
Monoidal Streams for Dataflow Programming
Elena Di Lavore

Giovanni de Felice
Mario Román

Abstract
We introduce monoidal streams: a generalization of causal
stream functions to monoidal categories. In the same way
that streams provide semantics to dataflow programming
with pure functions, monoidal streams provide semantics
to dataflow programming with theories of processes repre-
sented by a symmetric monoidal category. At the same time,
monoidal streams form a feedback monoidal category, which
can be used to interpret signal flow graphs. As an example,
we study a stochastic dataflow language.

Keywords: Monoidal stream, Stream, Monoidal category,
Dataflow programming, Feedback, Signal flow graph, Coal-
gebra, Stochastic process.

1 Introduction
Dataflow languages. Dataflow (or stream-based) pro-

gramming languages, such as Lucid [35, 77], follow a para-
digm in which every declaration represents an infinite list of
values: a stream [8, 75]. The following program in a Lucid-
like language (Figure 1) computes the Fibonacci sequence,
thanks to a Fby (“followed by”) operator.

fib = 0 Fby (fib + (1 Fby Wait(fib)))

Figure 1. The Fibonacci sequence is 0 followed by the Fibonacci
sequence plus the Fibonacci sequence preceded by a 1.

The control structure of dataflow programs is inspired
by signal flow graphs [8, 57, 69]. Signal flow graphs are dia-
grammatic specifications of processes with feedback loops,
widely used in control system engineering. In a dataflow
program, feedback loops represent how the current value of
a stream may depend on its previous values. For instance,
the previous program (Figure 1) corresponds to the signal
flow graph in Figure 2.

Monoidal categories. Any theory of processes that com-
pose sequentially and in parallel, satisfying reasonable axioms,
forms a monoidal category. Examples include functions [49],
probabilistic channels [19, 30], partial maps [21], database
queries [14], linear resource theories [23] and quantum pro-
cesses [2]. Signal flow graphs are the graphical syntax for
feedback monoidal categories [15, 16, 26, 33, 46]: they are
the string diagrams for any of these theories, extended with
feedback.
Yet, semantics of dataflow languages have been mostly

restricted to theories of pure functions [8, 24, 25, 58, 76]:

1

+

𝑓 𝑏𝑦

0

𝑓 𝑏𝑦

𝑤𝑎𝑖𝑡
fib = fbk (copy;
𝜕(1 × wait) × id;
𝜕(fby) × id;

𝜕(+);
0 × id;
fby;
copy)

Figure 2. Fibonacci: signal flow graph and morphism.

what are called cartesian monoidal categories. We claim that
this restriction is actually inessential; dataflow programs
may take semantics in non-cartesian monoidal categories,
exactly as their signal flow graphs do.
The present work provides this missing semantics: we

construct monoidal streams over a symmetric monoidal cat-
egory, which form a feedback monoidal category. Monoidal
streams model the values of a monoidal dataflow language,
in the same way that streams model the values of a clas-
sical dataflow language. This opens the door to stochastic,
effectful, or quantum dataflow languages. In particular, we
give semantics and string diagrams for a stochastic dataflow
programming language, where the following code can be run.

walk = 0 Fby (Uniform(−1, 1) + walk)

Figure 3. A stochastic dataflow program. A random walk is 0
followed by the random walk plus a stochastic stream of steps
to the left (-1) or to the right (1), sampled uniformly.

+0

𝑓 𝑏𝑦

𝑢𝑛𝑖 𝑓
walk = fbk (
𝜕(unif) ⊗ id;
0 ⊗ 𝜕(+);

fby;
copy)

Figure 4. Random walk: signal flow graph and morphism.

1.1 Contributions
Our main novel contribution is the definition of a feedback
monoidal category of monoidal streams over a symmetric
monoidal category (Stream, Definition 5.1 and theorem 5.10).

Elena Di Lavore, Giovanni de Felice, and Mario Román

Monoidal streams form a final coalgebra; for sufficiently well-
behaved monoidal categories (Definition 4.9), we give an
explicit construction of this coalgebra (Definition 4.7).

In cartesian categories, the causal functions of Uustalu and
Vene [75] (see also [72]) are a particular case of our monoidal
streams (Theorems 6.1 and 6.3). In the category of stochastic
functions, our construction captures the notion of controlled
stochastic process [27, 66] (Theorem 7.2).
In order to arrive to this definition, we unify the previ-

ous literature: we characterize the cartesian “intensional
stateful sequences” of Katsumata and Sprunger with a final
coalgebra (Theorem 2.5), and then “extensional stateful se-
quences” in terms of the “feedback monoidal categories” of
Katis, Sabadini and Walters [46] (Theorem 3.8). We justify
observational equivalence with a refined fixpoint equation
that employs coends (Theorem 4.11). We strictly generalize
“stateful sequences” from the cartesian to the monoidal case.

Finally, we extend a type theory of symmetric monoidal
categories with a feedback operator (Section 8) and we use
it as a stochastic dataflow programming language.

1.2 Related work
Coalgebraic streams. Uustalu and Vene [75] provide el-

egant comonadic semantics for a (cartesian) Lucid-like pro-
gramming language. We shall prove that their exact tech-
nique cannot be possibly extended to arbitrary monoidal cat-
egories (Theorem 6.1). However, we recover their semantics
as a particular case of our monoidal streams (Theorem 6.3).

Statefulmorphism sequences. Sprunger andKatsumata
constructed the category of stateful sequences in the carte-
sian case [73]. Our work is based on an unpublished work
by Román [65] that first exteneded this definition to the
symmetric monoidal case, using coends to justify extensional
equality. Shortly after, Carette, de Visme and Perdrix [18]
rederived this construction and applied it to the case of com-
pletely positive maps between Hilbert spaces, using (a priori)
a slightly different notion of equality. We synthetise some
of this previous work, we justify it for the first time using
coalgebra and we particularize it to some cases of interest.

Feedback. Feedback monoidal categories are a weaken-
ing of traced monoidal categories. The construction of the
free such categories is originally due to Katis, Sabadini and
Walters [46]. Feedback monoidal categories and their free
construction have been repurposed and rediscovered multi-
ple times in the literature [13, 32, 38, 44]. Di Lavore et al. [26]
summarize these uses and introduce delayed feedback.

General and dependent streams. Our work concerns
synchronous streams: those where, at each point in time
𝑡 = 0, 1, . . . , the stream process takes exactly one input and
produces exactly one output. This condition is important in
certain contexts like, for instance, real-time embedded sys-
tems; but it is not always present. The study of asynchronous

stream transformers and their universal properties is con-
siderably different [1], and we refer the reader to the recent
work of Garner [31] for a discussion on non-synchronous
streams. Finally, when we are concerned with dependent
streams indexed by time steps, a possible approach, when
our base category is a topos, is to use the topos of trees [9].

Categorical dataflow programming. Category theory
is a common tool of choice for dataflow programming [32,
56, 67]. In particular, profunctors and coends are used by
Hildebrandt, Panangaden and Winskel [37] to generalise a
model of non-deterministic dataflow, which has been the
main focus [51, 54, 60] outside cartesian categories.

1.3 Synopsis
This manuscript contains three main definitions in terms
of universal properties (intensional, extensional and observa-
tional streams, Definitions 2.2, 3.7 and 4.1); and three explicit
constructions for them (intensional, extensional and observa-
tional sequences, Definitions 2.4, 2.8 and 4.7). Each definition
is refined into the next one: each construction is a quotient-
ing of the previous one.

Sections 1.4 and 2.3 contain expository material on coalge-
bra and dinaturality. Section 2 presents intensional monoidal
streams. Section 3 introduces extensional monoidal streams
in terms of feedback monoidal categories. Section 4 intro-
duces the definitive observational equivalence and defines
monoidal streams. Section 5 constructs the feedback monoi-
dal category of monoidal streams. Sections 6 and 7 present
two examples: cartesian and stochastic streams. Section 8
introduces a type theory for feedback monoidal categories.

1.4 Prelude: Coalgebra
In this preparatory section, we introduce some background
material on coalgebra [3, 41, 67]. Coalgebra is the category-
theoretic study of stateful systems and infinite data-structures,
such as streams. These structures arise as final coalgebras:
universal solutions to certain functor equations.

Let us fix an endofunctor 𝐹 : C→ C through the section.

Definition 1.1. A coalgebra (𝑌, 𝛽) is an object 𝑌 ∈ C, to-
gether with a morphism 𝛽 : 𝑌 → 𝐹𝑌 . A coalgebra morphism
𝑔 : (𝑌, 𝛽) → (𝑌 ′, 𝛽 ′) is a morphism 𝑔 : 𝑌 → 𝑌 ′ such that
𝑔; 𝛽 ′ = 𝛽 ; 𝐹𝑔.

Coalgebras for an endofunctor form a category with coal-
gebra morphisms between them. A final coalgebra is a final
object in this category. As such, final coalgebras are unique
up to isomorphism when they exist.

Definition 1.2. A final coalgebra is a coalgebra (𝑍,𝛾) such
that for any other coalgebra (𝑌, 𝛽) there exists a unique
coalgebra morphism 𝑔 : (𝑌, 𝛽) → (𝑍,𝛾).

Our interest in final coalgebras derives from the fact that
they are canonical fixpoints of an endofunctor. Specifically,

Monoidal Streams for Dataflow Programming

Lambek’s theorem (Theorem 1.4) states that whenever the
final coalgebra exists, it is a fixpoint.

Definition 1.3. A fixpoint is a coalgebra (𝑌, 𝛽) such that
𝛽 : 𝑌 → 𝐹𝑌 is an isomorphism. A fixpoint morphism is a
coalgebra morphism between fixpoints: fixpoints and fix-
point morphisms form a full subcategory of the category of
coalgebras. A final fixpoint is a final object in this category.

Theorem 1.4 (Lambek, [50]). Final coalgebras are fixpoints.
As a consequence, when they exist, they are final fixpoints.

The last question before continuing is how to explicitly
construct a final coalgebra. This is answered by Adamek’s
theorem (Theorem 1.5). The reader may be familiar with
Kleene’s theorem for constructing fixpoints [74]: the least
fixpoint of a monotone function 𝑓 : 𝑋 → 𝑋 in a directed-
complete partial order (𝑋, ⩽) is the supremum of the chain
⊥ ⩽ 𝑓 (⊥) ⩽ 𝑓 (𝑓 (⊥)) ⩽ . . . , where ⊥ is the least element of
the partial order, whenever this supremum is preserved by
𝑓 . This same result can be categorified into a fixpoint theo-
rem for constructing final coalgebras: the directed-complete
poset becomes a category with 𝜔-chain limits; the mono-
tone function becomes an endofunctor; and the least element
becomes the final object.

Theorem 1.5 (Adamek, [4]). Let D be a category with a final
object 1 and𝜔-shaped limits. Let 𝐹 : D→ D be an endofunctor.
We write 𝐿 = lim𝑛 𝐹

𝑛1 for the limit of the following 𝜔-chain,
which is called the terminal sequence of 𝐹 .

1
!←− 𝐹1

𝐹 !←− 𝐹𝐹1
𝐹𝐹 !←− 𝐹𝐹𝐹1

𝐹𝐹𝐹 !←− . . .

Assume that 𝐹 preserves this limit, meaning that the canonical
morphism 𝐹𝐿 → 𝐿 is an isomorphism. Then, 𝐿 is the final
𝐹 -coalgebra.

2 Intensional Monoidal Streams
This section introduces a preliminary definition of monoidal
stream in terms of a fixpoint equation (in Figure 5). In later
sections, we refine both this definition and its characteriza-
tion into the definitive notion of monoidal stream.

Let (C, ⊗, 𝐼) be a fixed symmetric monoidal category.

2.1 The fixpoint equation
Classically, type-variant streams have a neat coinductive
definition [41, 67] that says:
“A stream of type A = (𝐴0, 𝐴1, . . .) is an element of 𝐴0
together with a stream of type A+ = (𝐴1, 𝐴2, . . .)”.

Formally, streams are the final fixpoint of the equation

S(𝐴0, 𝐴1, . . .) � 𝐴0 × S(𝐴1, 𝐴2, . . .);

and this fixpoint is computed to be S(A) = ∏∞
𝑛∈N 𝐴𝑛 .

In the same vein, we want to introduce not only streams
but stream processes over a fixed theory of processes.

“A stream process fromX = (𝑋0, 𝑋1, . . .) to Y = (𝑌0, 𝑌1, . . .)
is a process from 𝑋0 to 𝑌0 communicating along a channel
𝑀 with a stream process from X+ = (𝑋1, 𝑋2, . . .) to Y+ =
(𝑌1, 𝑌2, . . .).”

Streams are recovered as stream processes on an empty in-
put, so we take this more general slogan as our preliminary
definition of monoidal stream (in Definition 2.2). Formally,
they are the final fixpoint of the equation in Figure 5.

T(X,Y) �
∑
𝑀 ∈C

hom (𝑋0, 𝑀 ⊗ 𝑌0) × T(𝑀 · X+,Y+).

Figure 5. Fixpoint equation for intensional streams.

Remark 2.1 (Notation). Let X ∈ [N,C] be a sequence of ob-
jects (𝑋0, 𝑋1, . . .). We write X+ for its tail (𝑋1, 𝑋2, . . .). Given
𝑀 ∈ C, we write𝑀 ·X for the sequence (𝑀 ⊗𝑋0, 𝑋1, 𝑋2, . . .);
As a consequence, we write𝑀 · X+ for (𝑀 ⊗ 𝑋1, 𝑋2, 𝑋3, . . .).

Definition 2.2. The set of intensional monoidal streams
T : [N,C]𝑜𝑝 × [N,C] → Set, depending on inputs and out-
puts, is the final fixpoint of the equation in Figure 5.

Remark 2.3 (Initial fixpoint). There exists an obvious fixpoint
for the equation in Figure 5: the constant empty set. This
solution is the initial fixpoint, a minimal solution. The final
fixpoint will be realized by the set of intensional sequences.

2.2 Intensional sequences
We now construct the set of intensional streams explicitly
(Theorem 2.5). For this purpose, we generalize the “state-
ful morphism sequences” of Katsumata and Sprunger [73]
from cartesian to arbitrary symmetric monoidal categories
(Definition 2.4). We derive a novel characterization of these
“sequences” as the desired final fixpoint (Theorem 2.5).

In the work of Katsumata and Sprunger, a stateful se-
quence is a sequence of morphisms 𝑓𝑛 : 𝑀𝑛−1×𝑋𝑛 → 𝑀𝑛×𝑌𝑛
in a cartesian monoidal category. These morphisms repre-
sent a process at each point in time 𝑛 = 0, 1, 2, At each
step 𝑛, the process takes an input 𝑋𝑛 and, together with the
stored memory𝑀𝑛−1, produces some output 𝑌𝑛 and writes
to a new memory𝑀𝑛 . The memory is initially empty, with
𝑀−1 = 1 being the final object by convention. We extend this
definition to any symmetric monoidal category.

Definition 2.4. Let X and Y be two sequences of objects
representing inputs and outputs, respectively. An intensional
sequence is a sequence of objects (𝑀0, 𝑀1, . . .) together with
a sequence of morphisms

(𝑓𝑛 : 𝑀𝑛−1 ⊗ 𝑋𝑛 → 𝑀𝑛 ⊗ 𝑌𝑛)𝑛∈N ,

where, by convention, 𝑀−1 = 𝐼 is the unit of the monoidal
category. In other words, the set of intensional sequences is

Int(X,Y) B
∑

𝑀 ∈[N,C]

∞∏
𝑛=0

hom (𝑀𝑛−1 ⊗ 𝑋𝑛, 𝑀𝑛 ⊗ 𝑌𝑛).

Elena Di Lavore, Giovanni de Felice, and Mario Román

We now prove that intensional sequences are the final fix-
point of the equation in Figure 5. The following Theorem 2.5
serves two purposes: it gives an explicit final solution to this
fixpoint equation and it gives a novel universal property to
intensional sequences.

Theorem 2.5. Intensional sequences are the explicit construc-
tion of intensional streams, T � Int. In other words, they are
a fixpoint of the equation in Figure 5, and they are the final
such one.

