH14] Naohiko Hoshino, Koko Muroya, and Ichiro Hasuo. Memoryful geom-
etry of interaction: from coalgebraic components to algebraic effects.
In Thomas A. Henzinger and Dale Miller, editors, Joint Meeting of the
Twenty-Third EACSL Annual Conference on Computer Science Logic
(CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic
in Computer Science (LICS), CSL-LICS ’14, Vienna, Austria, July 14
- 18, 2014, pages 52:1–52:10. ACM, 2014. 44

[Hon93] Kohei Honda. Types for dyadic interaction. In Eike Best, editor,
CONCUR ’93, 4th International Conference on Concurrency Theory,
Hildesheim, Germany, August 23-26, 1993, Proceedings, volume 715 of
Lecture Notes in Computer Science, pages 509–523. Springer, 1993. 11,
107, 134

[HR23] James Hefford and Mario Román. Optics for premonoidal categories.
CoRR, abs/2305.02906, 2023. 16

[HS23] Chris Heunen and Jesse Sigal. Duoidally enriched Freyd categories.
In International Conference on Relational and Algebraic Methods in
Computer Science, pages 241–257. Springer, 2023. 80

[Huf54] David A. Huffman. The synthesis of sequential switching circuits. Jour-
nal of the Franklin Institute, 257(3):161–190, 1954. 13

[Hug00] John Hughes. Generalising monads to arrows. Science of Computer
Programming, 37(1-3):67–111, 2000. 13, 17, 28, 30, 37, 44, 61

Bibliography 143

[Hug12] Dominic Hughes. Simple free star-autonomous categories and full co-
herence. Journal of Pure and Applied Algebra, 216(11):2386–2410,
2012. 120

[HV19] Chris Heunen and Jamie Vicary. Categories for Quantum Theory: An
Introduction. Oxford University Press, 2019. 18

[HYC08] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asyn-
chronous session types. In George C. Necula and Philip Wadler, ed-
itors, Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2008, San Francisco,
California, USA, January 7-12, 2008, pages 273–284. ACM, 2008. 107,
132, 134

[Hyl97] Martin Hyland. Game semantics. Semantics and logics of computation,
14:131, 1997. 132

[Jac15] Bart Jacobs. New directions in categorical logic, for classical, proba-
bilistic and quantum logic. Logical Methods in Computer Science, 11,
2015. 41, 43

[Jef97a] Alan Jeffrey. Premonoidal categories and a graphical view of programs.
Preprint at ResearchGate, 1997. 13, 54

[Jef97b] Alan Jeffrey. Premonoidal categories and flow graphs. Electronical
Notes in Theoretical Computer Science, 10:51, 1997. 46

[JHH09] Bart Jacobs, Chris Heunen, and Ichiro Hasuo. Categorical semantics
for arrows. J. Funct. Program., 19(3-4):403–438, 2009. 44, 61

[JKZ21] Bart Jacobs, Aleks Kissinger, and Fabio Zanasi. Causal inference via
string diagram surgery: A diagrammatic approach to interventions
and counterfactuals. Mathematical Structures in Computer Science,
31(5):553–574, 2021. 43

[JRW12] Michael Johnson, Robert Rosebrugh, and Richard J. Wood. Lenses,
fibrations and universal translations. Mathematical structures in com-
puter science, 22(1):25–42, 2012. 99, 133

[JS91] André Joyal and Ross Street. The geometry of tensor calculus, I. Ad-
vances in Mathematics, 88(1):55–112, 1991. 20, 21, 22, 24, 36, 44

[JS93] André Joyal and Ross Street. Braided tensor categories. Advances in
Mathematics, 102(1):20–78, 1993. 22

[JSV96] André Joyal, Ross Street, and Dominic Verity. Traced monoidal cate-
gories. Mathematical Proceedings of the Cambridge Philosophical Soci-
ety, 119:447 – 468, 04 1996. 134

[JZ20] Bart Jacobs and Fabio Zanasi. The logical essentials of bayesian reason-
ing. Foundations of Probabilistic Programming, pages 295–331, 2020.
43

[KL80] Gregory Kelly and Miguel Laplaza. Coherence for compact closed cat-
egories. Journal of pure and applied algebra, 19:193–213, 1980. 78

[Kme12] Edward Kmett. lens library, version 4.16. Hackage https://hackage.
haskell. org/package/lens-4.16, 2018, 2012. 95

[KPT96] Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Linearity
and the pi-calculus. In Hans-Juergen Boehm and Guy L. Steele Jr.,
editors, Conference Record of POPL’96: The 23rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, Pa-
pers Presented at the Symposium, St. Petersburg Beach, Florida, USA,
January 21-24, 1996, pages 358–371. ACM Press, 1996. 108

[KSW97] Piergiulio Katis, Nicoletta Sabadini, and Robert F. C. Walters. Bicat-
egories of processes. Journal of Pure and Applied Algebra, 115(2):141–
178, 1997. 22

144 Bibliography

[KU17] Aleks Kissinger and Sander Uijlen. A categorical semantics for causal
structure. In 32nd Annual ACM/IEEE Symposium on Logic in Com-
puter Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017, pages
1–12. IEEE Computer Society, 2017. 133

[Lam69] Joachim Lambek. Deductive systems and categories II: standard con-
structions and closed categories. Category Theory, Homology Theory
and their Applications I, 1969. 11, 68

[Lam86] Joachim Lambek. Cartesian closed categories and typed λ-calculi.
In Guy Cousineau, Pierre-Louis Curien, and Bernard Robinet, edi-
tors, Combinators and Functional Programming Languages, Lecture
Notes in Computer Science, pages 136–175, Berlin, Heidelberg, 1986.
Springer. 11

[Lau05] Aaron D. Lauda. Frobenius algebras and ambidextrous adjunctions.
arXiv preprint math/0502550, 2005. 155

[Law63] F. William Lawvere. Functorial semantics of algebraic theories. Pro-
ceedings of the National Academy of Sciences, 50(5):869–872, 1963. 10

[Lei04] Tom Leinster. Higher Operads, Higher Categories. London Mathemat-
ical Society Lecture Note Series. Cambridge University Press, 2004.
82

[Lev22] Paul Blain Levy. Call-by-push-value. ACM SIGLOG News, 9(2):7–29,
may 2022. 46

[Lew06] Geoffrey Lewis. Coherence for a closed functor. In Coherence in cate-
gories, pages 148–195. Springer, 2006. 78

[LGR+21] Elena Di Lavore, Alessandro Gianola, Mario Román, Nicoletta Saba-
dini, and Pawel Sobocinski. A canonical algebra of open transition
systems. In Gwen Salaün and Anton Wijs, editors, Formal Aspects of
Component Software - 17th International Conference, FACS 2021, Vir-
tual Event, October 28-29, 2021, Proceedings, volume 13077 of Lecture
Notes in Computer Science, pages 63–81. Springer, 2021. 16

[LGR+23] Elena Di Lavore, Alessandro Gianola, Mario Román, Nicoletta Saba-
dini, and Pawel Sobocinski. Span(Graph): a canonical feedback algebra
of open transition systems. Softw. Syst. Model., 22(2):495–520, 2023.
16, 134

[Lor21] Fosco Loregiàn. (Co)end Calculus. London Mathematical Society Lec-
ture Note Series. Cambridge University Press, 2021. 58, 59, 61, 62

[LPT03] Paul Blain Levy, John Power, and Hayo Thielecke. Modelling envi-
ronments in call-by-value programming languages. Information and
computation, 185(2):182–210, 2003. 134

[LR23] Elena Di Lavore and Mario Román. Evidential decision theory via
partial markov categories. In LICS, pages 1–14, 2023. 16, 40, 41, 42,
43

[LS09] F. William Lawvere and Stephen H. Schanuel. Conceptual mathemat-
ics: a first introduction to categories. Cambridge University Press,
2009. 9

[Mac63] Saunders MacLane. Natural associativity and commutativity. Rice
Institute Pamphlet-Rice University Studies, 49(4), 1963. 22, 24, 36

[Mac78] Saunders Mac Lane. Categories for the Working Mathematician. Grad-
uate Texts in Mathematics. Springer New York, 1978. 22

[Mar14] Daniel Marsden. Category theory using string diagrams. arXiv preprint
arXiv:1401.7220, 2014. 26, 27

[McC00] Guy McCusker. Games and full abstraction for FPC. Information and
Computation, 160(1-2):1–61, 2000. 132, 134

Bibliography 145

[Mel19] Paul-André Melliès. Template games and differential linear logic. In
34th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2019, Vancouver, BC, Canada, June 24-27, 2019, pages 1–13.
IEEE, 2019. 132

[Mel21] Paul-André Melliès. Asynchronous template games and the gray tensor
product of 2-categories. In 2021 36th Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS), pages 1–13. IEEE, 2021. 12,
132

[ML71] Saunders Mac Lane. Categories for the Working Mathematician, vol-
ume 5 of Graduate Texts in Mathematics. Springer Verlag, 1971. 18,
23, 36, 59, 62

[MM90] José Meseguer and Ugo Montanari. Petri nets are monoids. Inf. Com-
put., 88(2):105–155, 1990. 28

[Mog91] Eugenio Moggi. Notions of computation and monads. Inf. Comput.,
93(1):55–92, 1991. 13, 44, 61

[MP21] Cary Malkiewich and Kate Ponto. Coherence for bicategories, lax func-
tors, and shadows, 2021. 78

[MS14] Rasmus Ejlers Møgelberg and Sam Staton. Linear usage of state. Log.
Methods Comput. Sci., 10(1), 2014. 54

[MS18] Paul-André Melliès and Léo Stefanesco. A game semantics of con-
current separation logic. Electronic Notes in Theoretical Computer
Science, 336:241–256, 2018. 120

[Mye16] David Jaz Myers. String diagrams for double categories and equip-
ments, 2016. 115

[MZ22] Paul-André Melliès and Noam Zeilberger. Parsing as a Lifting Problem
and the Chomsky-Schützenberger Representation Theorem. In MFPS
2022-38th conference on Mathematical Foundations for Programming
Semantics, 2022. 11, 57, 69, 70, 88, 133

[Nes21] Chad Nester. The structure of concurrent process histories. In Fer-
ruccio Damiani and Ornela Dardha, editors, Coordination Models and
Languages - 23rd IFIP WG 6.1 International Conference, COORDI-
NATION 2021, Held as Part of the 16th International Federated Con-
ference on Distributed Computing Techniques, DisCoTec 2021, Val-
letta, Malta, June 14-18, 2021, Proceedings, volume 12717 of Lecture
Notes in Computer Science, pages 209–224. Springer, 2021. 12, 114,
115

[Noz69] Robert Nozick. Newcomb’s Problem and Two Principles of Choice. In
Essays in honor of Carl G. Hempel, pages 114–146. Springer, 1969.
129, 132

[NS22] Nelson Niu and David I. Spivak. Polynomial functors: A general theory
of interaction. In preparation, 2022. 99, 133

[NV23] Chad Nester and Niels F. W. Voorneveld. Protocol choice and iteration
for the free cornering. CoRR, abs/2305.16899, 2023. 115

[Ord20] Toby Ord. The precipice: Existential risk and the future of humanity.
Hachette Books, 2020. 9

[OY16] Dominic Orchard and Nobuko Yoshida. Effects as sessions, sessions as
effects. ACM SIGPLAN Notices, 51(1):568–581, 2016. 12, 132

[OY17] Dominic Orchard and Nobuko Yoshida. Session types with linearity
in Haskell. In Simon Gay and António Ravara, editors, Behavioural
Types: from Theory to Tools, River Publishers Series in Automation,
Control and Robotics. River Publishers, 2017. 132, 134

146 Bibliography

[Pat01] Ross Paterson. A new notation for arrows. In Benjamin C. Pierce,
editor, Proceedings of the Sixth ACM SIGPLAN International Con-
ference on Functional Programming (ICFP ’01), Firenze (Florence),
Italy, September 3-5, 2001, pages 229–240. ACM, 2001. 30, 61