Proof sketch. It is known that categories of functors over sets,
such as [[N,C]𝑜𝑝 × [N,C], Set], have all limits. Adamek’s
theorem (Theorem 1.5) states that, if the following limit is a
fixpoint, it is indeed the final one.

lim
𝑛∈N

∑
𝑀0,...,𝑀𝑛

𝑛∏
𝑡=0

hom (𝑀𝑡−1 ⊗ 𝑋𝑡 , 𝑀𝑡 ⊗ 𝑌𝑡) (1)

Connected limits commute with coproducts and the limit of
the nth-product is the infinite product. Thus, Equation (1)
is isomorphic to Int(X,Y). It only remains to show that
Int(X,Y) is a fixpoint, which means it should be isomorphic
to the following expression.∑
𝑀0

hom (𝑋0, 𝑀0⊗𝑌0)×
∑

𝑀 ∈[N,C]

∞∏
𝑛=1

hom (𝑀𝑛−1⊗𝑋𝑛, 𝑀𝑛⊗𝑌𝑛).

(2)
Cartesian products distribute over coproducts, so Equation (2)
is again isomorphic to Int(X,Y). □

2.3 Interlude: Dinaturality
During the rest of this text, we deal with two different defini-
tions of what it means for two processes to be equal: extensio-
nal and observational equivalence, apart from pure intensional
equality. Fortunately, when working with functors of the
form 𝑃 : C𝑜𝑝 × C → Set, the so-called endoprofunctors, we
already have a canonical notion of equivalence.
Endoprofunctors 𝑃 : C𝑜𝑝 × C → Set can be thought as

indexing families of processes 𝑃 (𝑀, 𝑁) by the types of an
input channel 𝑀 and an output channel 𝑁 . A process 𝑝 ∈
𝑃 (𝑀, 𝑁) writes to a channel of type 𝑁 and then reads from
a channel of type𝑀 .
Now, assume we also have a transformation 𝑟 : 𝑁 → 𝑀

translating from output to input types. Then, we can plug
the output to the input: the process 𝑝 writes with type 𝑁 ,
then 𝑟 translates from 𝑁 to 𝑀 , and then 𝑝 uses this same
output as its input𝑀 . This composite process can be given
two sligthly different descriptions; the process could
• translate after writing, 𝑃 (𝑀, 𝑟) (𝑝) ∈ 𝑃 (𝑀,𝑀), or
• translate before reading, 𝑃 (𝑟, 𝑁) (𝑝) ∈ 𝑃 (𝑁, 𝑁).

These two processes have different types. However, with the
output plugged to the input, it does not really matter when
to apply the translation. These two descriptions represent
the same process: they are dinaturally equivalent.

Definition 2.6 (Dinatural equivalence). For any functor
𝑃 : C𝑜𝑝 × C→ Set, consider the set

𝑆𝑃 =
∑
𝑀 ∈C

𝑃 (𝑀,𝑀).

Dinatural equivalence, (∼), on the set 𝑆𝑃 is the smallest equiv-
alence relation satisfying 𝑃 (𝑀, 𝑟) (𝑝) ∼ 𝑃 (𝑟, 𝑁) (𝑝) for each
𝑝 ∈ 𝑃 (𝑀, 𝑁) and each 𝑟 ∈ hom (𝑁,𝑀).

Coproducts quotiented by dinatural equivalence construct
a particular form of colimit called a coend. Under the process
interpretation of profunctors, taking a coend means plugging
an output to an input of the same type.

Definition 2.7 (Coend, [53, 55]). Let 𝑃 : C𝑜𝑝 × C→ Set be
a functor. Its coend is the coproduct of 𝑃 (𝑀,𝑀) indexed by
𝑀 ∈ C, quotiented by dinatural equivalence.∫ 𝑀 ∈C

𝑃 (𝑀,𝑀) =
(∑
𝑀 ∈C

𝑃 (𝑀,𝑀)
/
∼
)
.

That is, the coend is the colimit of the diagram with a cospan
𝑃 (𝑀,𝑀) ← 𝑃 (𝑀, 𝑁) → 𝑃 (𝑁, 𝑁) for each 𝑓 : 𝑁 → 𝑀 .

2.4 Towards extensional memory channels
Let us go back to intensional monoidal streams. Consider a
family of processes 𝑓𝑛 : 𝑀𝑛−1 ⊗ 𝑋𝑛 → 𝑌𝑛 ⊗ 𝑁𝑛 reading from
memories of type 𝑀𝑛 but writing to memories of type 𝑁𝑛 .
Assume we also have processes 𝑟𝑛 : 𝑁𝑛 → 𝑀𝑛 translating
from output to input memory. Then, we can consider the
process that does 𝑓𝑛 , translates from memory 𝑁𝑛 to memory
𝑀𝑛 and then does 𝑓𝑛+1. This process is described by two
different intensional sequences,
• (𝑓𝑛 ; (𝑟𝑛 ⊗ id) : 𝑀𝑛−1 ⊗ 𝑋𝑛 → 𝑀𝑛 ⊗ 𝑌𝑛)𝑛∈N, and
• ((𝑟𝑛−1 ⊗ id); 𝑓𝑛 : 𝑁𝑛−1 ⊗ 𝑋𝑛 → 𝑁𝑛 ⊗ 𝑌𝑛)𝑛∈N.

These two intensional sequences have different types for the
memory channels. However, in some sense, they represent
the same process description. If we do not care about what
exactly it is that we save to memory, we should consider
two such processes to be equal (as in Figure 6, where “the
same process” can keep two different values in memory). In-
deed, dinaturality in the memory channels𝑀𝑛 is the smallest
equivalence relation (∼) satisfying

(𝑓𝑛 ; (𝑟𝑛 ⊗ id))𝑛∈N ∼ ((𝑟𝑛−1 ⊗ id); 𝑓𝑛)𝑛∈N .

This is precisely the quotienting that we perform in order to
define extensional sequences.

Definition 2.8. Extensional equivalence of intensional se-
quences, (∼), is dinatural equivalence in the memory chan-
nels 𝑀𝑛 . An extensional sequence from X to Y is an equiva-
lence class

⟨𝑓𝑛 : 𝑀𝑛−1 ⊗ 𝑋 → 𝑀𝑛 ⊗ 𝑌 ⟩𝑛∈N
of intensional sequences under extensional equivalence.

Monoidal Streams for Dataflow Programming

In other words, the set of extensional sequences is the
set of intensional sequences substituting the coproduct by a
coend,

Ext(X,Y) =
∫ 𝑀 ∈[N,C] ∞∏

𝑖=0
hom (𝑋𝑖 ⊗ 𝑀𝑖−1, 𝑌𝑖 ⊗ 𝑀𝑖).

+0

𝑓 𝑏𝑦

𝑢𝑛𝑖 𝑓

+

0

𝑓 𝑏𝑦

𝑢𝑛𝑖 𝑓

∼

Figure 6. Extensionally equivalent walks keeping different
memories: the current position vs. the next position.

3 Extensional Monoidal Streams
In this section, we introduce extensional monoidal streams
in terms of a universal property: extensional streams are the
morphisms of the free delayed-feedback monoidal category
(Theorem 3.8).

Feedback monoidal categories come from the work of
Katis, Sabadini and Walters [46]. They are instrumental to
our goal of describing and composing signal flow graphs:
they axiomatize a graphical calculus that extends the well-
known string diagrams for monoidal categories with feed-
back loops [26, 46]. Constructing the free feedback monoidal
category (Definition 3.4) will lead to the main result of this
section: extensional sequences are the explicit construction
of extensional streams (Theorem 3.8).

We finish the section by exploring how extensional equiv-
alence may not be enough to capture true observational
equality of processes (Example 3.10).

3.1 Feedback monoidal categories
Feedback monoidal categories are symmetric monoidal cate-
gories with a “feedback” operation that connects outputs to
inputs. They have a natural axiomatization (Definition 3.1)
that has been rediscovered independently multiple times,
with only slight variations [10, 13, 45, 46]. It is weaker than
that of traced monoidal categories [26] while still satisfying a
normalization property (Theorem 3.5). We present a novel
definition that generalizes the previous ones by allowing the
feedback operator to be guarded by a monoidal endofunctor.

Definition 3.1. A feedback monoidal category is a symme-
tric monoidal category (C, ⊗, 𝐼) endowed with a monoidal
endofunctor F : C→ C and an operation

fbk𝑆 : hom (F(𝑆) ⊗ 𝑋, 𝑆 ⊗ 𝑌) → hom (𝑋,𝑌)
for all 𝑆 , 𝑋 and 𝑌 objects of C; this operation needs to satisfy
the following axioms.

(A1). Tightening:𝑢 ;fbk𝑆 (𝑓) ;𝑣 = fbk𝑆 ((idF𝑆⊗𝑢) ;𝑓 ;(id𝑆⊗𝑣)).
(A2). Vanishing: fbk𝐼 (𝑓) = 𝑓 .
(A3). Joining: fbk𝑇 (fbk𝑆 (𝑓)) = fbk𝑆⊗𝑇 (𝑓)
(A4). Strength: fbk𝑆 (𝑓) ⊗ 𝑔 = fbk𝑆 (𝑓 ⊗ 𝑔).
(A5). Sliding: fbk𝑆 ((Fℎ ⊗ id𝑋) ; 𝑓) = fbk𝑇 (𝑓 ; (ℎ ⊗ id𝑌)).

𝑓

𝐹ℎ =
𝑓

ℎ

Figure 7. The sliding axiom (A5).

A feedback functor is a symmetric monoidal functor that
preserves the feedback structure (Appendix, Definition A.9).

Remark 3.2 (Wait or trace). In a feedback monoidal category
(C, fbk), we construct the morphism wait𝑋 : 𝑋 → 𝐹𝑋 as
a feedback loop over the symmetry, wait𝑋 = fbk (𝜎𝑋,𝑋). A
traced monoidal category [43] is a feedback monoidal cate-
gory guarded by the identity functor such that wait𝑋 = id𝑋 .

The “state construction”, St(•), realizes the free feedback
monoidal category. As it happens with feedback monoidal
categories, this construction has appeared in the literature
in slightly different forms. It has been used for describing a
“memoryful geometry of interaction” [38], “stateful resource
calculi” [13], and “processes with feedback” [44, 46].
The idea in all of these cases is the same: we allow the

morphisms of a monoidal category to depend on a “state
space” 𝑆 , possibly guarded by a functor. Adding a state space
is equivalent to freely adding feedback [26].

Definition 3.3. A stateful morphism is a pair (𝑆, 𝑓) consist-
ing of a “state space” 𝑆 ∈ C and a morphism 𝑓 : F𝑆 ⊗ 𝑋 →
𝑆 ⊗ 𝑌 . We say that two stateful morphisms are sliding equiv-
alent if they are related by the smallest equivalence rela-
tion satisfying (𝑆, (F𝑟 ⊗ id) ; ℎ) ∼ (𝑇,ℎ ; (𝑟 ⊗ id)) for each
ℎ : 𝑋 ⊗ F𝑇 → 𝑆 ⊗ 𝑌 and each 𝑟 : 𝑆 → 𝑇 .

In other words, sliding equivalence is dinaturality in 𝑆 .

Definition 3.4 (St(•) construction, [26, 46]). Wewrite StF (C)
for the symmetric monoidal category that has the same ob-
jects as C and whose morphisms from 𝑋 to 𝑌 are stateful
morphisms 𝑓 : F𝑆 ⊗ 𝑋 → 𝑆 ⊗ 𝑌 up to sliding.

homStF (C) (𝑋,𝑌) B
∫ 𝑆 ∈C

homC (F𝑆 ⊗ 𝑋, 𝑆 ⊗ 𝑌).

Theorem 3.5 (see [46]). StF (C) is the free feedback monoidal
category over (C, F).

3.2 Extensional monoidal streams
Monoidal streams should be, in some sense, the minimal
way of adding feedback to a theory of processes. The output

Elena Di Lavore, Giovanni de Felice, and Mario Román

of this feedback, however, should be delayed by one unit
of time: the category [N,C] is naturally equipped with a
delay endofunctor that shifts a sequence by one. Extensional
monoidal streams form the free delayed-feedback category.

Definition 3.6 (Delay functor). Let 𝜕 : [N,C] → [N,C]
be the endofunctor defined on objects X = (𝑋0, 𝑋1, . . .), as
𝜕(X) = (𝐼 , 𝑋0, 𝑋1, . . .); and on morphisms f = (𝑓0, 𝑓1, . . .) as
𝜕(f) = (id𝐼 , 𝑓0, 𝑓1, . . .).
Definition 3.7. The set of extensional monoidal streams,
depending on inputs and outputs, R : [N,C]𝑜𝑝 × [N,C] →
Set, is the hom-set of the free feedback monoidal category
over ([N,C], 𝜕).
We characterize now extensional streams in terms of ex-

tensional sequences and the St(•)-construction.
Theorem 3.8. Extensional sequences are the explicit construc-
tion of extensional streams, R � Ext.

Proof. Note that Ext(X,Y) = St𝜕 ([N,C]) (X,Y). That is, the
extensional sequences we defined using dinaturality coin-
cide with the morphisms of St𝜕 ([N,C]), the free feedback
monoidal category over ([N,C], 𝜕) in Definition 3.4. □

As a consequence, the calculus of signal flow graphs given
by the syntax of feedback monoidal categories is sound and
complete for extensional equivalence over [N,C].

3.3 Towards observational processes
Extensional sequences were an improvement over inten-
sional sequences because they allowed us to equate process
descriptions that were essentially the same. However, we
could still have two processes that are “observationally the
same” without them being described in the same way.

Remark 3.9 (Followed by). As we saw in the Introduction,
“followed by” is a crucial operation in dataflow programming.
Any sequence can be decomposed as X � 𝑋0 ·𝜕(X+).1 We call
“followed by” to the coherence map in [N,C] that witnesses
this decomposition.

fbyX : 𝑋0 · 𝜕(X+) → X

In the case of constant sequences X = (𝑋,𝑋, . . .), we have
that X+ = X; which means that “followed by” has type
fbyX : 𝑋 · 𝜕X→ X.

Example 3.10. Consider the extensional stateful sequence, in
any cartesian monoidal category, that saves the first input to
memory without ever producing an output. Observationally,
this is no different from simply discarding the first input,
()𝑋 : 𝑋 → 1. However, in principle, we cannot show that
these are extensionally equal, that is, fbk (fbyX) ≠ ()𝑋 .

More generally, discarding the result of any stochastic or
deterministic signal flow graph is, observationally, the same
as doing nothing (Figure 8, consequence of Theorem 7.2).
1This can also be seen as the isomorphism making “sequences” a final
coalgebra. That is, the first slogan we saw in Section 2.1.

+

0

𝑓 𝑏𝑦

𝑢𝑛𝑖 𝑓
≈

Figure 8. Observationally, a silent process does nothing.

4 Observational Monoidal Streams
In this section, we introduce our definitivemonoidal streams:
observational streams (Definition 4.1). Their explicit construc-
tion is given by observational sequences: extensional se-
quences quotiented by observational equivalence.

Intuitively, two processes are observationally equal if they
are “equal up to stage 𝑛”, for any 𝑛 ∈ N. We show that, in
sufficiently well-behaved monoidal categories (which we
call productive, Definition 4.9), the set of observational se-
quences given some inputs and outputs is the final coalgebra
of a fixpoint equation (Figure 9). The name “observational
equivalence” is commonly used to denote equality on the
final coalgebra: Theorem 4.11 justifies our use of the term.

4.1 Observational streams
We saw in Section 2 that we can define intensional sequences
as a solution to a fixpoint equation. We now consider the
same equation, just substituting the coproduct for a coend.

Definition 4.1 (Observational streams). The set of observa-
tional monoidal streams, depending on inputs and outputs,
is the functor Q : [N,C]𝑜𝑝 × [N,C] → Set given by the final
fixpoint of the equation in Figure 9.

Q(X,Y) �
∫ 𝑀 ∈C

hom (𝑋0, 𝑀 ⊗ 𝑌0) × Q(𝑀 · X+,Y+).

Figure 9. Fixpoint equation for observational streams.

The explicit construction of this final fixpoint will be given
by observational sequences (Theorem 4.11).