[Pat03] Ross Paterson. Arrows and computation. The Fun of Programming,
pages 201–222, 2003. 37

[Pav13] Dusko Pavlovic. Monoidal computer I: basic computability by string
diagrams. Inf. Comput., 226:94–116, 2013. 44

[PC07] Jorge Picado and Maria Manuel Clementino. An Interview with
William F. Lawvere. Online, https://www.mat.uc.pt/~picado/la
wvere/interview.pdf., 2007. 9

[PGW17] Matthew Pickering, Jeremy Gibbons, and Nicolas Wu. Profunctor op-
tics: Modular data accessors. Art Sci. Eng. Program., 1(2):7, 2017. 94,
95, 99, 133

[Pow02] John Power. Premonoidal categories as categories with algebraic struc-
ture. Theor. Comput. Sci., 278(1-2):303–321, 2002. 13, 44

[PR84] Roger Penrose and Wolfgang Rindler. Spinors and Spacetime. Cited by
Aleks Kissinger at the Categories mailing list. Cambridge University
Press, 1984. 10

[PR97] John Power and Edmund Robinson. Premonoidal categories and no-
tions of computation. Math. Struct. Comput. Sci., 7(5):453–468, 1997.
45

[PS93] Benjamin C. Pierce and Davide Sangiorgi. Typing and subtyping for
mobile processes. In Proceedings of the Eighth Annual Symposium on
Logic in Computer Science (LICS ’93), Montreal, Canada, June 19-23,
1993, pages 376–385. IEEE Computer Society, 1993. 108

[PS07] Craig Pastro and Ross Street. Doubles for Monoidal Categories. arXiv
preprint arXiv:0711.1859, 2007. 88, 99, 133

[PSV21] Evan Patterson, David I. Spivak, and Dmitry Vagner. Wiring diagrams
as normal forms for computing in symmetric monoidal categories. Elec-
tronic Proceedings in Theoretical Computer Science, page 49–64, Feb
2021. 99

[PT99] John Power and Hayo Thielecke. Closed Freyd- and kappa-categories.
In Jirí Wiedermann, Peter van Emde Boas, and Mogens Nielsen, edi-
tors, Automata, Languages and Programming, 26th International Col-
loquium, ICALP’99, Prague, Czech Republic, July 11-15, 1999, Pro-
ceedings, volume 1644 of Lecture Notes in Computer Science, pages
625–634. Springer, 1999. 44, 45

[Ril18] Mitchell Riley. Categories of Optics. arXiv preprint arXiv:1809.00738,
2018. 94, 95, 97, 99

[Rom20a] Mario Román. Comb Diagrams for Discrete-Time Feedback. CoRR,
abs/2003.06214, 2020. 99

[Rom20b] Mario Román. Open diagrams via coend calculus. In David I. Spi-
vak and Jamie Vicary, editors, Proceedings of the 3rd Annual Inter-
national Applied Category Theory Conference 2020, ACT 2020, Cam-
bridge, USA, 6-10th July 2020, volume 333 of EPTCS, pages 65–78,
2020. 15, 62, 94, 96, 99

[Rom22] Mario Román. Promonads and string diagrams for effectful categories.
In Jade Master and Martha Lewis, editors, Proceedings Fifth Interna-
tional Conference on Applied Category Theory, ACT 2022, Glasgow,
United Kingdom, 18-22 July 2022, volume 380 of EPTCS, pages 344–
361, 2022. 15, 16, 47

https://www.mat.uc.pt/~picado/lawvere/interview.pdf
https://www.mat.uc.pt/~picado/lawvere/interview.pdf

Bibliography 147

[Sel10] Peter Selinger. A survey of graphical languages for monoidal categories.
In New structures for physics, pages 289–355. Springer, 2010. 36

[Shu16] Michael Shulman. Categorical logic from a categorical point of view.
Available on the web, 2016. 19, 20, 22, 32, 37, 65, 109, 111

[Shu17] Michael Shulman. Duoidal category (nlab entry), section 2., 2017.
https://ncatlab.org/nlab/show/duoidal+category, Last accessed
on 2022-12-14. 88, 109, 111

[Shu18] Michael Shulman. The 2-Chu-Dialectica construction and the polycat-
egory of multivariable adjunctions. arXiv preprint arXiv:1806.06082,
2018. 49, 153

[SL13] Sam Staton and Paul Blain Levy. Universal properties of impure pro-
gramming languages. In Roberto Giacobazzi and Radhia Cousot, edi-
tors, The 40th Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL ’13, Rome, Italy - January
23 - 25, 2013, pages 179–192. ACM, 2013. 44, 45

[Sob10] Paweł Sobociński. Representations of Petri net interactions. In Inter-
national Conference on Concurrency Theory, pages 554–568. Springer,
2010. 22

[Sob13] Pawel Sobociński. Graphical linear algebra. Online, personal blog,
https://graphicallinearalgebra.net, 2013. 20, 22

[Spi13] David I. Spivak. The operad of wiring diagrams: formalizing a graph-
ical language for databases, recursion, and plug-and-play circuits.
CoRR, abs/1305.0297, 2013. 81, 99, 109

[SS22] Brandon T. Shapiro and David I. Spivak. Duoidal structures for com-
positional dependence. arXiv preprint arXiv:2210.01962, 2022. 11, 73,
74, 76, 79, 80, 81, 82

[SSV20] Patrick Schultz, David I. Spivak, and Christina Vasilakopoulou. Dy-
namical systems and sheaves. Applied Categorical Structures, 28(1):1–
57, 2020. 99

[Str04] Ross Street. Frobenius monads and pseudomonoids. Journal of math-
ematical physics, 45(10):3930–3948, 2004. 157

[Str12] Ross Street. Monoidal categories in, and linking, geometry and algebra.
Bulletin of the Belgian Mathematical Society-Simon Stevin, 19(5):769–
820, 2012. 11, 77, 82, 86, 88

[SW01] Davide Sangiorgi and David Walker. The Pi-Calculus - a theory of
mobile processes. Cambridge University Press, 2001. 107

[Sza75] Manfred E. Szabo. Polycategories. Communications in Algebra,
3(8):663–689, 1975. 152, 157