4.2 Observational sequences
We said that observational equivalence is “equality up to
stage 𝑛”, so our first step will be to define what it means to
truncate an extensional sequence at any given 𝑛 ∈ N.

Definition 4.2 (𝑛-Stage process). An n-stage process from
inputs X = (𝑋0, 𝑋1, . . .) to outputs Y = (𝑌0, 𝑌1, . . .) is an
element of the set

Stage𝑛 (X,Y) =
∫ 𝑀0,...,𝑀𝑛

𝑛∏
𝑖=0

hom (𝑀𝑖−1 ⊗ 𝑋𝑖 , 𝑀𝑖 ⊗ 𝑌𝑖).

Remark 4.3. In other words, 𝑛-stage processes are 𝑛-tuples
(𝑓𝑖 : 𝑀𝑖−1 ⊗ 𝑋𝑖 → 𝑀𝑖 ⊗ 𝑌𝑖)𝑛𝑖=0, for some choice of 𝑀𝑖 up to

Monoidal Streams for Dataflow Programming

dinaturality, that we write as

⟨𝑓0 |𝑓1 | . . . |𝑓𝑛 | ∈ Stage𝑛 (X,Y).
In this notation, dinaturality means that morphisms can slide
past the bars. That is, for any 𝑟𝑖 : 𝑁𝑖 → 𝑀𝑖 and any tuple,
dinaturality says that

⟨𝑓0; (𝑟0 ⊗ id) |𝑓1; (𝑟1 ⊗ id) | . . . |𝑓𝑛 ; (𝑟𝑛 ⊗ id) |
= ⟨𝑓0 | (𝑟0 ⊗ id); 𝑓1 | . . . | (𝑟𝑛−1 ⊗ id); 𝑓𝑛 | .

Note that the last 𝑟𝑛 is removed by dinaturality.

Definition 4.4 (Truncation). The 𝑘-truncation of an exten-
sional sequence ⟨𝑓𝑛 : 𝑀𝑛−1 ⊗ 𝑋𝑛 → 𝑀𝑛 ⊗ 𝑌𝑛⟩ ∈ Ext(X,Y) is
⟨𝑓0 | . . . |𝑓𝑘 | ∈ Stage𝑘 (X,Y). Truncation is well-defined under
dinatural equivalence (Remark 4.3).

For 𝑘 ⩽ 𝑛, the 𝑘-truncation of an n-stage process given by
⟨𝑓0 |𝑓1 | . . . |𝑓𝑛 | ∈ Stage𝑛 (X,Y) is ⟨𝑓0 | . . . |𝑓𝑘 | ∈ Stage𝑘 (X,Y).
This induces functions 𝜋𝑛,𝑘 : Stage𝑛 (X,Y) → Stage𝑘 (X,Y),
with the property that 𝜋𝑛,𝑚 ;𝜋𝑚,𝑘 = 𝜋𝑛,𝑘 .

Definition 4.5 (Observational equivalence). Two extensio-
nal stateful sequences

⟨𝑓 ⟩𝑛∈N, ⟨𝑔⟩𝑛∈N ∈
∫ 𝑀 ∈[N,C] ∞∏

𝑖=0
hom (𝑀𝑖−1 ⊗ 𝑋𝑖 , 𝑌𝑖 ⊗ 𝑀𝑖)

are observationally equivalent when all their n-stage trun-
cations are equal. That is, ⟨𝑓0 | . . . |𝑓𝑛 | = ⟨𝑔0 | . . . |𝑔𝑛 |, for each
𝑛 ∈ N. We write this as 𝑓 ≈ 𝑔.

Remark 4.6. Formally, this is to say that the sequences ⟨𝑓 ⟩𝑛∈N
and ⟨𝑔⟩𝑛∈N have the same image on the limit

lim𝑛 Stage𝑛 (X,Y),
over the chain 𝜋𝑛,𝑘 : Stage𝑛 (X,Y) → Stage𝑘 (X,Y).

Definition 4.7. An observational sequence from X to Y is
an equivalence class

[⟨𝑓𝑛 : 𝑀𝑛−1 ⊗ 𝑋𝑛 → 𝑀𝑛 ⊗ 𝑌𝑛⟩𝑛∈N]≈
of extensional sequences under observational equivalence.
In other words, the set of observational sequences is

Obs(X,Y) �
(∫ 𝑀 ∈[N,C] ∞∏

𝑖=0
hom (𝑀𝑖−1 ⊗ 𝑋𝑖 , 𝑀𝑖 ⊗ 𝑌𝑖)

) /
≈

4.3 Productive categories
The interaction between extensional and observational equiv-
alence is of particular interest in some well-behaved cate-
gories that we call productive categories. In productive cate-
gories, observational sequences are the final fixpoint of an
equation (Theorem 4.11), analogous to that of Section 2.
An important property of programs is termination: a ter-

minating program always halts in a finite amount of time.
However, some programs (such as servers, drivers) are not
actually intended to terminate but to produce infinite output
streams. A more appropriate notion in these cases is that of
productivity: a program that outputs an infinite stream of

data is productive if each individual component of the stream
is produced in finite time. To quip, “a productive stream is a
terminating first component followed by a productive stream”.
The first component of our streams is only defined up

to some future. It is an equivalence class 𝛼 ∈ Stage1 (X,Y),
with representatives 𝛼𝑖 : 𝑋0 → 𝑀𝑖 ⊗ 𝑌0. But, if it does ter-
minate, there is a process 𝛼0 : 𝑋0 → 𝑀0 ⊗ 𝑌0 in our theory
representing the process just until 𝑌0 is output.

Definition 4.8 (Terminating component). A 1-stage pro-
cess 𝛼 ∈ Stage1 (X,Y) is terminating relative to C if there
exists 𝛼0 : 𝑋0 → 𝑀0 ⊗ 𝑌0 such that each one of its represen-
tatives, ⟨𝛼𝑖 | = 𝛼 , can be written as 𝛼𝑖 = 𝛼0; (𝑠𝑖 ⊗ id) for some
𝑠𝑖 : 𝑀0 → 𝑀𝑖 .

The morphisms 𝑠𝑖 represent what is unique to each repre-
sentative, and so we ask that, for any 𝑢 : 𝑀0 ⊗ 𝐴 → 𝑈 ⊗ 𝐵

and 𝑣 : 𝑀0 ⊗ 𝐴→ 𝑉 ⊗ 𝐵, the equality ⟨𝛼𝑖 ⊗ id𝐴;𝑢 ⊗ id𝑌0 | =
⟨𝛼 𝑗 ⊗ id𝐴; 𝑣 ⊗ id𝑌0 | implies ⟨𝑠𝑖 ⊗ id𝐴;𝑢 | = ⟨𝑠 𝑗 ⊗ id𝐴; 𝑣 |.

Definition 4.9 (Productive category). A symmetric monoi-
dal category (C, ⊗, 𝐼) is productive when every 1-stage pro-
cess is terminating relative to C.

Remark 4.10. Cartesian monoidal categories are productive
(Proposition C.1). Markov categories [30] with conditionals
and ranges are productive (Theorem A.21). Free symmetric
monoidal categories and compact closed categories are al-
ways productive.

Theorem 4.11. Observational sequences are the explicit con-
struction of observational streams when the category is produc-
tive. More precisely, in a productive category, the final fixpoint
of the equation in Figure 9 is given by the set of observational
sequences, Obs.

Proof sketch. The terminal sequence for this final coalgebra
is given by Stage𝑛 (X,Y). In productive categories, we can
prove that the limit lim𝑛 Stage𝑛 (X,Y) is a fixpoint of the
equation in Figure 9 (Lemma D.6). Finally, in productive
categories, observational sequences coincide with this limit
(Theorem D.7). □

5 The Category of Monoidal Streams
We are ready to construct Stream: the feedback monoidal
category of monoidal streams. Let us recast the definitive
notion of monoidal stream (Definition 4.1) coinductively.

Definition 5.1. A monoidal stream 𝑓 ∈ Stream(X,Y) is a
triple consisting of
• 𝑀 (𝑓) ∈ Obj(C), the memory,
• now(𝑓) ∈ hom (𝑋0, 𝑀 (𝑓) ⊗ 𝑌0), the first action,
• later(𝑓) ∈ Stream(𝑀 (𝑓) ·X+,Y+), the rest of the action,

quotiented by dinaturality in𝑀 .

Explicitly, monoidal streams are quotiented by the equiv-
alence relation 𝑓 ∼ 𝑔 generated by
• the existence of 𝑟 : 𝑀 (𝑔) → 𝑀 (𝑓),

Elena Di Lavore, Giovanni de Felice, and Mario Román

• such that now(𝑓) = now(𝑔); 𝑟 ,
• and such that 𝑟 · later(𝑓) ∼ later(𝑔).

Here, 𝑟 · later(𝑓) ∈ Stream(𝑀 (𝑔) · X+,Y+) is obtained by
precomposition of the first action of later(𝑓) with 𝑟 .
Remark 5.2. This is a coinductive definition of the functor

Stream : [N,C]𝑜𝑝 × [N,C] → Set.

In principle, arbitrary final coalgebras do not need to ex-
ist. Moreover, it is usually difficult to explicitly construct
such coalgebras [4]. However, in productive categories, this
coalgebra does exist and is constructed by observational se-
quences. From now on, we reason coinductively [48], a style
particularly suited for all the following definitions.

5.1 The symmetric monoidal category of streams
The definitions for the operations of sequential and parallel
composition are described in two steps. We first define an
operation that takes into account an extra memory channel
(Figure 10); we use this extra generality to strengthen the
coinduction hypothesis. We then define the desired operation
as a particular case of this coinductively defined one.

now(𝑓)

now(𝑔)

𝐴 𝐵 𝑋

𝑍𝑀𝑔𝑀𝑓

now(𝑓) now(𝑔)

𝑋 𝑋 ′𝐴 𝐵

𝑀𝑔𝑀𝑓 𝑌 𝑌 ′

Figure 10. String diagrams for the first action of sequential
and parallel composition with memories.

Definition 5.3 (Sequential composition). Given two streams
𝑓 ∈ Stream(𝐴 · X,Y) and 𝑔 ∈ Stream(𝐵 · Y,Z), we compute
(𝑓 𝐴 ;𝑔𝐵) ∈ Stream((𝐴⊗𝐵)·X,Z), their sequential composition
with memories 𝐴 and 𝐵, as
• 𝑀 (𝑓 𝐴 ; 𝑔𝐵) = 𝑀 (𝑓) ⊗ 𝑀 (𝑔),
• now(𝑓 𝐴 ; 𝑔𝐵) = 𝜎 ; (now(𝑓) ⊗ id) ; 𝜎 ; (now(𝑔) ⊗ id),
• later(𝑓 𝐴 ; 𝑔𝐵) = later(𝑓)𝑀 (𝑓) ; later(𝑔)𝑀 (𝑔) .

We write (𝑓 ; 𝑔) for (𝑓 𝐼 ; 𝑔𝐼) ∈ Stream(X,Z); the sequential
composition of 𝑓 ∈ Stream(X,Y) and 𝑔 ∈ Stream(Y,Z).
Definition 5.4. The identity idX ∈ Stream(X,X) is defined
by𝑀 (idX) = 𝐼 , now(idX) = id𝑋0 , and later(idX) = idX+ .

Definition 5.5 (Parallel composition). Given two streams
𝑓 ∈ Stream(𝐴 ·X,Y) and 𝑔 ∈ Stream(𝐵 ·X′,Y′), we compute
(𝑓 𝐴 ⊗𝑔𝐵) ∈ Stream((𝐴⊗𝐵) · (X⊗X′),Y⊗Y′), their parallel
composition with memories 𝐴 and 𝐵, as
• 𝑀 (𝑓 𝐴 ⊗ 𝑔𝐵) = 𝑀 (𝑓) ⊗ 𝑀 (𝑔),
• now(𝑓 𝐴 ⊗ 𝑔𝐵) = 𝜎 ; (now(𝑓) ⊗ now(𝑔));𝜎 ,

• later(𝑓 𝐴 ⊗ 𝑔𝐵) = later(𝑓)𝑀 (𝑓) ⊗ later(𝑔)𝑀 (𝑔) .
We write (𝑓 ⊗ 𝑔) for (𝑓 𝐼 ⊗ 𝑔𝐼) ∈ Stream(X ⊗ X′,Y ⊗ Y′);
we call it the parallel composition of 𝑓 ∈ Stream(X,Y) and
𝑔 ∈ Stream(X′,Y′).

Definition 5.6 (Memoryless and constant streams). Each
sequence f = (𝑓0, 𝑓1, . . .), with 𝑓𝑛 : 𝑋𝑛 → 𝑌𝑛 , induces a stream
𝑓 ∈ Stream(X,Y) defined by 𝑀 (𝑓) = 𝐼 , now(𝑓) = 𝑓0, and
later(𝑓) = f+. Streams of this form are called memoryless, i.e.
their memories are given by the monoidal unit.
Moreover, each morphism 𝑓0 : 𝑋 → 𝑌 induces a constant

memoryless stream that we also call 𝑓 ∈ Stream(𝑋,𝑌), de-
fined by𝑀 (𝑓) = 𝐼 , now(𝑓) = 𝑓0, and later(𝑓) = 𝑓 .

Theorem 5.7. Monoidal streams over a productive symmetric
monoidal category (C, ⊗, 𝐼) form a symmetric monoidal cate-
gory Stream with a symmetric monoidal identity-on-objects
functor from [N,C].

Proof. Appendix, Theorem E.5. □

5.2 Delayed feedback for streams
Monoidal streams form a delayed feedback monoidal cate-
gory. Given some stream in Stream(𝜕S ⊗ X,S ⊗ Y), we can
create a new stream in Stream(X,Y) that passes the output
in S as a memory channel that gets used as the input in 𝜕S.
As a consequence, the category of monoidal streams has a
graphical calculus given by that of feedback monoidal cate-
gories. This graphical calculus is complete for extensional
equivalence (as we saw in Theorem 3.8).

Definition 5.8 (Delay functor). The functor from Defini-
tion 3.6 can be lifted to a monoidal functor 𝜕 : Stream →
Stream that acts on objects in the same way. It acts on mor-
phisms by sending a stream 𝑓 ∈ Stream(X,Y) to the stream
given by𝑀 (𝜕𝑓) = 𝐼 , now(𝜕𝑓) = id𝐼 and later(𝜕𝑓) = 𝑓 .

Definition 5.9 (Feedback operation). Given any morphism
of the form 𝑓 ∈ Stream(𝑁 · 𝜕S ⊗ X,S ⊗ Y), we define
fbk (𝑓 𝑁) ∈ Stream(𝑁 · X,Y) as
• 𝑀 (fbk (𝑓 𝑁)) = 𝑀 (𝑓) ⊗ 𝑆0,
• now(fbk (𝑓 𝑁)) = now(𝑓) and
• later(fbk (𝑓 𝑁)) = fbk (later(𝑓)𝑀 (𝑓) ⊗𝑆0).

We write fbk (𝑓) ∈ Stream(X,Y) for fbk (𝑓 𝐼), the feedback
of 𝑓 ∈ Stream(𝜕S ⊗ X,S ⊗ Y)

Theorem 5.10. Monoidal streams over a symmetric monoi-
dal category (C, ⊗, 𝐼) form a 𝜕-feedback monoidal category
(Stream, fbk).

Proof. Appendix, Theorem E.16. □

Corollary 5.11. There is a “semantics” identity-on-objects
feedback monoidal functor Sm : St𝜕 [N,C] → Stream from
the free 𝜕-feedback monoidal category to the category of monoi-
dal streams. Every extensional stateful sequence ⟨𝑓𝑛 : 𝑀𝑛−1 ⊗

Monoidal Streams for Dataflow Programming

𝑋𝑛 → 𝑌𝑛 ⊗𝑀𝑛⟩𝑛∈N gives a monoidal stream Sm (𝑓), which is
defined by𝑀 (Sm (𝑓)) = 𝑀0,

now(Sm (𝑓)) = 𝑓0, and later(Sm (𝑓)) = Sm (𝑓 +),
and this is well-defined. Moreover, this functor is full when C
is productive; it is not generally faithful.