[Tod10] Todd Trimble. Coherence theorem for monoidal categories (nlab entry),
section 3. discussion, 2010. https://ncatlab.org/nlab/show/cohere
nce+theorem+for+monoidal+categories, Last accessed on 2022-05-
10. 49

[UV08] Tarmo Uustalu and Varmo Vene. Comonadic notions of computation.
In Jiří Adámek and Clemens Kupke, editors, Proceedings of the Ninth
Workshop on Coalgebraic Methods in Computer Science, CMCS 2008,
Budapest, Hungary, April 4-6, 2008, volume 203 of Electronic Notes in
Theoretical Computer Science, pages 263–284. Elsevier, 2008. 44

[UVZ18] Tarmo Uustalu, Niccolò Veltri, and Noam Zeilberger. The sequent
calculus of skew monoidal categories. Electronic Notes in Theoretical
Computer Science, 341:345–370, 2018. 11

[VC22] André Videla and Matteo Capucci. Lenses for composable servers.
CoRR, abs/2203.15633, 2022. 99

https://ncatlab.org/nlab/show/duoidal+category
https://graphicallinearalgebra.net
https://ncatlab.org/nlab/show/coherence+theorem+for+monoidal+categories
https://ncatlab.org/nlab/show/coherence+theorem+for+monoidal+categories

148 Bibliography

[vdW21] John van de Wetering. A categorical construction of the real unit
interval. arXiv preprint arXiv:2106.10094, 2021. 41, 43

[vN58] John von Neumann. The Computer and the Brain. Yale University
Press, quoted by David Darlymple in “A New Type of Mathematics”
(2018), a Transcript from a talk at Montreal, 1958. 9

[vS] Marilyn vos Savant. Parade 16: Ask Marilyn (Archived).
https://web.archive.org/web/20130121183432/http://mari
lynvossavant.com/game-show-problem/. Accessed: 2013-01-21. 129

[WC22] Matt Wilson and Giulio Chiribella. A mathematical frame-
work for transformations of physical processes. arXiv preprint
arXiv:2204.04319, 2022. 133

[YS17] Eliezer Yudkowsky and Nate Soares. Functional Decision The-
ory: a New Theory of Instrumental Rationality. ArXiv preprint
arXiv:1710.05060, 2017. 129, 132

https://web.archive.org/web/20130121183432/http://marilynvossavant.com/game-show-problem/
https://web.archive.org/web/20130121183432/http://marilynvossavant.com/game-show-problem/

Appendix

149

150 APPENDIX

0.1. Coherence diagrams for a duoidal category

((ACB)⊗ (C CD))⊗ (E C F) (ACB)⊗ ((C CD)⊗ (E C F))

((A⊗ C)C (B ⊗D))⊗ (E C F) (ACB)⊗ ((C ⊗ E)C (D ⊗ F))

((A⊗ C)⊗ E)C ((B ⊗D)⊗ F) (A⊗ (C ⊗ E))C (B ⊗ (D ⊗ F))

α

ψ2⊗id id⊗ψ2

ψ2 ψ2

αCα

((ACB)C C)⊗ ((D C E)C F) (AC (B C C))⊗ (D C (E C F))

((ACB)⊗ (D C E))C (C ⊗ F) (A⊗D)C ((B C C)⊗ (E C F))

((A⊗D)C (B ⊗ E))C (C ⊗ F) (A⊗D)C ((B ⊗ E)C (C ⊗ F))

β⊗β

ψ2 ψ2

ψ2⊗id id⊗ψ2

β

Figure 1. Coherence diagrams for associativity of a duoidal category.

I ⊗ (ACB) (I C I)⊗ (ACB)

ACB (I ⊗A)C (I ⊗B)

ψ0⊗id

λ ψ2

λCλ

(ACB)⊗ I (ACB)⊗ (I C I)

ACB (A⊗ I)C (B ⊗ I)

ψ0⊗id

ρ ψ2

ρCρ

Figure 2. Coherence diagrams for ⊗-unitality of a duoidal category.

N C (A⊗B) (N ⊗N)C (A⊗B)

A⊗B (N CA)⊗ (N CB)

κ

ϕ2Cid

ψ2

κ⊗κ

(A⊗B)CN (A⊗B)C (N ⊗N)

A⊗B (ACN)⊗ (B CN)

ν

idCϕ2

ψ2

ν⊗ν

Figure 3. Coherence diagrams for C-unitality of a duoidal category.

0.1. COHERENCE DIAGRAMS FOR A DUOIDAL CATEGORY 151

(N ⊗N)⊗N N ⊗ (N ⊗N)

N ⊗N N N ⊗N

α

ϕ2⊗id id⊗ϕ2

ϕ2 ϕ2

I C I I I C I

(I C I)C I I C (I C I)

ψ0⊗id

ψ0 ψ0

id⊗ψ0

β

Figure 4. Associativity and coassociativity for N and I in a duoidal
category.

N ⊗ I N

N ⊗N

ρ

id⊗ϕ0 ϕ2

I ⊗N N

N ⊗N

λ

ϕ0⊗id ϕ2

I CN I C I

I

id⊗ϕ0

ν
ψ0

N C I I C I

I

id⊗ϕ0

κ
ψ0

Figure 5. Unitality and counitality for N and I in a duoidal category.

152 APPENDIX

0.2. Polycategories

This extra section repeats the splice-contour adjunction for polycategories. It
is a detour from the main text; and it is not necessary for its development: this
does not seem to be the direction we want to follow to study context in categories
or monoidal categories. It is, however, another proof of the resilience of the splice-
contour adjunction: the duality between a category and its opposite induces a
pseudofrobenius algebra on the monoidal bicategory of profunctors.