Proof. We construct Sm from Theorems 3.5 and 5.10. More-
over, when C is productive, by Theorem 4.11, monoidal
streams are extensional sequences quotiented by observa-
tional equivalence, giving the fullness of the functor. □

6 Cartesian Streams
Dataflow languages such as Lucid or Lustre [35, 77] can
be thought of as using an underlying cartesian monoidal
structure: we can copy and discard variables and resources
without affecting the order of operations. These abilities
correspond exactly to cartesianity thanks to Fox’s theorem
(Theorem C.5, see [29]).

6.1 Causal stream functions
In the cartesian case, there is available literature on the cate-
gorical semantics of dataflow programming languages [8, 24,
25, 58, 76]. Uustalu and Vene [75] provide elegant comona-
dic semantics to a Lucid-like programming language using
the non-empty list comonad. In their framework, streams
with types X = (𝑋0, 𝑋1, . . .) are families of elements 1 →
𝑋𝑛 . Causal stream functions from X = (𝑋0, 𝑋1, . . .) to Y =

(𝑌0, 𝑌1, . . .) are families of functions 𝑓𝑛 : 𝑋0 × · · · × 𝑋𝑛 → 𝑌𝑛 .
Equivalently, they are, respectively, the states (1→ X) and
morphisms (X→ Y) of the cokleisli category of the comonad
List+ : [N, Set] → [N, Set] defined by

(List+ (X))𝑛 B
𝑛∏
𝑖=0

𝑋𝑖 .

This comonad can be extended to other base categories,
List+ : [N,C] → [N,C] only as long asC is cartesian. Indeed,
we can prove that the mere existence of such a comonad im-
plies cartesianity of the base category. For this, we introduce
a refined version of Fox’s theorem (Theorem C.7).

Theorem 6.1. Let (C, ⊗, 𝐼) be a symmetric monoidal cate-
gory. Let List+ : [N,C] → [N,C] be the functor defined by

List+ (𝑋)𝑛 B
𝑛⊗
𝑖=0

𝑋𝑖 .

This functor is monoidal, with oplaxators 𝜓+0 : List
+ (𝐼) → 𝐼

and 𝜓𝑋,𝑌 : List+ (𝑋 ⊗ 𝑌) → List+ (𝑋) ⊗ List+ (𝑌) given by
symmetries, associators and unitors.

The monoidal functor List+ : [N,C] → [N,C] has a monoi-
dal comonad structure if and only if its base monoidal category
(C, ⊗, 𝐼) is cartesian monoidal.

Proof sketch. The cartesian structure can be shown to make
List+ an opmonoidal comonad. Conversely, the opmonoidal

comonad structure implies that every object should have a
natural and uniform counital comagma structure. By our re-
fined statement of Fox’s theorem (Theorem C.7), this implies
cartesianity. See Appendix, Theorem C.4. □

This means that we cannot directly extend Uustalu and
Vene’s approach to the monoidal case. However, we prove
in the next section that our definition of monoidal streams
particularizes to their causal stream functions [73, 75].

6.2 Cartesian monoidal streams
The main claim of this section is that, in a cartesian monoi-
dal category, monoidal streams instantiate to causal stream
functions (Theorem 6.3). Let us fix such a category, (C,×, 1).

The first observation is that the universal property of the
cartesian product simplifies the fixpoint equation that defines
monoidal streams. This is a consequence of the following
chain of isomorphisms, where we apply a Yoneda reduction
to simplify the coend.

Stream(X,Y) �∫ 𝑀 hom (𝑋0, 𝑀 × 𝑌0) × Stream(𝑀 · X+,Y) �∫ 𝑀 hom (𝑋0, 𝑀) × hom (𝑋0, 𝑌0) × Stream(𝑀 · X+,Y) �
hom (𝑋0, 𝑌0) × Stream(𝑋0 · X+,Y+).

Explicitly, the Yoneda reduction works as follows: the first
action of a stream 𝑓 ∈ Stream(X,Y) can be uniquely split
as now(𝑓) = (𝑓1, 𝑓2) for some 𝑓1 : 𝑋0 → 𝑌0 and 𝑓2 : 𝑋0 →
𝑀 (𝑓). Under the dinaturality equivalence relation, (∼), we
can always find a unique representative with 𝑀 = 𝑋0 and
𝑓2 = id𝑋0 .
The definition of monoidal streams in the cartesian case is

thus simplified (Definition 6.2). From there, the explicit con-
struction of cartesian monoidal streams is straightforward.

Definition 6.2 (Cartesian monoidal streams). The set of
cartesian monoidal streams, given inputs X and outputs Y, is
the terminal fixpoint of the equation

Stream(X,Y) � hom (𝑋0, 𝑌0) × Stream(𝑋0 · X+,Y+).
In otherwords, a cartesianmonoidal stream 𝑓 ∈ Stream(X,Y)
is a pair consisting of
• fst(𝑓) ∈ hom (𝑋0, 𝑌0), the first action, and
• snd(𝑓) ∈ Stream(𝑋0 · X+,Y+), the rest of the action.

Theorem 6.3. In the cartesian case, the final fixpoint of the
equation in Figure 9 is given by the set of causal functions,

Stream(X,Y) =
∞∏

𝑛∈N
hom (𝑋0 × · · · × 𝑋𝑛, 𝑌𝑛).

That is, the category Stream of monoidal streams coincides
with the cokleisli monoidal category of the non-empty list
monoidal comonad List+ : [N,C] → [N,C].

Proof. By Adamek’s theorem (Theorem 1.5). □

Elena Di Lavore, Giovanni de Felice, and Mario Román

Corollary 6.4. Let (C,×, 1) be a cartesian monoidal category.
The category Stream is cartesian monoidal.

6.3 Example: the Fibonacci sequence
Consider (Set,×, 1), the cartesianmonoidal category of small
sets and functions. And let us go back to the morphism
fib ∈ Stream(1,N) that we presented in the Introduction
(Figure 2). By Theorem 6.3, a morphism of this type is, equiv-
alently, a sequence of natural numbers. Using the previous
definitions in Sections 5 and 6, we can explicitly compute this
sequence to be fib = [0, 1, 1, 2, 3, 5, 8, . . .] (see the Appendix,
Example G.1).

7 Stochastic Streams
Monoidal categories are well suited for reasoning about prob-
abilistic processes. Several different categories of probabilis-
tic channels have been proposed in the literature [6, 19, 59].
They were largely unified by Fritz [30] under the name of
Markov categories. For simplicity, we work in the discrete
stochastic setting, i.e. in the Kleisli category of the finite
distribution monad, Stoch, but we will be careful to isolate
the relevant structure of Markov categories that we use.

The main result of this section is that controlled stochastic
processes [27, 66] are precisely monoidal streams over Stoch.
That is, controlled stochastic processes are the canonical
solution over Stoch of the fixpoint equation in Figure 9.

7.1 Stochastic processes
We start by recalling the notion of stochastic process from
probability theory and its “controlled” version. The latter is
used in the context of stochastic control [27, 66], where the
user has access to the parameters or optimization variables
of a probabilistic model.
A discrete stochastic process is defined as a collection of

random variables 𝑌1, . . . 𝑌𝑛 indexed by discrete time. At any
time step 𝑛, these random variables are distributed according
to some 𝑝𝑛 ∈ D(𝑌1 × · · · × 𝑌𝑛). Since the future cannot
influence the past, the marginal of 𝑝𝑛+1 over 𝑌𝑛+1 must equal
𝑝𝑛 . When this occurs, we say that the family of distributions
(𝑝𝑛)𝑛∈N is causal.
More generally, there may be some additional variables

𝑋1, . . . , 𝑋𝑛 which we have control over. In this case, a con-
trolled stochastic process is defined as a collection of controlled
random variables distributing according to 𝑓𝑛 : 𝑋1 × · · · ×
𝑋𝑛 → D(𝑌1, . . . , 𝑌𝑛). Causality ensures that the marginal of
𝑓𝑛+1 over 𝑌𝑛+1 must equal 𝑓𝑛 .

Definition 7.1. Let X and Y be sequences of sets. A con-
trolled stochastic process 𝑓 : X→ Y is a sequence of functions

𝑓𝑛 : 𝑋𝑛 × · · · × 𝑋1 → D(𝑌𝑛 × · · · × 𝑌1)

satisfying causality (the marginalisation property). That is,
such that 𝑓𝑛 coincides with the marginal distribution of 𝑓𝑛+1

on the first 𝑛 variables, making the diagram in Figure 11
commute.

𝑋0 × · · · × 𝑋𝑛+1 𝐷 (𝑌0 × · · · × 𝑌𝑛+1)

𝑋0 × · · · × 𝑋𝑛 𝐷 (𝑌0 × · · · × 𝑌𝑛)

𝑓𝑛+1

𝜋0,...,𝑛 𝐷𝜋0,...,𝑛

𝑓𝑛

Figure 11. Marginalisation for stochastic processes.

Controlled stochastic processes with componentwise com-
position, identities and tensoring, are the morphisms of a
symmetric monoidal category StochProc.

Stochastic monoidal streams and stochastic processes not
only are the same thing but they compose in the same way:
they are isomorphic as categories.

Theorem 7.2. The category of stochastic processes StochProc
is monoidally isomorphic to the category Stream over Stoch.

Proof sketch. Appendix, Theorem A.29. The proof of this re-
sult is non-trivial and relies on a crucial property concerning
ranges in Stoch. The proof is moreover written in the lan-
guage of Markov categories where the property of ranges
can be formulated in full abstraction. □

We expect that the theorem above can be generalised to
interesting categories of probabilistic channels over measur-
able spaces (such as the ones covered in [19, 30, 59]).

Corollary 7.3. StochProc is a feedback monoidal category.

7.2 Examples
We have characterized in two equivalent ways the notion
of controlled stochastic process. This yields a categorical
semantics for probabilistic dataflow programming: we may
use the syntax of feedback monoidal categories to specify
simple stochastic programs and evaluate their semantics in
StochProc.

Example 7.4 (Random Walk). Recall the morphism walk ∈
Stream(1,Z) that we depicted back in Figure 4.
Here, unif ∈ Stream(1, {−1, 1}), is a uniform random gen-

erator that, at each step, outputs either 1 or (−1). The output
of this uniform random generator is then added to the cur-
rent position, and we declare the starting position to be 0.
Our implementation of this morphism, following the defi-
nitions from Section 5 (Example G.2) is, by Theorem 7.2, a
discrete stochastic process, and it produces samples like the
following ones.

[0, 1, 0,−1,−2,−1,−2,−3,−2,−3, . . .]
[0, 1, 2, 1, 2, 1, 2, 3, 4, 5, . . .]
[0,−1,−2,−1,−2,−1, 0,−1, 0,−1, . . .]

Example 7.5 (Ehrenfest model). The Ehrenfest model [47,
§1.4] is a simplified model of particle diffusion.

Monoidal Streams for Dataflow Programming

𝑚𝑜𝑣𝑒 𝑚𝑜𝑣𝑒

𝑢𝑛𝑖 𝑓𝑓 𝑏𝑦

(1..4)

𝑓 𝑏𝑦

()

ehr =

(1...4) ⊗ (); fbk (𝜎 ;
fby ⊗ fby ⊗ unif;
id ⊗ id ⊗ copy;𝜎 ;
move ⊗ move;

copy)

Figure 12. Ehrenfest model: sig. flow graph and morphism.

Assume we have two urns with 4 balls, labelled from 1
to 4. Initially, the balls are all in the first urn. We randomly
(and uniformly) pick an integer from 1 to 4, and the ball
labelled by that number is removed from its box and placed
in the other box. We iterate the procedure, with independent
uniform selections each time.

Our implementation of this morphism, following the defi-
nitions from Section 5 (Example G.3) yields samples such as
the following.
[([2, 3, 4], [1]), ([3, 4], [1, 2]), ([1, 3, 4], [2]),
([1, 4], [2, 3]), ([1], [2, 3, 4]), ([], [1, 2, 3, 4]),
([2], [1, 3, 4]), . . .]

8 A dataflow programming language
In this section, we introduce the syntax for two Lucid-like
dataflow programming languages and their semantics in
monoidal streams. The first one is deterministic and it takes
semantics in the feedback monoidal category of set-based
monoidal streams. The second one is stochastic and it takes
semantics in the feedback monoidal category of stochastic
processes, or stochastic monoidal streams.

We do so by presenting a type theory for feedback monoi-
dal categories (similar to [36, 71]). Terms of the type theory
represent programs in our language.

8.1 Type theory for monoidal categories
We start by considering a type theory for symmetric monoidal
categories over some generators forming a multigraph G.
Instead of presenting a type theory from scratch, we extend
the basic type theory for symmetric monoidal categories
described by Shulman [70]. Details are in the Appendix (Ap-
pendix F). Here, we only illustrate it with an example.

Gen
𝑓 ∈ G(𝐴1, . . . , 𝐴𝑛 ;𝐵) Γ1 ⊢ 𝑥1 : 𝐴1 . . . Γ𝑛 ⊢ 𝑥𝑛 : 𝐴𝑛

Shuf (Γ1, . . . , Γ𝑛) ⊢ 𝑓 (𝑥1, . . . , 𝑥𝑛) : 𝐵

Pair
Γ1 ⊢ 𝑥1 : 𝐴1 . . . Γ𝑛 ⊢ 𝑥𝑛 : 𝐴𝑛

Shuf (Γ1, ..., Γ𝑛) ⊢ [𝑥1, ..., 𝑥𝑛] : 𝐴1 ⊗ ... ⊗ 𝐴𝑛

Var

𝑥 : 𝐴 ⊢ 𝑥 : 𝐴

Split
Δ ⊢𝑚 : 𝐴1 ⊗ · · · ⊗ 𝐴𝑛 Γ, 𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛 ⊢ 𝑧 : 𝐶

Shuf (Γ,Δ) ⊢ Split𝑚 → [𝑥1, . . . , 𝑥𝑛] in 𝑧 : 𝐶

Figure 13. Type theory of symm. monoidal categories [70].

The type theory for symmetric monoidal categories is
linear [34, 52, 68] in the sense that any introduced variable
must be used exactly once. This is for a good reason: monoi-
dal categories represent linear theories of processes, where
copying and discarding may not be allowed in general.

Example 8.1. In a monoidal category, let 𝑓 : 𝑋 ⊗ 𝑈 → 𝑍 ,
𝑔 : 𝐼 → 𝑈 ⊗ 𝑉 ⊗𝑊 and ℎ : 𝑉 ⊗ 𝑌 → 𝐼 . The following is a
string diagram together with its term in the type theory.

𝑔

ℎ
𝑓

𝑋 𝑌

𝑍 𝑉

𝑈 𝑊
Split 𝑔→ [𝑢, 𝑣,𝑤] in
Split ℎ(𝑤,𝑦) → [] in
[𝑓 (𝑥,𝑢), 𝑣]

8.2 Adding feedback
We now extend the theory with delay and feedback. We
start by considering a 𝜕 operator on types, which extends
to contexts inductively as 𝜕[] = [] and 𝜕(Γ, 𝑥 :𝐴) = 𝜕Γ, (𝑥 :
𝜕𝐴). We provide formation rules for introducing delay and
feedback. These need to satisfy equalities making Delay a
functor and Fbk a feedback operator.

Delay
Γ ⊢ 𝑥 : 𝐴
𝜕Γ ⊢ 𝑥 : 𝜕𝐴

Fbk
Γ, 𝑠 : 𝜕𝑆 ⊢ 𝑥 (𝑠) : 𝑆 ⊗ 𝐴
Γ ⊢ Fbk 𝑠 . 𝑥 (𝑠) : 𝐴

As in Remark 3.2, we define Wait(𝑥) ≡ Fbk 𝑦 in [𝑥,𝑦].

8.3 Adding generators
In both versions of the language (deterministic and stochas-
tic), we include “copy” and “followed by” operations, repre-
senting the corresponding monoidal streams. Copying does
not need to be natural (in the stochastic case, it will not be)

Elena Di Lavore, Giovanni de Felice, and Mario Román

and it does not even need to form a comonoid.
Copy

Γ ⊢ 𝑥 : 𝐴
Γ ⊢ Copy(𝑥) : 𝐴 ⊗ 𝐴

Fby
Γ ⊢ 𝑥 : 𝐴 Δ ⊢ 𝑦 : 𝜕(𝐴)
Shuf (Γ,Δ) ⊢ 𝑥 Fby 𝑦 : 𝐴

In fact, recursive definitions make sense only when we
have a copy operation, that allows us to rewrite the definition
as a feedback that ends with a copy. That is,

𝑀 = 𝑥 (𝑀) means 𝑀 = Fbk𝑚 in Copy(𝑥 (𝑚)) .

Moreover, in the deterministic version of our language we
allow non-linearity: a variable can occur multiple times, im-
plicitly copying it.

8.4 Examples
Example 8.2. Recall the example from the introduction (and
Section 6.3).

fib = 0 Fby (fib + (1 Fby Wait fib))

Its desugaring, following the previous rules, is below.

fib = Fbk 𝑓 in Copy
(0 Fby
Split Copy(𝑓) → [𝑓1, 𝑓2] in
(𝑓1 + 1 Fby Wait(𝑓2)))

Example 8.3 (Ehrenfest model). The Ehrenfest model de-
scribed in Figure 12 has the following specification in the
programming language.

urns = [(1, 2, 3, 4), ()] Fby
Split urns→ [𝑢1, 𝑢2] in
Split Copy(Uniform) → [𝑛1, 𝑛2] in
[Move(𝑛1, 𝑢1),Move(𝑛2, 𝑢2)]

Sampling twice from the same distribution is different from
copying a single sample, and Split allows us to express this
difference: instead of calling the Uniform distribution twice,
this program calls it once and then copies the result.

9 Conclusions
Monoidal streams are a common generalization of streams,
causal functions and stochastic processes. In the same way
that streams give semantics to dataflow programming [35,
77] with plain functions, monoidal streams give semantics to
dataflow programming with monoidal theories of processes.
Signal flow graphs are a common tool to describe control
flow in dataflow programming. Signal flow graphs are also
the natural string diagrams of feedback monoidal categories.
Monoidal streams form a feedback monoidal category, and
signal flow graphs are a formal syntax to describe and rea-
son about monoidal streams. The second syntax we present
comes from the type theory of monoidal categories, and it
is inspired by the original syntax of dataflow programming.

We have specifically studied stochastic dataflow program-
ming, but the same framework allows for linear, quantum
and effectful theories of resources.

The literature on dataflow and feedback is rich enough to
provide multiple diverging definitions and approaches. What
we can bring to this discussion are universal constructions.
Universal constructions justify some mathematical object as
the canonical object satisfying some properties. In our case,
these exact properties are extracted from three, arguably
under-appreciated, but standard category-theoretic tools: di-
naturality, feedback, and coalgebra. Dinaturality, profunctors
and coends, sometimes regarded as highly theoretical devel-
opments, are the natural language to describe how processes
communicate and compose. Feedback, sometimes eclipsed
by trace in the mathematical literature, keeps appearing in
multiple variants across computer science. Coalgebra is the
established tool to specify and reason about stateful systems.

9.1 Further work
Other theories. Many interesting examples of theories

of processes are not monoidal but just premonoidal cate-
gories [42, 62]. For instance, the kleisli categories of arbitrary
monads, where effects (e.g. reading and writing to a global
state) do not need to commute. Premonoidal streams can be
constructed by restricting dinaturality to their centres. An-
other important source of theories of processes that we have
not covered is that of linearly distributive and *-autonomous
categories [11, 12, 22, 68].
Within monoidal categories, we would like to make mo-

noidal streams explicit in the cases of partial maps [21]
for dataflow programming with different clocks [76], non-
deterministic maps [17, 51] and quantum processes [18]. A
final question we do not pursue here is expressivity: the class
of functions a monoidal stream can define.

The 2-categorical view. We describe the morphisms of a
category as a final coalgebra. However, it is also straightfor-
ward to describe the 2-endofunctor that should give rise to
this category as a final coalgebra itself.

Implementation of the type theory. Justifying that the
output of monoidal streams is the expected one requires
some computations, which we have already implemented
separately in the Haskell programming language (Appendix,
Appendix G). Agda has similar foundations and supports the
coinductive definitions of this text (Section 5). It is possible
to implement a whole interpreter for a Lucid-like stochastic
programming language with a dedicated parser, but that
requires some software engineering effort that we postpone
for further work.

References
[1] Martín Abadi and Michael Isard. Timely Dataflow: A Model. In

Susanne Graf and Mahesh Viswanathan, editors, Formal Techniques
for Distributed Objects, Components, and Systems - 35th IFIP WG 6.1

Monoidal Streams for Dataflow Programming

International Conference, FORTE 2015, Held as Part of the 10th Inter-
national Federated Conference on Distributed Computing Techniques,
DisCoTec 2015, Grenoble, France, June 2-4, 2015, Proceedings, volume
9039 of Lecture Notes in Computer Science, pages 131–145. Springer,
2015. doi:10.1007/978-3-319-19195-9_9.

[2] Samson Abramsky and Bob Coecke. Categorical quantum mechanics.
Handbook of quantum logic and quantum structures, 2:261–325, 2009.
arXiv:0808.1023.

[3] Jiří Adámek. Introduction to coalgebra. Theory and Applications of
Categories, 14(8):157–199, 2005.

[4] Jiří Adámek. Free algebras and automata realizations in the language
of categories. Commentationes Mathematicae Universitatis Carolinae,
015(4):589–602, 1974. URL: http://eudml.org/doc/16649.

[5] Jiří Adámek. On Terminal Coalgebras Derived from Initial Algebras.
In Markus Roggenbach and Ana Sokolova, editors, 8th Conference
on Algebra and Coalgebra in Computer Science, CALCO 2019, June
3-6, 2019, London, United Kingdom, volume 139 of LIPIcs, pages 12:1–
12:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:
10.4230/LIPIcs.CALCO.2019.12.

[6] John C. Baez, Brendan Fong, and Blake S. Pollard. A Composi-
tional Framework for Markov Processes. Journal of Mathematical
Physics, 57(3):033301, March 2016. arXiv:1508.06448, doi:10.1063/
1.4941578.

[7] Jon Beck. Distributive laws. In Seminar on triples and categorical
homology theory, pages 119–140. Springer, 1969.

[8] Albert Benveniste, Paul Caspi, Paul Le Guernic, and Nicolas Halb-
wachs. Data-flow synchronous languages. In J. W. de Bakker, Willem P.
de Roever, and Grzegorz Rozenberg, editors, A Decade of Concur-
rency, Reflections and Perspectives, REX School/Symposium, Noordwi-
jkerhout, The Netherlands, June 1-4, 1993, Proceedings, volume 803
of Lecture Notes in Computer Science, pages 1–45. Springer, 1993.
doi:10.1007/3-540-58043-3_16.

[9] Lars Birkedal, Rasmus Ejlers Møgelberg, Jan Schwinghammer, and
Kristian Støvring. First steps in synthetic guarded domain theory:
Step-indexing in the topos of trees. In Proceedings of the 26th Annual
IEEE Symposium on Logic in Computer Science, LICS 2011, June 21-24,
2011, Toronto, Ontario, Canada, pages 55–64. IEEE Computer Society,
2011. doi:10.1109/LICS.2011.16.

[10] Stephen L. Bloom and Zoltán Ésik. Iteration Theories - The Equational
Logic of Iterative Processes. EATCS Monographs on Theoretical Com-
puter Science. Springer, 1993. doi:10.1007/978-3-642-78034-9.

[11] Richard Blute. Linear logic, coherence, and dinaturality. Theor. Comput.
Sci., 115(1):3–41, 1993. doi:10.1016/0304-3975(93)90053-V.

[12] Richard F Blute, J Robin B Cockett, Robert AG Seely, and Todd H
Trimble. Natural deduction and coherence for weakly distributive
categories. Journal of Pure and Applied Algebra, 113(3):229–296, 1996.

[13] Filippo Bonchi, Joshua Holland, Robin Piedeleu, Paweł Sobociński,
and Fabio Zanasi. Diagrammatic algebra: from linear to concurrent
systems. Proc. ACM Program. Lang., 3(POPL):25:1–25:28, 2019. doi:
10.1145/3290338.

[14] Filippo Bonchi, Jens Seeber, and Paweł Sobociński. Graphical con-
junctive queries. In Dan R. Ghica and Achim Jung, editors, 27th
EACSL Annual Conference on Computer Science Logic, CSL 2018, Sep-
tember 4-7, 2018, Birmingham, UK, volume 119 of LIPIcs, pages 13:1–
13:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:
10.4230/LIPIcs.CSL.2018.13.

[15] Filippo Bonchi, Paweł Sobociński, and Fabio Zanasi. A categorical
semantics of signal flow graphs. In International Conference on Con-
currency Theory, pages 435–450. Springer, 2014.

[16] Filippo Bonchi, Paweł Sobociński, and Fabio Zanasi. Full abstraction
for signal flow graphs. ACM SIGPLAN Notices, 50(1):515–526, 2015.

[17] Manfred Broy and Gheorghe Ştefănescu. The algebra of stream pro-
cessing functions. Theoretical Computer Science, 258(1-2):99–129, 2001.

[18] Titouan Carette, Marc de Visme, and Simon Perdrix. Graphical lan-
guage with delayed trace: Picturing quantum computing with finite
memory. In 36th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages 1–13. IEEE,
2021. doi:10.1109/LICS52264.2021.9470553.

[19] Kenta Cho and Bart Jacobs. Disintegration and Bayesian Inver-
sion via String Diagrams. Mathematical Structures in Computer Sci-
ence, pages 1–34, March 2019. arXiv:1709.00322, doi:10.1017/
S0960129518000488.

[20] J. Robin B. Cockett, Xiuzhan Guo, and Pieter Hofstra. Range Categories
I: General theory. Theory and Applications of Categories, 26(17):412–452,
2012.

[21] J. Robin B. Cockett and Stephen Lack. Restriction categories I: cate-
gories of partial maps. Theoretical Computer Science, 270(1-2):223–259,
2002. doi:10.1016/S0304-3975(00)00382-0.

[22] J Robin B Cockett and Robert AG Seely. Weakly distributive categories.
Journal of Pure and Applied Algebra, 114(2):133–173, 1997.

[23] Bob Coecke, Tobias Fritz, and Robert W. Spekkens. A mathematical
theory of resources. Inf. Comput., 250:59–86, 2016. doi:10.1016/j.
ic.2016.02.008.

[24] Patrick Cousot. Syntactic and semantic soundness of structural data-
flow analysis. In Bor-Yuh Evan Chang, editor, Static Analysis - 26th
International Symposium, SAS 2019, Porto, Portugal, October 8-11, 2019,
Proceedings, volume 11822 of Lecture Notes in Computer Science, pages
96–117. Springer, 2019. doi:10.1007/978-3-030-32304-2_6.

[25] Antonin Delpeuch. A complete language for faceted dataflow pro-
grams. In John Baez and Bob Coecke, editors, Proceedings Applied Cat-
egory Theory 2019, ACT 2019, University of Oxford, UK, 15-19 July 2019,
volume 323 of EPTCS, pages 1–14, 2019. doi:10.4204/EPTCS.323.1.

[26] Elena Di Lavore, Alessandro Gianola, Mario Román, Nicoletta Sabadini,
and Paweł Sobociński. A canonical algebra of open transition systems.
In Gwen Salaün and Anton Wijs, editors, Formal Aspects of Component
Software, pages 63–81, Cham, 2021. Springer International Publishing.

[27] Wendell Helms Fleming and RaymondW. Rishel. Deterministic and Sto-
chastic Optimal Control. Number vol 1 in Applications of Mathematics.
Springer-Verlag, Berlin ; New York, 1975.

[28] Brendan Fong and David I Spivak. Supplying bells and whistles in
symmetric monoidal categories. arXiv preprint arXiv:1908.02633, 2019.

[29] Thomas Fox. Coalgebras and cartesian categories. Communications in
Algebra, 4(7):665–667, 1976.

[30] Tobias Fritz. A synthetic approach to Markov kernels, conditional
independence and theorems on sufficient statistics. Advances in
Mathematics, 370:107239, 2020. URL: http://arxiv.org/abs/1908.07021,
arXiv:1908.07021.

[31] Richard Garner. Stream processors and comodels. arXiv preprint
arXiv:2106.05473, 2021.

[32] Simon J. Gay and Rajagopal Nagarajan. Intensional and extensional
semantics of dataflow programs. Formal Aspects Comput., 15(4):299–
318, 2003. doi:10.1007/s00165-003-0018-1.

[33] Dan R. Ghica, George Kaye, and David Sprunger. Full abstraction for
digital circuits, 2022. arXiv:2201.10456.

[34] Jean-Yves Girard. Linear logic. Theoretical computer science, 50(1):1–
101, 1987.

[35] Nicolas Halbwachs, Fabienne Lagnier, and Christophe Ratel. Program-
ming and verifying real-time systems by means of the synchronous
data-flow language LUSTRE. IEEE Trans. Software Eng., 18(9):785–793,
1992. doi:10.1109/32.159839.

[36] Masahito Hasegawa. Models of sharing graphs: a categorical semantics
of let and letrec. PhD thesis, University of Edinburgh, UK, 1997. URL:
http://hdl.handle.net/1842/15001.

[37] Thomas Hildebrandt, Prakash Panangaden, and GlynnWinskel. A rela-
tional model of non-deterministic dataflow. In International Conference
on Concurrency Theory, pages 613–628. Springer, 1998.

https://doi.org/10.1007/978-3-319-19195-9_9
http://arxiv.org/abs/0808.1023
http://eudml.org/doc/16649
https://doi.org/10.4230/LIPIcs.CALCO.2019.12
https://doi.org/10.4230/LIPIcs.CALCO.2019.12
http://arxiv.org/abs/1508.06448
https://doi.org/10.1063/1.4941578
https://doi.org/10.1063/1.4941578
https://doi.org/10.1007/3-540-58043-3_16
https://doi.org/10.1109/LICS.2011.16
https://doi.org/10.1007/978-3-642-78034-9
https://doi.org/10.1016/0304-3975(93)90053-V
https://doi.org/10.1145/3290338
https://doi.org/10.1145/3290338
https://doi.org/10.4230/LIPIcs.CSL.2018.13
https://doi.org/10.4230/LIPIcs.CSL.2018.13
https://doi.org/10.1109/LICS52264.2021.9470553
http://arxiv.org/abs/1709.00322
https://doi.org/10.1017/S0960129518000488
https://doi.org/10.1017/S0960129518000488
https://doi.org/10.1016/S0304-3975(00)00382-0
https://doi.org/10.1016/j.ic.2016.02.008
https://doi.org/10.1016/j.ic.2016.02.008
https://doi.org/10.1007/978-3-030-32304-2_6
https://doi.org/10.4204/EPTCS.323.1
http://arxiv.org/abs/1908.07021
http://arxiv.org/abs/1908.07021
https://doi.org/10.1007/s00165-003-0018-1
http://arxiv.org/abs/2201.10456
https://doi.org/10.1109/32.159839
http://hdl.handle.net/1842/15001

Elena Di Lavore, Giovanni de Felice, and Mario Román

[38] Naohiko Hoshino, Koko Muroya, and Ichiro Hasuo. Memoryful geom-
etry of interaction: from coalgebraic components to algebraic effects.
In Thomas A. Henzinger and Dale Miller, editors, Joint Meeting of the
Twenty-Third EACSL Annual Conference on Computer Science Logic
(CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18,
2014, pages 52:1–52:10. ACM, 2014. doi:10.1145/2603088.2603124.

[39] Paul Hudak, Simon L. Peyton Jones, Philip Wadler, Brian Boutel, Jon
Fairbairn, Joseph H. Fasel, María M. Guzmán, Kevin Hammond, John
Hughes, Thomas Johnsson, Richard B. Kieburtz, Rishiyur S. Nikhil,
Will Partain, and John Peterson. Report on the Programming Language
Haskell, A Non-strict, Purely Functional Language. ACM SIGPLAN
Notices, 27(5):1, 1992. doi:10.1145/130697.130699.

[40] John Hughes. Generalising monads to arrows. Science of Computer
Programming, 37(1-3):67–111, 2000. doi:10.1016/S0167-6423(99)
00023-4.