0.2.1. Polycategories. A polycategory is like a category where every mor-
phism has both a list of inputs and a list of outputs [Sza75]. This does not mean
that its inputs and outpuss start forming a monoid, as in strict monoidal categories;
morphisms really have different multiple inputs and outputs, and we need to choose
a single one to compose along it. A polycategory, P, contains a set of objects, Pobj ,
as categories and multicategories; but instead of a set of morphisms, it will have a
set of polymorphisms,

P(X1, . . . , Xn;Y 1, . . . , Ym),

for each two lists of objects X1, . . . , Xn, Y 0, . . . , Ym ∈ Pobj . As in linear logic,
we denote both sides of a derivation by two metavariables, Γ = X1, . . . , Xn and
∆ = Y 0, . . . , Ym, and write P(Γ; ∆) for the set of polymorphisms.

Definition 0.2.1. A polycategory P is a collection of objects, Pobj , together with a
collection of polymorphisms, P(X0, . . . , Xn;Y 0, . . . , Ym), for each two lists of objects
X0, . . . , Xn ∈ P and Y 0, . . . , Ym ∈ P. For each object X ∈ Pobj , there must be an
identity, idX ∈ Pobj(X;X); and for each pair of composable maps,

f ∈ P(Γ; ∆1, X,∆2) and g ∈ P(Γ1, X,Γ2; ∆),

where either ∆1 or Γ1, and either ∆2 or Γ2, are empty,

there must be a composite polymorphism f #X g ∈ P(Γ1,Γ,Γ2; ∆1,∆,∆2). This
means that there are four possible types of composition (Figure 6), and they yield
the same polymorphism whenever they overlap.

f

g

∆1 ∆

Γ2Γ

f

g

Γ1 Γ

∆ ∆2

f

g

Γ Γ2Γ1

∆

g

f

Γ

∆1 ∆ ∆2

Figure 6. Four planar polycategorical compositions.

Moreover, polycategories must satisfy the following two unitality axioms, f #X
idX = f and idX #X f = f ; two associativity axioms, f #X (g #Y h) = (f #X g) #Y h and
f #X (g #Y h) = g #Y (f #X h); and an interchange axiom, (f #A g) #B h = (f #B h) #A g;
whenever any of these is formally well-typed.

Remark 0.2.2. Asking for an identity on each object, idX ∈ P(X;X), is different
from asking for an identity on each list of objects,

idX0,...,Xn ∈ P(X0, . . . , Xn;X0, . . . , Xn).

The latter gives rise to isomix categories [CS97a] and we will not discuss it here.

0.2. POLYCATEGORIES 153

Example 0.2.3. A polyfunctional relation, R ∈MultiFun(A1, . . . , An;B1, . . . , Bm),
is a relation R : A1 × . . . × An → B1 × . . . × Bm together with representing func-
tions that, given an element of the relation missing exactly one element, return the
element missing. Explicitly, there exist two families of functions,

f j : A1 × . . .×An ×B0 ×��Bj. . .×Bm → Bj and

gi : A1 ×��Ai. . .×An ×B0 × . . .×Bm → Ai,

such that R(a1, . . . , bm) if and only if f j(a1, . . . , bm) = bj and if and only if
gi(a1, . . . , bm) = ai for each two indices i and j. Polyfunctional relations form
a polycategory with relational composition.

A (1, 1)-polyfunctional relation is a pair of inverse functions. A (2,1) or (1,2)-
polyfunctional relation is a triple functions f0 : A1 ×A2 → A0, f1 : A2 ×A0 → A1

and f2 : A0 ×A1 → A2 such that f1(a1, a2) = a0 if and only if f1(a2, a0) = a1 and
if and only if f2(a0, a1) = a2. Polyfunctional relations are a decategorification of
the multivariable adjunctions in the work of Shulman [Shu18].

0.2.2. The Category of Polycategories. Analogously to the categorical
and multicategorical case, the theory of polyfunctors and polynatural transforma-
tions is synthetised in the 2-category PolyCat of polycategories, polyfunctors and
polynatural transformations.

Definition 0.2.4. A polyfunctor, F : P → Q, between two polycategories P and
Q, is an assignment on objects, Fobj : Pobj → Qobj together with an assignment on
polymorphisms

Fn,m : P(X0, . . . , Xn;Y 0, . . . , Ym)→ Q(FobjX0, . . . , FobjXn;FobjY 0, . . . , FobjYm).

This assignment must be functorial, in that F (f #Xi
g) = F (f) #Xi

F (g) and that
F (idX) = idFX , whenever these are formally well-typed.

Definition 0.2.5. A polynatural transformation θ : F → G between two poly-
functors F,G : P → Q is given by a family of polymorphisms θX ∈ Q(FX;GX)
such that, for each polymorphism f ∈ P(X1, . . . , Xn;Y 1, . . . , Ym), the following
naturality condition holds

θX1 # . . . # θXn #G(f) = F (f) # θY 1 # . . . # θYm .

Definition 0.2.6. Polyfunctors between polycategories form a category, PolyCat.
This is moreover a 2-category with polynatural transformations.

Remark 0.2.7. In the same sense that a multifunctor from the terminal multicat-
egory picks a monoid, a polyfunctor from the terminal polycategory should pick a
polyoid – instead, we call these Frobenius monoids.

0.2.3. Polycategorical Contour.

Definition 0.2.8. Let P be a polycategory. Its contour, ContourP, is the category
presented by the following generators and equations:
• two polarized objects, X` and Xr, for each object X ∈ Pobj ;
• for each polymorphism, f ∈ P(X1, . . . , Xn;Y 1, . . . , Ym), the following generators,

fr1 : Xr
1 → X`

2, . . . , frn−1 : Xr
n−1 → X`

n, fd : Xr
n → Y rm,

f `1 : Y `2 → Y r1, . . . , f `m−1 : Y `m → Y rm−1, fu : Y `1 → X`
1,

having instead fu : Y `1 → Y rm when n = 0, having instead fd : Xr
n → X`

1 when
m = 0, and using no generators for (0, 0)-polymorphisms;

154 APPENDIX

to which we impose equations requiring contour to preserve identities, (idX)u =
idX` and (idX)d = idXr ; and requiring contour to preserve compositions, meaning
that for each f ∈ P(X1, . . . , Xn;Y 1, . . . , Ym) and each g ∈ P(Z1, . . . , Zp;Q1, . . . , Qq)
such that Ym = U1, the contour of the composition along Ym = U1 is defined by
the following eight cases

(f #Xi
g)u = fu; (f #Xi

g)ri = fri , for i = 1, . . . , n− 1;

(f #Ym g)rn = fd # gr1; (f #Ym g)rj = grj−n+1, for j = n+ 1, . . . , n+ p− 2;

(f #Ym
g)d = gd; (f #Ym

g)`i = f `i , for i = 1, . . . ,m− 2;

(f #Ym
g)dm−1 = gu # f `m−1; (f #Ym

g)dj = g`j−m+1, for j = m+ 1, . . . ,m+ q − 2;

and similar conditions for the rest of the compositions. These equations are depicted
in Figure 7.

f

. . .
fr1

. . .

fu

f

. . .

g

. . .
. . .