[41] Bart Jacobs. Introduction to Coalgebra: Towards Mathematics of States
and Observation, volume 59 of Cambridge Tracts in Theoretical Com-
puter Science. Cambridge University Press, 2016. doi:10.1017/
CBO9781316823187.

[42] Alan Jeffrey. Premonoidal categories and flow graphs. Electron.
Notes Theor. Comput. Sci., 10:51, 1997. doi:10.1016/S1571-0661(05)
80688-7.

[43] André Joyal, Ross Street, and Dominic Verity. Traced monoidal cat-
egories. Mathematical Proceedings of the Cambridge Philosophical
Society, 119:447 – 468, 04 1996. doi:10.1017/S0305004100074338.

[44] Piergiulio Katis, Nicoletta Sabadini, and Robert F. C. Walters. Bicate-
gories of processes. Journal of Pure andApplied Algebra, 115(2):141–178,
1997.

[45] Piergiulio Katis, Nicoletta Sabadini, and Robert F. C. Walters. On the
algebra of feedback and systems with boundary. In Rendiconti del
Seminario Matematico di Palermo, 1999.

[46] Piergiulio Katis, Nicoletta Sabadini, and Robert F. C. Walters. Feed-
back, trace and fixed-point semantics. RAIRO-Theor. Informatics Appl.,
36(2):181–194, 2002. doi:10.1051/ita:2002009.

[47] Frank P. Kelly. Reversibility and stochastic networks. Cambridge Uni-
versity Press, 2011.

[48] Dexter Kozen and Alexandra Silva. Practical coinduction. Mathe-
matical Structures in Computer Science, 27(7):1132–1152, 2017. doi:
10.1017/S0960129515000493.

[49] J. Lambek. Cartesian closed categories and typed _-calculi. In Guy
Cousineau, Pierre-Louis Curien, and Bernard Robinet, editors, Com-
binators and Functional Programming Languages, Lecture Notes in
Computer Science, pages 136–175, Berlin, Heidelberg, 1986. Springer.
doi:10.1007/3-540-17184-3_44.

[50] Joachim Lambek. A fixpoint theorem for complete categories. Mathe-
matische Zeitschrift, 103(2):151–161, 1968.

[51] Edward A. Lee and Eleftherios Matsikoudis. The semantics of dataflow
with firing. From Semantics to Computer Science: Essays in Honour of
Gilles Kahn, pages 71–94, 2009.

[52] Patrick Lincoln and John C. Mitchell. Operational aspects of linear
lambda calculus. In Proceedings of the Seventh Annual Symposium
on Logic in Computer Science (LICS ’92), Santa Cruz, California, USA,
June 22-25, 1992, pages 235–246. IEEE Computer Society, 1992. doi:
10.1109/LICS.1992.185536.

[53] Fosco Loregian. (Co)end Calculus. London Mathematical Society
Lecture Note Series. Cambridge University Press, 2021. doi:10.1017/
9781108778657.

[54] Nancy A. Lynch and Eugene W. Stark. A proof of the Kahn principle
for input/output automata. Information and Computation, 82(1):81–92,
1989.

[55] Saunders Mac Lane. Categories for the Working Mathematician. Grad-
uate Texts in Mathematics. Springer New York, 1978. doi:10.1007/
978-1-4757-4721-8.

[56] Konstantinos Mamouras. Semantic foundations for deterministic da-
taflow and stream processing. In Peter Müller, editor, Programming
Languages and Systems - 29th European Symposium on Programming,
ESOP 2020, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020,
Proceedings, volume 12075 of Lecture Notes in Computer Science, pages
394–427. Springer, 2020. doi:10.1007/978-3-030-44914-8_15.

[57] S. J. Mason. Feedback Theory - Some properties of signal flow graphs.
Proceedings of the Institute of Radio Engineers, 41(9):1144–1156, 1953.
doi:10.1109/JRPROC.1953.274449.

[58] José Nuno Oliveira. The formal semantics of deterministic dataflow
programs. PhD thesis, University of Manchester, UK, 1984. URL:
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.376586.

[59] Prakash Panangaden. The Category of Markov Kernels. Electronic
Notes in Theoretical Computer Science, 22:171–187, January 1999. doi:
10.1016/S1571-0661(05)80602-4.

[60] Prakash Panangaden and Eugene W. Stark. Computations, residuals,
and the power of indeterminacy. In International Colloquium on Au-
tomata, Languages, and Programming, pages 439–454. Springer, 1988.

[61] Ross Paterson. A newnotation for arrows. In Benjamin C. Pierce, editor,
Proceedings of the Sixth ACM SIGPLAN International Conference on
Functional Programming (ICFP ’01), Firenze (Florence), Italy, September
3-5, 2001, pages 229–240. ACM, 2001. doi:10.1145/507635.507664.

[62] John Power. Premonoidal categories as categories with algebraic
structure. Theor. Comput. Sci., 278(1-2):303–321, 2002. doi:10.1016/
S0304-3975(00)00340-6.

[63] John Power and Hayo Thielecke. Closed freyd- and kappa-categories.
In Jirí Wiedermann, Peter van Emde Boas, andMogens Nielsen, editors,
Automata, Languages and Programming, 26th International Colloquium,
ICALP’99, Prague, Czech Republic, July 11-15, 1999, Proceedings, volume
1644 of Lecture Notes in Computer Science, pages 625–634. Springer,
1999. doi:10.1007/3-540-48523-6_59.

[64] John Power and Hiroshi Watanabe. Distributivity for a monad and a
comonad. In Bart Jacobs and Jan J. M. M. Rutten, editors, Coalgebraic
Methods in Computer Science, CMCS 1999, Amsterdam, The Nether-
lands, March 20-21, 1999, volume 19 of Electronic Notes in Theoreti-
cal Computer Science, page 102. Elsevier, 1999. doi:10.1016/S1571-
0661(05)80271-3.

[65] Mario Román. Comb diagrams for discrete-time feedback. CoRR,
abs/2003.06214, 2020. arXiv:2003.06214.

[66] Sheldon M. Ross. Stochastic processes, volume 2. John Wiley & Sons,
1996.

[67] Jan J. M. M. Rutten. Universal coalgebra: a theory of systems. The-
oretical Computer Science, 249(1):3–80, 2000. doi:10.1016/S0304-
3975(00)00056-6.

[68] Robert A.G. Seely. Linear logic, *-autonomous categories and cofree
coalgebras. Ste. Anne de Bellevue, Quebec: CEGEP JohnAbbott College,
1987.

[69] Claude E. Shannon. The Theory and Design of Linear Differential
Equation Machines. Bell Telephone Laboratories, 1942.

[70] Michael Shulman. Categorical logic from a categorical point of view.
Available on the web, 2016. URL: https://mikeshulman.github.io/catlog/
catlog.pdf.

[71] Michael Shulman. A practical type theory for symmetric monoidal
categories, 2021. arXiv:1911.00818.

[72] David Sprunger and Bart Jacobs. The differential calculus of causal
functions. CoRR, abs/1904.10611, 2019. URL: http://arxiv.org/abs/1904.
10611, arXiv:1904.10611.

[73] David Sprunger and Shin-ya Katsumata. Differentiable causal com-
putations via delayed trace. In 34th Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2019, Vancouver, BC, Canada, June 24-27,
2019, pages 1–12. IEEE, 2019. doi:10.1109/LICS.2019.8785670.

[74] Viggo Stoltenberg-Hansen, Ingrid Lindström, and Edward R. Griffor.
Mathematical theory of domains, volume 22 of Cambridge tracts in

https://doi.org/10.1145/2603088.2603124
https://doi.org/10.1145/130697.130699
https://doi.org/10.1016/S0167-6423(99)00023-4
https://doi.org/10.1016/S0167-6423(99)00023-4
https://doi.org/10.1017/CBO9781316823187
https://doi.org/10.1017/CBO9781316823187
https://doi.org/10.1016/S1571-0661(05)80688-7
https://doi.org/10.1016/S1571-0661(05)80688-7
https://doi.org/10.1017/S0305004100074338
https://doi.org/10.1051/ita:2002009
https://doi.org/10.1017/S0960129515000493
https://doi.org/10.1017/S0960129515000493
https://doi.org/10.1007/3-540-17184-3_44
https://doi.org/10.1109/LICS.1992.185536
https://doi.org/10.1109/LICS.1992.185536
https://doi.org/10.1017/9781108778657
https://doi.org/10.1017/9781108778657
https://doi.org/10.1007/978-1-4757-4721-8
https://doi.org/10.1007/978-1-4757-4721-8
https://doi.org/10.1007/978-3-030-44914-8_15
https://doi.org/10.1109/JRPROC.1953.274449
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.376586
https://doi.org/10.1016/S1571-0661(05)80602-4
https://doi.org/10.1016/S1571-0661(05)80602-4
https://doi.org/10.1145/507635.507664
https://doi.org/10.1016/S0304-3975(00)00340-6
https://doi.org/10.1016/S0304-3975(00)00340-6
https://doi.org/10.1007/3-540-48523-6_59
https://doi.org/10.1016/S1571-0661(05)80271-3
https://doi.org/10.1016/S1571-0661(05)80271-3
http://arxiv.org/abs/2003.06214
https://doi.org/10.1016/S0304-3975(00)00056-6
https://doi.org/10.1016/S0304-3975(00)00056-6
https://mikeshulman.github.io/catlog/catlog.pdf
https://mikeshulman.github.io/catlog/catlog.pdf
http://arxiv.org/abs/1911.00818
http://arxiv.org/abs/1904.10611
http://arxiv.org/abs/1904.10611
http://arxiv.org/abs/1904.10611
https://doi.org/10.1109/LICS.2019.8785670

Monoidal Streams for Dataflow Programming

theoretical computer science. Cambridge University Press, 1994.
[75] TarmoUustalu and VarmoVene. The essence of dataflow programming.

In Kwangkeun Yi, editor, Programming Languages and Systems, Third
Asian Symposium, APLAS 2005, Tsukuba, Japan, November 2-5, 2005,
Proceedings, volume 3780 of Lecture Notes in Computer Science, pages
2–18. Springer, 2005. doi:10.1007/11575467_2.

[76] Tarmo Uustalu and Varmo Vene. Comonadic notions of computation.
In Jiří Adámek and Clemens Kupke, editors, Proceedings of the Ninth
Workshop on Coalgebraic Methods in Computer Science, CMCS 2008,
Budapest, Hungary, April 4-6, 2008, volume 203 of Electronic Notes
in Theoretical Computer Science, pages 263–284. Elsevier, 2008. doi:
10.1016/j.entcs.2008.05.029.

[77] William W Wadge, Edward A Ashcroft, et al. Lucid, the dataflow
programming language, volume 303. Academic Press London, 1985.

A Monoidal categories
Definition A.1 ([55]). A monoidal category,

(C, ⊗, 𝐼 , 𝛼, _, 𝜌),
is a category C equipped with a functor ⊗ : C × C → C, a
unit 𝐼 ∈ C, and three natural isomorphisms: the associator
𝛼𝐴,𝐵,𝐶 : (𝐴⊗𝐵)⊗𝐶 � 𝐴⊗(𝐵⊗𝐶), the left unitor _𝐴 : 𝐼⊗𝐴 � 𝐴

and the right unitor 𝜌𝐴 : 𝐴 ⊗ 𝐼 � 𝐴; such that 𝛼𝐴,𝐼,𝐵 ; (id𝐴 ⊗
_𝐵) = 𝜌𝐴 ⊗ id𝐵 and (𝛼𝐴,𝐵,𝐶 ⊗ id);𝛼𝐴,𝐵⊗𝐶,𝐷 ; (id𝐴 ⊗ 𝛼𝐵,𝐶,𝐷) =
𝛼𝐴⊗𝐵,𝐶,𝐷 ;𝛼𝐴,𝐵,𝐶⊗𝐷 . A monoidal category is strict if 𝛼 , _ and
𝜌 are identities.

Definition A.2 (Monoidal functor, [55]). Let

(C, ⊗, 𝐼 , 𝛼C, _C, 𝜌C) and (D,⊠, 𝐽 , 𝛼D, _D, 𝜌D)
bemonoidal categories. Amonoidal functor (sometimes called
strong monoidal functor) is a triple (𝐹, Y, `) consisting of a
functor 𝐹 : C → D and two natural isomorphisms Y : 𝐽 �
𝐹 (𝐼) and ` : 𝐹 (𝐴 ⊗ 𝐵) � 𝐹 (𝐴) ⊠ 𝐹 (𝐵); such that
• the associators satisfy

𝛼D
𝐹𝐴,𝐹𝐵,𝐹𝐶 ; (id𝐹𝐴 ⊗ `𝐵,𝐶); `𝐴,𝐵⊗𝐶

= (`𝐴,𝐵 ⊗ id𝐹𝐶); `𝐴⊗𝐵,𝐶 ; 𝐹 (𝛼C
𝐴,𝐵,𝐶),

• the left unitor satisfies

(Y ⊗ id𝐹𝐴); `𝐼 ,𝐴; 𝐹 (_C𝐴) = _D𝐹𝐴

• the right unitor satisfies

(id𝐹𝐴 ⊗ Y); `𝐴,𝐼 ; 𝐹 (𝜌C𝐹𝐴) = 𝜌D𝐹𝐴 .

Amonoidal functor is amonoidal equivalence if it is moreover
an equivalence of categories. Two monoidal categories are
monoidally equivalent if there exists a monoidal equivalence
between them.

During most of the paper, we omit all associators and uni-
tors from monoidal categories, implicitly using the coherence
theorem for monoidal categories (Remark A.4).

Theorem A.3 (Coherence theorem, [55]). Every monoidal
category is monoidally equivalent to a strict monoidal category.

Remark A.4. Let us comment further on how we use the co-
herence theorem. Each time we have a morphism 𝑓 : 𝐴→ 𝐵

in a monoidal category, we have a corresponding morphism
𝐴→ 𝐵 in its strictification. This morphism can be lifted to
the original category to uniquely produce, say, a morphism
(_𝐴; 𝑓 ; _𝐵−1) : 𝐼 ⊗ 𝐴 → 𝐼 ⊗ 𝐵. Each time the source and the
target are clearly determined, we simply write 𝑓 again for
this new morphism.

Definition A.5 (Symmetric monoidal category, [55]). A
symmetric monoidal category (C, ⊗, 𝐼 , 𝛼, _, 𝜌, 𝜎) is a monoidal
category (C, ⊗, 𝐼 , 𝛼, _, 𝜌) equipped with a braiding 𝜎𝐴,𝐵 : 𝐴 ⊗
𝐵 → 𝐵 ⊗ 𝐴, which satisfies the hexagon equation

𝛼𝐴,𝐵,𝐶 ;𝜎𝐴,𝐵⊗𝐶 ;𝛼𝐵,𝐶,𝐴 = (𝜎𝐴,𝐵 ⊗ id);𝛼𝐵,𝐴,𝐶 ; (id ⊗ 𝜎𝐴,𝐶)
and additionally satisifes 𝜎𝐴,𝐵 ;𝜎𝐵,𝐴 = id.

https://doi.org/10.1007/11575467_2
https://doi.org/10.1016/j.entcs.2008.05.029
https://doi.org/10.1016/j.entcs.2008.05.029

Elena Di Lavore, Giovanni de Felice, and Mario Román

Remark A.6 (Notation). We omit symmetries when this does
not cause confusion. We write 𝑎 for the morphism 𝑎 tensored
with some identities when these can be deduced from the
context. For instance, let 𝑓 : 𝐴 → 𝐵, let ℎ : 𝐵 → 𝐷 and
let 𝑔 : 𝐵 ⊗ 𝐷 → 𝐸. We write 𝑓 ;ℎ;𝑔 for the morphism (𝑓 ⊗
id);𝜎 ; (id ⊗ ℎ);𝑔, which could have been also written as
(𝑓 ⊗ id); (ℎ ⊗ id);𝜎 ;𝑔

Definition A.7 ([55]). A symmetric monoidal functor be-
tween two symmetricmonoidal categories (C, 𝜎C) and (D, 𝜎D)
is a monoidal functor 𝐹 : C→ D such that 𝜎D; ` = `; 𝐹 (𝜎C).

DefinitionA.8. A cartesianmonoidal category is a monoidal
category whose tensor is the categorical product and whose
unit is a terminal object.

Definition A.9. A feedback functor between two feedback
monoidal categories (C, FC, fbkC) and (D, FD, fbkD) is a sym-
metric monoidal functor 𝐺 : C→ D such that 𝐺 ; FD = FC;𝐺
and

𝐺 (fbkC𝑆 (𝑓)) = fbkD𝐺𝑆 (`F𝑆,𝐴;𝐺𝑓 ; `−1𝑆,𝐵),
for each 𝑓 : F𝑆 ⊗ 𝑋 → 𝑆 ⊗ 𝑌 , where `𝐴,𝐵 : 𝐺 (𝐴) ⊗ 𝐺 (𝐵) →
𝐺 (𝐴 ⊗ 𝐵) is the structure morphism of the monoidal functor
𝐺 .

Theorem A.10 (see [46]). StF (C) is the free category with
feedback over (C, F).

Proof sketch. Let (D, FD, fbkD) be any other symmetric mo-
noidal category with an endofunctor, and let 𝐻 : C→ D be
such that F;𝐻 = 𝐻 ; FD. We will prove that it can be extended
uniquely to a feedback functor �̃� : StF (C) → D.
It can be proven that any expression involving feedback

can be reduced applying the feedback axioms to an expres-
sion of the form fbk (𝑓) for some 𝑓 : F𝑆 ⊗ 𝑋 → 𝑆 ⊗ 𝑌 . Af-
ter this, the definition of �̃� in this morphism is forced to
be �̃� (fbk 𝑓) = fbkD (D). This reduction is uniquely up to
sliding, and the morphisms of the St(•) construction are pre-
cisely morphisms 𝑓 : F𝑆 ⊗ 𝑋 → 𝑆 ⊗ 𝑌 quotiented by sliding
equivalence. This is the core of the proof in [46]. □

A.1 Markov categories
DefinitionA.11. The finite distribution commutativemonad
D : Set→ Set associates to each set the set of finite-support
probability distributions over it.

D(𝑋) =
𝑝 : 𝑋 → [0, 1]

������
| {𝑥 |𝑝 (𝑥)>0} |<∞∑

𝑝 (𝑥)>0
𝑝 (𝑥) = 1

 .

We call Stoch to the symmetric monoidal kleisli category of
the finite distribution monad, kl(D).

We write 𝑓 (𝑦 |𝑥) for the probability 𝑓 (𝑥) (𝑦) ∈ [0, 1]. Com-
position, 𝑓 ;𝑔, is defined by

(𝑓 ; 𝑔) (𝑧 |𝑥) =
∑
𝑦∈𝑌

𝑔(𝑧 |𝑦) 𝑓 (𝑦 |𝑥).

The cartesian product (×) in Set induces a monoidal (non-
cartesian) product on kl(D). That is, kl(D) has comonoids
()𝑋 : 𝑋 → 𝑋 × 𝑋 on every object, with ()𝑋 : 𝑋 → 1 as
counit. However, contrary to what happens in Set, these
comultiplications are not natural: sampling and copying the
result is different from taking two independent samples.

Definition A.12 (Markov category, [30, Definition 2.1]). A
Markov category C is a symmetric monoidal category in
which each object 𝑋 ∈ C has a cocommutative comonoid
structure (𝑋, Y = 𝑋 : 𝑋 → 𝐼 , 𝛿 = 𝑋 : 𝑋 → 𝑋 ⊗ 𝑋) with
• uniform comultiplications, 𝑋 ⊗𝑌 = (𝑋 ⊗ 𝑌)𝜎𝑋,𝑌 ;
• uniform counits, 𝑋 ⊗𝑌 = 𝑋 ⊗ 𝑌 ; and
• natural counits, 𝑓 ; 𝑌 = 𝑋 for each 𝑓 : 𝑋 → 𝑌 .

Crucially, comultiplications do not need to be natural.

Remark A.13 ([30, Remark 2.4]). Any cartesian category is
a Markov category. However, not any Markov category is
cartesian, and the most interesting examples are those that
fail to be cartesian, such as Stoch. The failure of comulti-
plication being natural makes it impossible to apply Fox’s
theorem (Theorem C.5).

The structure of a Markov category is very basic. In most
cases, we do need extra structure to reason about probabili-
ties: this is the role of conditionals and ranges.

Remark A.14 (Notation). In a Markov category, given any
𝑓 : 𝑋0 → 𝑌0 and any 𝑔 : 𝑌0 ⊗ 𝑋0 ⊗ 𝑋1 → 𝑌1, we write (𝑓 ⊳

𝑔) : 𝑋0 ⊗ 𝑋1 → 𝑌0 ⊗ 𝑌1 for the morphism defined by

(𝑓 ⊳ 𝑔) = (𝐴); 𝑓 ; (𝐵);𝑔,
which is the string diagram in Figure 14.

𝑓

𝑔

𝑋0

𝑌0 𝑌1

𝑋1

Figure 14. The morphism (𝑓 ⊳ 𝑔).

Proposition A.15. Up to symmetries,

(𝑓 ⊳ 𝑔) ⊳ ℎ = 𝑓 ⊳ (𝑔 ⊳ ℎ).
We may simply write (𝑓 ⊳ 𝑔 ⊳ ℎ) for any of the two, omitting
the symmetry.

Proof. Using string diagrams (Figure 15). Note that () is
coassociative and cocommutative. □

The Markov category Stoch also has conditionals [30], a
property which we will use to prove the main result regard-
ing stochastic processes.

Monoidal Streams for Dataflow Programming

𝑓

𝑔

ℎ

𝑓

𝑔

ℎ

𝑋0 𝑋1 𝑋2

𝑌0 𝑌1 𝑌2

𝑋0 𝑋1 𝑋2

𝑌0 𝑌1 𝑌2

=

Figure 15. Associativity, up to symmetries, of the triangle
operation.

𝑓

𝑓

𝑐 𝑓

=

𝐴 𝐴

𝑋 𝑌 𝑋 𝑌

Figure 16. Condititionals in a Markov category.

Definition A.16 (Conditionals, [30, Definition 11.5]). Let
C be a Markov category. We say that C has conditionals if
for every morphism 𝑓 : 𝐴→ 𝑋 ⊗ 𝑌 , writing 𝑓𝑌 : 𝐴→ 𝑋 for
its first projection, there exists 𝑐 𝑓 : 𝑋 ⊗ 𝐴 → 𝑌 such that
𝑓 = 𝑓𝑌 ⊳ 𝑐 𝑓 (Figure 16).

Proposition A.17. The Markov category Stoch has condi-
tionals [30, Example 11.6].

Proof. Let 𝑓 : 𝐴→ 𝑋 ⊗𝑌 . If 𝑌 is empty, we are automatically
done. If not, pick some 𝑦0 ∈ 𝑌 , and define

𝑐 𝑓 (𝑦 |𝑥, 𝑎) =

𝑓 (𝑥,𝑦 |𝑎)/∑𝑥 ∈𝑋 𝑓 (𝑥,𝑦 |𝑎)
if 𝑓 (𝑥,𝑦 |𝑎) > 0 for some 𝑥 ∈ 𝑋,

(𝑦 = 𝑦0) otherwise.

It is straightforward to check that this does indeed define a
distribution, and that it factors the original 𝑓 as expected. □

Definition A.18 (Ranges). In a Markov category, a range
for a morphism 𝑓 : 𝐴→ 𝐵 is a morphism 𝑟 𝑓 : 𝐴⊗𝐵 → 𝐴⊗𝐵
that

1. does not change its output 𝑓 ⊳ id𝐴⊗𝐵 = 𝑓 ⊳ 𝑟 𝑓 ,
2. is deterministic, meaning 𝑟 𝑓 ; 𝐴⊗𝐵 = 𝐴⊗𝐵 ; (𝑟 𝑓 ⊗ 𝑟 𝑓),
3. and has the range property, 𝑓 ⊳ 𝑔 = 𝑓 ⊳ ℎ must imply

(𝑟 𝑓 ⊗ id);𝑔 = (𝑟 𝑓 ⊗ id);ℎ
for any suitably typed 𝑔 and ℎ.

𝑋

𝑀

𝛼

𝑐𝛼

𝑌

𝛼

𝑋

𝑌 𝑀

=
𝛼0

𝑐𝛼

=

𝑋

𝑌 𝑀

Figure 17. Productivity for Markov categories.

We say that a Markov category has ranges if there exists a
range for each morphism of the category.

Remark A.19. There already exists a notion of categorical
range in the literature, due to Cockett, Guo and Hofstra [20].
It arises in parallel to the notion of support in restriction
categories [21]. The definition better suited for our purposes
is different, even if it seems inspired by the same idea. The
main difference is that we are using a controlled range; that is,
the range of a morphism depends on the input to the original
morphism. We keep the name hoping that it will not cause
any confusion, as we do not deal explicitly with restriction
categories in this text.

Proposition A.20. The Markov category Stoch has ranges.

Proof. Given 𝑓 : 𝐴→ 𝐵, we know that for each 𝑎 ∈ 𝐴 there
exists some 𝑏𝑎 ∈ 𝐵 such that 𝑓 (𝑏𝑎 |𝑎) > 0. We fix such 𝑏𝑎 ∈ 𝐵,
and we define 𝑟 𝑓 : 𝐴 ⊗ 𝐵 → 𝐴 ⊗ 𝐵 as

𝑟 𝑓 (𝑎, 𝑏) =
{
(𝑎, 𝑏) if 𝑓 (𝑏 |𝑎) > 0,
(𝑎, 𝑏𝑎) if 𝑓 (𝑏 |𝑎) = 0.

It is straightforward to check that it satisfies all the properties
of ranges. □

Theorem A.21. Any Markov category with conditionals and
ranges is productive.

Proof. Given any ⟨𝛼 | ∈ Stage1 (X,Y), we can define

𝛼0 = 𝐴;𝛼 ; (𝑌 ⊗ 𝑀).

This is indeed well-defined because of naturality of the dis-
carding map ()𝑀 : 𝑀 → 𝐼 in any Markov category. Let
𝑐𝛼 : 𝑌 ⊗ 𝑋 → 𝑀 be a conditional of 𝛼 . This representative
can then be factored as 𝛼 = 𝛼0; 𝑐𝛼 (Figure 17).
Now assume that for two representatives ⟨𝛼𝑖 | = ⟨𝛼 𝑗 |

we have that ⟨𝛼𝑖 ;𝑢 | = ⟨𝛼 𝑗 ; 𝑣 |. By naturality of the discard-
ing, 𝛼𝑖 ; Y = 𝛼 𝑗 ; Y, and let 𝑟 be a range of this map. Again
by naturality of discarding, we have 𝛼𝑖 ;𝑢; = 𝛼 𝑗 ; 𝑣 ; . Let
then 𝑐𝑖 and 𝑐 𝑗 be conditionals of 𝛼𝑖 and 𝛼 𝑗 : we have that
(𝛼0 ⊳ 𝑐𝑖);𝑢; = (𝛼0 ⊳ 𝑐 𝑗); 𝑣 ; . By the properties of ranges (Fig-
ure 18), (𝛼0 ⊳ 𝑟 ; 𝑐𝑖);𝑢; 𝑀 (𝑢) = (𝛼0 ⊳ 𝑟 ; 𝑐 𝑗); 𝑣 ; 𝑀 (𝑣) , and thus,
𝑟 ; 𝑐𝑖 ;𝑢; 𝑀 (𝑢) = 𝑟 ; 𝑐 𝑗 ; 𝑣 ; 𝑀 (𝑣) . We pick 𝑠𝑖 = 𝑟 ; 𝑐𝑖 and we have
proven that ⟨𝑠𝑖 ;𝑢 | = ⟨𝑠 𝑗 ; 𝑣 |. □

Elena Di Lavore, Giovanni de Felice, and Mario Román

𝑋

𝛼𝑖

𝑐𝑖

𝑟

𝑢

𝑋

𝛼 𝑗

𝑐 𝑗

𝑟

𝑣

=

𝑍

𝑌 𝑊

𝑍

𝑌 𝑊

Figure 18. Applying the properties of range.

A.2 Stochastic processes
Definition A.22 (Controlled stochastic process). Let X =

(𝑋0, 𝑋1, . . .) and Y = (𝑌0, 𝑌1, . . .) be infinite sequences of
sets. A controlled stochastic process f : X→ Y is an infinite
sequence f = (𝑓0, 𝑓1, . . .) of functions 𝑓𝑛 : 𝑋𝑛 × · · · × 𝑋1 →
D(𝑌𝑛 × · · · × 𝑌1) such that 𝑓𝑛 coincides with the marginal
distribution of 𝑓𝑛+1 on the first 𝑛 variables. In other words,
𝑓𝑛+1 ; 𝐷𝜋𝑌0,...,𝑌𝑛 = 𝜋𝑋0,...,𝑋𝑛

; 𝑓𝑛 .

𝑋0 × · · · × 𝑋𝑛+1 𝐷 (𝑌0 × · · · × 𝑌𝑛+1)

𝑋0 × · · · × 𝑋𝑛 𝐷 (𝑌0 × · · · × 𝑌𝑛)

𝑓𝑛+1

𝜋0,...,𝑛 𝐷𝜋0,...,𝑛

𝑓𝑛

Let StochProc be the categorywith objects infinite sequences
of sets X = (𝑋0, 𝑋1, . . .) and morphisms controlled stochastic
processes f = (𝑓0, 𝑓1, . . .) with composition and identities
defined componentwise in Stoch.

Proposition A.23 (Factoring as conditionals). A stochastic
process 𝑓 : X→ Y can be always written as

𝑓𝑛 = 𝑐0 ⊳ 𝑐1 ⊳ · · · ⊳ 𝑐𝑛,
for some family of functions

𝑐𝑛 : 𝑌0 × · · · × 𝑌𝑛−1 × 𝑋0 × · · · × 𝑋𝑛 → 𝑌𝑛,

called the conditionals of the stochastic process.

Proof. We proceed by induction, noting first that 𝑐0 = 𝑓0. In
the general case, we apply conditionals to rewrite 𝑓𝑛+1 =

(𝑓𝑛+1; ()𝑌𝑛+1) ⊳ 𝑐𝑛+1. Because of the marginalization property,
we know that 𝑓𝑛+1; ()𝑌𝑛+1 = 𝑓𝑛 . So finally, 𝑓𝑛+1 = 𝑓𝑛 ⊳ 𝑐𝑛+1,
which by the induction hypothesis gives the desired result.

□

Proposition A.24. If two families of conditionals give rise to
the same stochastic process,

𝑐0 ⊳ 𝑐1 ⊳ · · · ⊳ 𝑐𝑛 = 𝑐 ′0 ⊳ 𝑐
′
1 ⊳ · · · ⊳ 𝑐 ′𝑛,

then, they also give rise to the same n-stage processes in Stoch,

⟨𝑐0 ⊳ id|𝑐1 ⊳ id| . . . |𝑐𝑛 ⊳ id| = ⟨𝑐 ′0 ⊳ id|𝑐 ′1 ⊳ id| . . . |𝑐 ′𝑛 ⊳ id| .

Proof. We start by defining a family of morphisms 𝑟𝑛 by
induction. We take 𝑟0 = id and 𝑟𝑛+1 to be a range of 𝑟𝑛 ; ; 𝑐𝑛 .