. . .

; ; id id ;

frn−1

fd

f `m−1f `1

fu

fd

frn−1

f `m

Figure 7. Contour of a morphism, composition of contours, and iden-
tity contours.

Proposition 0.2.9. Contouring extends to a functor from the category of polycat-
egories to the category of categories, C : PolyCat→ Cat.

0.2.4. Malleable Polycategories. A malleable polycategory is a polycate-
gory where each morphism can be morphed uniquely into any possible shape. This
means that there exist unique factorizations of each morphism into each one of the
possible shapes for composition.

Definition 0.2.10. The (1,1)-polymorphisms of a polycategory P form an under-
lying category Pu. The polymorphisms form profunctors over the polycategory
and their composition, in its four possible forms, is dinatural with respect to the
underlying category. This means that the following four operations are well-defined:

(#)1 :
(∫X∈Pu

P(Γ; ∆, X)× P(X,Γ′; ∆′)
)
→ P(Γ,Γ′; ∆,∆′),

(#)2 :
(∫X∈Pu

P(Γ;X,∆)× P(Γ′, X; ∆′)
)
→ P(Γ,Γ′; ∆,∆′),

(#)3 :
(∫X∈Pu

P(Γ; ∆1, X,∆2)× P(X; ∆)
)
→ P(Γ; ∆1,∆,∆2),

(#)4 :
(∫X∈Pu

P(Γ;X)× P(Γ1, X,Γ2; ∆)
)
→ P(Γ1,Γ,Γ2; ∆).

Definition 0.2.11. A malleable polycategory is a polycategory where dinatural
composition, in all its four forms, is invertible.

Remark 0.2.12. If a polycategory is malleable, we can reconstruct it up to iso-
morphism from its binary, cobinary, nullary and conullary maps. When defining a
malleable polycategory, it is usually easier to provide these binary, cobinary, unary,
nullary and conullary maps, and deduce from those the rest of the structure. The
situation is now similar to that of linearly distributive categories: we do not need
to provide all n-ary tensors in order to define a linearly distributive category, we
only provide the binary (⊗,`) and unary (I, Z) tensors.

0.2. POLYCATEGORIES 155

This suggests that we will really work with a biased version of malleable poly-
categories, one that privileges the binary and nullary tensors over the others. Biased
malleable polycategories are what we will call prostar autonomous categories.

0.2.5. Prostar-Autonomous Categories. Prostar-autonomous categories pro-
vide an algebra for both coherent composition and decomposition. Apart from the
usual morphisms, V(X;Y); and the joints, V(X0 ⊗X1;Y), and units, V(>;Y), of
a promonoidal category; a prostar-autonomous category has splits, V(X;Y 0 `Y 1),
and atoms, V(X;⊥). As in the case of multicategories, these compositions and
decompositions must be coherent, which translates into the existence of natural
isomorphisms witnessing a Frobenius rule, the Frobenius distributors

ϕl :
∫W C(A;C `W)× C(W ⊗B;D)

∼=−→ C(A⊗B;C `D), and

ϕr :
∫W C(A⊗W ;C)× C(B;W `D)

∼=−→ C(A⊗B;C `D).

In summary, after this section, we will have developed the relation between mal-
leability and profunctorial structures in an analogous way for both multicategories
and polycategories.

Multicategory Malleable Multicategory Promonoidal category
Polycategory Malleable Polycategory Prostar autonomous category

Definition 0.2.13. Prostar-autonomous categories are the 2-Frobenius monoids
of the monoidal bicategory of profunctors, which is equivalent to the following
definition. A prostar autonomous category is a category C endowed with a promo-
noidal structure (C,⊗,>), and procomonoidal structure (C,`,⊥), that interact as
a Frobenius pseudomonoid [DS03, Lau05]. That is, it is a category endowed with
four profunctors, suggestively written C(•⊗ •; •), C(>; •), C(•;⊥) and C(•; •` •),
as if they were representable. These profunctors form two promonoidal categories
[Day70] with coherent associators and unitors. Further, they are endowed with
invertible Frobenius distributors,

ϕl :
∫W C(A;C `W)× C(W ⊗B;D)

∼=−→ C(A⊗B;C `D),

ϕr :
∫W C(A⊗W ;C)× C(B;W `D)

∼=−→ C(A⊗B;C `D),

such that every formal diagram formed of these distributors and promonoidal co-
herences commutes.

Prostar autonomous categories have a canonical prostar given by profunctors
C(• ⊗ •;⊥) and C(>; • ` •). We may think of a prostar autonomous category
as a category C equipped with sets of polymorphisms C(• ⊗ ... ⊗ •; • ` ... ` •).
The Frobenius isomorphisms let us decompose polymorphisms into combinations
of the pro(co)monoidal structures: this decomposition is unique up to dinaturality.
Informally, prostar autonomous categories are to polycategories what promonoidal
categories are to (co)multicategories.

Definition 0.2.14. A prostar functor F : V→W is a quintuple (Fobj , F⊗, F`, F>, F⊥)
where (Fobj , F⊗, F>) and (Fobj , F`, F⊥) are promonoidal functors that together
strictly preserve the Frobenius distributors, in that ϕl # (F⊗×F`) = (F`×F⊗) #ϕ′l
and ϕr # (F⊗×F`) = (F⊗×F`) #ϕ′r. Prostar functors between prostar autonomous
categories form a category, ProStar.

156 APPENDIX

0.2.6. Prostar Autonomous are Malleable Polycategories. In this sec-
tion, we show that the category of prostar autonomous categories is equivalent to
that of malleable polycategories. In this sense, the study of malleable polycategories
is the study of prostar autonomous categories.

Definition 0.2.15 (Polycategorical analogue of Definition 2.3.9). Let W be a
prostar autonomous category. There is a malleable polycategory, Wm, that has
the same objects but polymorphisms defined by the elements of the prostar au-
tonomous category. By induction, we define

Wm(X0, X1,Γ; ∆) =
∫ V W(X0 ⊗X1;V)×Wm(V,Γ; ∆),

Wm(; ∆) =
∫ V W(>;V)×W(V ; ∆),

Wm(X;Y 0, Y 1,∆) =
∫ V Wm(X;V,∆)×W(V ;Y 0 ` Y 1),

Wm(X;) = W(X;⊥).

In other words, the polymorphisms are elements of the left-biased tree reductions
of the promonoidal category, seen as a 2-monoid. The four forms of dinatural
composition are then defined to be the unique map relating two tree expressions in
a 2-Frobenius monoid, which exist uniquely by coherence,

(coh)1 :
(∫X∈Wm

Wm(Γ; ∆, X)×Wm(X,Γ′; ∆′)
)
→Wm(Γ,Γ′; ∆,∆′),

(coh)2 :
(∫X∈Wm

Wm(Γ;X,∆)×Wm(Γ′, X; ∆′)
)
→Wm(Γ,Γ′; ∆,∆′),

(coh)3 :
(∫X∈Wm

Wm(Γ; ∆1, X,∆2)×Wm(X; ∆)
)
→Wm(Γ; ∆1,∆,∆2),

(coh)4 :
(∫X∈Wm

Wm(Γ;X)×Wm(Γ1, X,Γ2; ∆)
)
→Wm(Γ1,Γ,Γ2; ∆).

Coherence maps are isomorphisms, and so dinatural composition is invertible, mak-
ing the polycategory malleable. By coherence for pseudomonoids, composition must
satisfy associativity and unitality.

Proposition 0.2.16. The category of prostar autonomous categories and the cat-
egory of malleable polycategories are equivalent with the functor (•)m : ProStar→
mPoly induced by the construction of the underlying malleable polycategory of
a prostar autonomous category. This is the polycategorical analogue of Proposi-
tion 2.3.10.

Proof. First, let us show that a prostar functor, F : V→W, induces a poly-
functor, Fm : Vm → Wm, between the Underlying polycategories. On objects, we
define it to be the same, Fmobj = Fobj . On polymorphisms, we can define the binary,
nullary, cobinary, conullary and unary using the prostar functor structure,

Fm2,1 = F⊗; Fm0,1 = F>; Fm1,2 = F`; Fm1,0 = F⊥; and Fm1,1 = F.

�

0.2.7. Splice of a Polycategory.

Definition 0.2.17. Let C be a category. Its prostar autonomous category of spliced
arrows, SC, has underlying category Cop×C. Intuitively, its profunctors are defined
by spliced circles of morphisms.

Explicitly, it is defined by the following profunctors (below, left). The coher-
ence isomorphisms are defined by glueing circles along the desired boundary and
composing the relevant arrows; two compositions are isomorphic if and only if they
determine the same arrows (below, right).

0.2. POLYCATEGORIES 157

X+ X−

Z−

Z+

Y +

Y −

X+

X− Y +

Y −

Z+ Z−

X+ X−

Y + Y −

X+ X−

Y + Y −

f0

f2

f1

g1

g0 g2
h0 h1

k0

l0

Remark 0.2.18. This structure appeared in Day & Street [DS03, Ex. 7.3], where
it was noticed that the canonical promonoidal category induced by a small category
[Day70] has an involution. As a multicategory, it was rediscovered by Melliès &
Zeilberger [?]. Monoidal spliced arrows were explicitly introduced and character-
ized as an adjunction in a joint work [EHR23].

Splice(C)
(
X+

X−
; Y

+

Y −
` Z+

Z−

)
= C(Y +;X+)× C(X−;Z−)× C(Z+;Y −);

Splice(C)
(
X+

X−
⊗ Y +

Y −
; Z

+

Z−

)
= C(Z+;X+)× C(X−;Y +)× C(Y −;Z−);

Splice(C)
(
X+

X−
; Y

+

Y −

)
= C(Y +;X+)× C(X−;Y −);

Splice(C)
(
X+

X−
;⊥
)

= C(X−;X+);

Splice(C)
(
>; Y

+

Y −

)
= C(Y +;Y −).

Remark 0.2.19. Splice(C) has a representable prostar, given on objects by(
X+

X−

)∗
=
(
X−

X+

)
.

Proposition 0.2.20. Spliced arrows extend to a functor, Splice : Cat→ ProStar.

Theorem 0.2.21. Contour extends to a functor Contour : PolyCat → Cat,
splice extends to a functor Splice : Cat→ ProStar. Contour is left adjoint to Splice
composed with the forgetful functor, Contour a Splice#Forget; and Contour composed
with the forgetful functor is left adjoint to Splice, meaning Forget #Contour a Splice.

Proof. The proof extends our previous one [EHR23, Theorem 3.7]. �

0.2.8. Bibliography. Polycategories were defined by Szabo [Sza75] in the
symmetric case; Cockett and Seely contributed the planar version we study here
[CS97b, BZ20].

Street [Str04] prove that Frobenius pseudomonoids in Prof are equivalent to
what Day & Street [DS03] call “∗-autonomous promonoidal categories”. The minor
twist we take, “prostar autonomous”, emphasizes that the canonical prostar may not

f0

f2

f1

g1

g0 g2

k0

k2

k1

h1

h0 h2

φ1∼

Figure 8. Holds if f0 = k0 # h0, f1 # g1 = h1, g2 = h2 # k1, g0 # f2 = k2.

158 APPENDIX

be representable. When all of the structure including the prostar is representable,
we obtain ∗-autonomous categories.