Let us prove now that for any 𝑛 ∈ N and 𝑖 ⩽ 𝑛,

𝑟𝑖 ; ; 𝑐𝑖 ⊳ · · · ⊳ 𝑐𝑛 = 𝑟𝑖 ; ; 𝑐 ′𝑖 ⊳ · · · ⊳ 𝑐 ′𝑛 .
We proceed by induction. Observing that 𝑐0 = 𝑐 ′0, we prove
it for 𝑛 = 0 and also for the case 𝑖 = 0 for any 𝑛 ∈ N.
Assume we have it proven for 𝑛, so in particular we know
that 𝑟𝑖 ; ; 𝑐𝑖 = 𝑟𝑖 ; ; 𝑐 ′𝑖 for any 𝑖 ⩽ 𝑛. Now, by induction on 𝑖 ,
we can use the properties of ranges to show that

𝑟𝑖 ; ; 𝑐𝑖 ⊳ · · · ⊳ 𝑐𝑛 = 𝑟𝑖 ; ; 𝑐 ′𝑖 ⊳ · · · ⊳ 𝑐 ′𝑛
(𝑟𝑖 ; ; 𝑐𝑖 ⊳ id); 𝑐𝑖+1 ⊳ · · · ⊳ 𝑐𝑛 = (𝑟𝑖 ; ; 𝑐 ′𝑖 ⊳ id); 𝑐 ′𝑖+1 ⊳ · · · ⊳ 𝑐 ′𝑛
(𝑟𝑖 ; ; 𝑐𝑖 ⊳ 𝑟𝑖+1); 𝑐𝑖+1 ⊳ · · · ⊳ 𝑐𝑛 = (𝑟𝑖 ; ; 𝑐 ′𝑖 ⊳ 𝑟𝑖+1); 𝑐 ′𝑖+1 ⊳ · · · ⊳ 𝑐 ′𝑛

𝑟𝑖+1; ; 𝑐𝑖+1 ⊳ · · · ⊳ 𝑐𝑛 = 𝑟𝑖+1; ; 𝑐 ′𝑖+1 ⊳ · · · ⊳ 𝑐 ′𝑛 .
In particular, 𝑟𝑛 ; ; 𝑐𝑛 = 𝑟𝑛 ; ; 𝑐 ′𝑛 .
Now, we claim the following for each 𝑛 ∈ N and each

𝑖 ⩽ 𝑛,
⟨𝑐0 ⊳ id| . . . |𝑐𝑛 ⊳ id| =

⟨𝑟0 (𝑐0 ⊳ id) | . . . |𝑟𝑖 (𝑐𝑖 ⊳ id) |𝑐𝑖+1 | . . . |𝑐𝑛 ⊳ id| .
It is clear for 𝑛 = 0 and for 𝑖 = 0. In the inductive case for 𝑖 ,

⟨𝑟0 (𝑐0 ⊳ id) | . . . |𝑟𝑖 (𝑐𝑖 ⊳ id) |𝑐𝑖+1 ⊳ id| . . . |𝑐𝑛 ⊳ id| =
⟨𝑟0 (𝑐0 ⊳ id) | . . . |𝑟𝑖 ; ; 𝑐𝑖 ⊳ id|𝑐𝑖+1 ⊳ id| . . . |𝑐𝑛 ⊳ id| =
⟨𝑟0 (𝑐0 ⊳ id) | . . . |𝑟𝑖 ; ; 𝑐𝑖 ⊳ 𝑟𝑖+1 |𝑐𝑖+1 ⊳ id| . . . |𝑐𝑛 ⊳ id| =

⟨𝑟0 (𝑐0 ⊳ id) | . . . |𝑟𝑖 ; ; 𝑐𝑖 ⊳ id|𝑟𝑖+1 (𝑐𝑖+1 ⊳ id) | . . . |𝑐𝑛 ⊳ id| =
⟨𝑟0 (𝑐0 ⊳ id) | . . . |𝑟𝑖 (𝑐𝑖 ⊳ id) |𝑟𝑖+1 (𝑐𝑖+1 ⊳ id) | . . . |𝑐𝑛 ⊳ id| .

A particular case of this claim is then that
⟨𝑐0 ⊳ id| . . . |𝑐𝑛 ⊳ id| =

⟨𝑟0 (𝑐0 ⊳ id) | . . . |𝑟𝑛 (𝑐𝑛 ⊳ id) | =
⟨𝑟0 (𝑐 ′0 ⊳ id) | . . . |𝑟𝑛 (𝑐 ′𝑛 ⊳ id) | =

⟨𝑐 ′0 ⊳ id| . . . |𝑐 ′𝑛 ⊳ id| .
This can be then proven for any 𝑛 ∈ N. □

CorollaryA.25. Any stochastic process 𝑓 ∈ StochProc(X,Y)
with a family of conditionals 𝑐𝑛 gives rise to the observational
sequence

obs(𝑓) = [⟨(𝑐𝑛 ⊳ id) : (𝑋0 × 𝑌0 × · · · × 𝑋𝑛−1 × 𝑌𝑛−1) × 𝑋𝑛 →
(𝑋0 × 𝑌0 × · · · × 𝑋𝑛 × 𝑌𝑛) × 𝑌𝑛⟩]≈,

which is independent of the chosen family of conditionals.

Proof. Any two families of conditionals for 𝑓 give rise to
the same n-stage processes in Stoch (by Proposition A.24).
Being a productive category, observational sequences are
determined by their n-stage procesess. □

Proposition A.26. An observational sequence in Stoch,

[⟨𝑔𝑛 : 𝑀𝑛−1 ⊗ 𝑋𝑛 → 𝑀𝑛 ⊗ 𝑌𝑛⟩]≈ ∈ Obs(X,Y)
gives rise to a stochastic process proc(𝑔) ∈ StochProc(X,Y)
defined by proc(𝑔)𝑛 = 𝑔0;𝑔1; . . . ;𝑔𝑛 ; Y𝑀𝑛

.

Monoidal Streams for Dataflow Programming

Proof. The symmetric monoidal category Stoch is produc-
tive: by Lemma D.3, observational sequences are determined
by their n-stage truncations

⟨𝑔0 | . . . |𝑔𝑛 | ∈ Stage𝑛 (X,Y).

Each n-stage truncation gives rise to the n-th component
of the stochastic process, proc(𝑔)𝑛 = 𝑔0;𝑔1; . . . ;𝑔𝑛 ; Y𝑀𝑛

, and
this is well-defined: composing the morphisms is invariant
to sliding equivalence, and the last discarding map is natural.

It only remains to show that they satisfy the marginalisa-
tion property. Indeed,

proc(𝑔)𝑛+1; Y𝑛+1 = 𝑔0;𝑔1; . . . ;𝑔𝑛+1; Y𝑀𝑛+1 ; Y𝑌𝑛+1
= 𝑔0;𝑔1; . . . ;𝑔𝑛 ; Y𝑀𝑛

= proc(𝑔)𝑛 .

Thus, proc(𝑔) is a stochastic process in StochProc(X,Y). □

Proposition A.27. Let 𝑓 ∈ StochProc(X,Y), we have that
proc(obs(𝑓)) = 𝑓 .

Proof. Indeed, for 𝑐𝑛 some family of conditionals,

𝑓𝑛 = 𝑐0 ⊳ · · · ⊳ 𝑐𝑛 = (𝑐0 ⊳ id); . . . ; (𝑐𝑛 ⊳ id); Y𝑀𝑛
. □

Theorem A.28. Observational sequences in Stoch are in bi-
jection with stochastic processes.

Proof. The function obs is injective by Proposition A.27. We
only need to show it is also surjective.

We will prove that any n-stage process ⟨𝑔0 | . . . |𝑔𝑛 | can be
equivalently written in the form ⟨(𝑐0 ⊳ id) | . . . | (𝑐𝑛 ⊳ id) |. We
proceed by induction. Given any ⟨𝑔0 | we use conditionals
and dinaturality to rewrite it as

⟨𝑔0 | = ⟨𝑐0 ⊳ 𝑐𝑀 | = ⟨𝑐0 ⊳ id| .

Given any ⟨𝑐0 ⊳ id| . . . |𝑐𝑛 ⊳ id|𝑔𝑛+1 |, we use again condition-
als and dinaturality to rewrite it as

⟨𝑐0 ⊳ id| . . . |𝑐𝑛 ⊳ id|𝑔𝑛+1 | =
⟨𝑐0 ⊳ id| . . . |𝑐𝑛 ⊳ id|𝑐𝑛+1 ⊳ 𝑐𝑀 | =
⟨𝑐0 ⊳ id| . . . |𝑐𝑛 ⊳ id|𝑐𝑛+1 ⊳ id| .

We have shown that obs is both injective and surjective. □

Theorem A.29 (From Theorem 7.2). The category Stoch of
stochastic processes is monoidally isomorphic to the category
Stream over Stoch.

Proof. We have shown in Theorem A.28 that proc is a bijec-
tion. Let us show that it preserves compositions. Indeed,

proc(𝑔;ℎ)𝑛 = 𝑔0;ℎ0; . . . ;𝑔𝑛 ;ℎ𝑛 ; Y𝑀𝑛⊗𝑁𝑛

= 𝑔0; . . . ;𝑔𝑛 ;ℎ0; . . . ;ℎ𝑛 ; (Y𝑀𝑛
⊗ Y𝑁𝑛

)
= 𝑔0 . . . 𝑔𝑛 ; Y𝑀𝑛

;ℎ0 . . . ℎ𝑛 ; Y𝑁𝑛

= proc(𝑔)𝑛 ; proc(ℎ)𝑛 .

It also trivially preserves the identity. It induces thus an
identity-on-objects functor which is moreover an equiva-
lence of categories. Let us finally show that it preserves
tensoring of morphisms.

proc(𝑔 ⊗ ℎ)𝑛 = (𝑔0 ⊗ ℎ0); . . . ; (𝑔𝑛 ⊗ ℎ𝑛); Y𝑀𝑛⊗𝑁𝑛

= (𝑔0 ⊗ ℎ0); . . . ((𝑔𝑛Y𝑀𝑛
) ⊗ (ℎ𝑛Y𝑁𝑛

))
= (𝑔0 . . . 𝑔𝑛Y𝑀𝑛

) ⊗ (ℎ0 . . . ℎ𝑛Y𝑁𝑛
)

= proc(𝑔)𝑛 ⊗ proc(ℎ)𝑛 .
It is thus also a monoidal equivalence. □

B Coend Calculus and Profunctors
Coend calculus is the name given to the a branch of cate-
gory theory that describes the behaviour of certain colimits
called coends. MacLane [55] and Loregian [53] give complete
presentations of coend calculus.

Definition B.1. Coends are the coequalizers of the action
of morphisms on both arguments of a profunctor.

coend(𝑃) B coeq
(∐

𝑓 : 𝐵→𝐴 𝑃 (𝐴, 𝐵) ∐
𝑋 ∈C 𝑃 (𝑋,𝑋)

)
.

Coends are usually denoted with a superscripted integral,
drawing on an analogy with classical calculus.∫ 𝑋 ∈C

𝑃 (𝑋,𝑋) = coend(𝑃).

Proposition B.2 (Yoneda reduction). Let C be any category
and let 𝐹 : C→ Set be a functor; the following isomorphism
holds for any given object 𝐴 ∈ C.∫ 𝑋 ∈C

hom (𝑋,𝐴) × 𝐹𝑋 � 𝐹𝐴.

Following the analogy with classical analysis, the hom pro-
functor works as a Dirac’s delta.

Proposition B.3 (Fubini rule). Coends commute between
them; that is, there exists a natural isomorphism∫ 𝑋1∈C ∫ 𝑋2∈C

𝑃 (𝑋1, 𝑋2, 𝑋1, 𝑋2)

� ∫ 𝑋2∈C ∫ 𝑋1∈C
𝑃 (𝑋1, 𝑋2, 𝑋1, 𝑋2).

In fact, they are both isomorphic to the coend over the product
category, ∫ (𝑋1,𝑋2) ∈C×C

𝑃 (𝑋1, 𝑋2, 𝑋1, 𝑋2).

Following the analogy with classical analysis, coends follow
the Fubini rule for integrals.

A profunctor from a category A to a category B is a functor
𝑃 : A𝑜𝑝 × B → Set. They can be seen as a categorification
of the concept of relations, functions 𝐴 × 𝐵 → 2. Under this
analogy, existential quantifiers correspond to coends. The

Elena Di Lavore, Giovanni de Felice, and Mario Román

canonical example of a profunctor is, hom : A𝑜𝑝 × A→ Set,
the profunctor that returns the set of morphisms between
two objects. Many operations relating families of processes
are more easily defined in terms of profunctors: for instance,
sequential composition connects the outputs of a family of
processes to the outputs of another family.

Definition B.4 (Sequential composition). Two profunctors
𝑃 : A𝑜𝑝×B→ Set and𝑄 : B𝑜𝑝×C→ Set compose sequentially
into a profunctor 𝑃 ⋄𝑄 : A𝑜𝑝 × C→ Set defined by

(𝑃 ⋄𝑄) (𝐴,𝐶) =
∫ 𝐵∈B

𝑃 (𝐴, 𝐵) ×𝑄 (𝐵,𝐶).

The hom-profunctor hom : A𝑜𝑝×A→ Set that returns the set
of morphisms between two objects is the unit for sequential
composition. Sequential composition is associative up to
isomorphism.

Definition B.5 (Parallel composition). Two profunctors
𝑃 : A𝑜𝑝

1 × B1 → Set and 𝑄 : A𝑜𝑝

2 × B2 → Set compose in
parallel into a profunctor 𝑃 ×𝑄 : A𝑜𝑝

1 ×A
𝑜𝑝

2 × B1 × B2 → Set
defined by

(𝑃 ×𝑄) (𝐴,𝐴′, 𝐵, 𝐵′) = 𝑃 (𝐴, 𝐵) ×𝑄 (𝐴′, 𝐵′).

Definition B.6 (Intensional communicating composition).
Let A,B,C be categories and let B have a monoidal structure.
Let 𝑃 : A𝑜𝑝 × B→ Set and 𝑄 : B𝑜𝑝 × CN → Set be a pair of
profunctors. Their intensional communicating composition is
the profunctor 𝑃 � 𝑄 : A𝑜𝑝 × B𝑜𝑝 × B × C→ Set defined as

(𝑃 � 𝑄) (𝐴, 𝐵;𝐵′,𝐶) =
∑
𝑀 ∈B

𝑃 (𝐴, 𝐵 ⊗ 𝑀) ×𝑄 (𝑀 ⊗ 𝐵′,𝐶).

Remark B.7. Let C be a monoidal category and let 𝑃 : C𝑜𝑝 ×
C → Set and 𝑄 : [N,C]𝑜𝑝 × [N,C] → Set be a pair of pro-
functors. Note that [N,C] � C × [N,C], and so the sec-
ond profunctor can be interpreted as having type 𝑄 : C𝑜𝑝 ×
([N,C]𝑜𝑝 × [N,C]) → Set. In this case, their intensional
communicating composition is defined by

(𝑃 � 𝑄) (X;Y) B
∑
𝑀 ∈C

𝑃 (𝑋0, 𝑀 ⊗ 𝑌0) ×𝑄 (𝑀 · X+,Y+).

This is the composition we use when we describe the endo-
functor (hom � •) : [[N,C]𝑜𝑝 × [N,C], Set] → [[N,C]𝑜𝑝 ×
[N,C], Set].

(hom � 𝑄) (X;Y) B
∑
𝑀 ∈C

hom (𝑋0, 𝑀 ⊗𝑌0) ×𝑄 (𝑀 ·X+,Y+).

Definition B.8 (Communicating profunctor composition).
Let A,B,C be categories and let B have a monoidal structure.
Two profunctors 𝑃 : A𝑜𝑝 × B → Set and 𝑄 : B𝑜𝑝 × C →
Set compose communicating along B into the profunctor
(𝑃 ⊙ 𝑄) : A𝑜𝑝 × B × B𝑜𝑝 × C→ Set defined by

(𝑃 ⊙ 𝑄) (𝐴, 𝐵;𝐵′,𝐶) =
∫ 𝑀

𝑃 (𝐴, 𝐵 ⊗ 𝑀) ×𝑄 (𝑀 ⊗ 𝐵′,𝐶).

The profunctors hom (𝐼 , •) : B→ Set and hom (•, 𝐼) : B𝑜𝑝 →
Set are left and right units with respect to communicat-
ing composition. The communicating composition of three
profunctors 𝑃 : A𝑜𝑝 × B → Set, 𝑄 : B𝑜𝑝 × C → Set and
𝑅 : C𝑜𝑝 × D → Set is associative up to isomorphism and a
representative can be written simply by (𝑃 ⊙ 𝑄 ⊙ 𝑅) : A𝑜𝑝 ×
B × B𝑜𝑝 × C × C𝑜𝑝 × D → Set, where both B and C are
assumed to have a monoidal structure.

Remark B.9. This is the composition we use when we de-
scribe the endofunctor (hom ⊙ •) : [[N,C]𝑜𝑝×[N,C], Set] →
[[N,C]𝑜𝑝 × [N,C], Set].

(hom ⊙