	Preface
	Introduction
	Processes and Diagrams
	Algebra and Duoidal Algebra
	Fundamental Structures for Message Passing
	Global Effects
	Monoidal Context Theory

	Overview
	Chapter 1: Process Theories
	Chapter 2: Context Theory
	Chapter 3: Monoidal Context Theory
	Chapter 4: Monoidal Message Passing

	Contributions
	Literature

	Chapter 1. Monoidal Process Theory
	Monoidal Process Theory
	1.1. Monoidal Categories
	1.1.1. Strict Monoidal Categories
	1.1.2. Some Words on Syntax
	1.1.3. String Diagrams of Strict Monoidal Categories
	1.1.4. Example: Crema di Mascarpone
	1.1.5. Bibliography

	1.2. Non-Strict Monoidal Categories
	1.2.1. Non-Strictness
	1.2.2. Coherence
	1.2.3. String Diagrams of Monoidal Categories
	1.2.4. Bibliography

	1.3. String Diagrams of Bicategories
	1.3.1. String diagrams of 2-categories
	1.3.2. Bicategories
	1.3.3. Example: Adjunctions
	1.3.4. Bibliography

	1.4. Symmetric Monoidal Categories and Do-Notation
	1.4.1. Commutative Monoidal Categories
	1.4.2. Symmetric Monoidal Categories
	1.4.3. Do-Notation
	1.4.4. Symmetry in Do-notation
	1.4.5. Quotienting Do-notation
	1.4.6. Example: the XOR Variable Swap
	1.4.7. Bibliography

	1.5. Cartesianity: Determinism and Totality
	1.5.1. Cartesian Monoidal Categories
	1.5.2. Partial Markov Categories
	1.5.3. Bibliography

	1.6. Premonoidal Categories
	1.6.1. Premonoidal Categories
	1.6.2. Effectful and Freyd Categories
	1.6.3. Bibliography

	1.7. String Diagrams for Premonoidal Categories
	1.7.1. Effectful Polygraphs
	1.7.2. Adding Runtime
	1.7.3. Example: a Theory of Global State
	1.7.4. Bibliography

	Chapter 2. Context Theory
	Context Theory
	2.1. Profunctors and Coends
	2.1.1. Profunctors
	2.1.2. Dinaturality and Composition
	2.1.3. Coend Calculus
	2.1.4. The Point of Coend Calculus
	2.1.5. Promonads
	2.1.6. Bibliography

	2.2. Multicategories
	2.2.1. Multicategories
	2.2.2. The Category of Multicategories
	2.2.3. Application: Shufflings

	2.3. Malleable Multicategories
	2.3.1. Promonoidal Categories
	2.3.2. Promonoidal Categories are Malleable Multicategories
	2.3.3. Bibliography

	2.4. The Splice-Contour Adjunction
	2.4.1. Contour of a multicategory
	2.4.2. Spliced Arrows
	2.4.3. Splice-Contour Adjunction
	2.4.4. Promonoidal Splice-Contour

	Chapter 3. Monoidal Context Theory
	Monoidal Context Theory
	3.1. Duoidal categories
	3.1.1. Duoidal Categories
	3.1.2. Communication via Duoidals
	3.1.3. Duoidals via adjoint monoids
	3.1.4. Be Careful with Duoidal Coherence
	3.1.5. Bibliography

	3.2. Normal Duoidal Categories
	3.2.1. Normalization of duoidal categories
	3.2.2. Physical duoidal categories
	3.2.3. Physical Lax Tensor of a Physical Duoidal Category
	3.2.4. Bibliography

	3.3. Produoidal Decomposition of Monoidal Categories
	3.3.1. Produoidal categories
	3.3.2. Monoidal Contour of a Produoidal Category
	3.3.3. Produoidal Splice of a Monoidal Category
	3.3.4. A Representable Parallel Structure
	3.3.5. Bibliography

	3.4. Interlude: Produoidal Normalization
	3.4.1. Normal Produoidal Categories
	3.4.2. The Normalization Monad
	3.4.3. Symmetric Normalization
	3.4.4. Bibliography

	3.5. Monoidal Lenses
	3.5.1. The Category of Monoidal Lenses
	3.5.2. Symmetric Monoidal Lenses
	3.5.3. Towards Message Theories
	3.5.4. Bibliography

	Chapter 4. Monoidal Message Passing
	Monoidal Message Passing
	4.1. Message Theories
	4.1.1. Message Theories
	4.1.2. Properties of a Message Theory
	4.1.3. Coherence for Message Theories
	Bibliography

	4.2. Physical Monoidal Multicategories, and Shufflings
	4.2.1. Symmetric Multicategories
	4.2.2. Monoidal Multicategories
	4.2.3. Physical Monoidal Multicategories
	4.2.4. Shuffling
	4.2.5. Bibliography

	4.3. Polarization
	4.3.1. Monoidal Polarization
	4.3.2. Monoidal Polarization is Not Enough
	4.3.3. Polarization of a Physical Monoidal Multicategory
	4.3.4. Bibliography

	4.4. Polar Shuffles
	4.4.1. Polar Shuffles
	4.4.2. Encoding of polar shuffles
	4.4.3. The Multicategory of Polar Shuffles
	4.4.4. Message Theories are Algebras of Polar Shuffles
	4.4.5. Bibliography

	4.5. Processes versus Sessions
	4.5.1. Processes of a message theory
	4.5.2. Sessions of a process theory
	4.5.3. Sessions versus Processes
	4.5.4. Example: One-Time Pad, as a Message Session
	4.5.5. Case Study: Causal versus Evidential Decision Theories
	Bibliography

	Chapter 5. Conclusions and Further Work
	Conclusions
	Monoidal Context Theory
	Monoidal Message Passing
	Future Work

	Bibliography
	Appendix
	0.1. Coherence diagrams for a duoidal category
	0.2. Polycategories
	0.2.1. Polycategories
	0.2.2. The Category of Polycategories
	0.2.3. Polycategorical Contour
	0.2.4. Malleable Polycategories
	0.2.5. Prostar-Autonomous Categories
	0.2.6. Prostar Autonomous are Malleable Polycategories
	0.2.7. Splice of a Polycategory
	0.2.8. Bibliography

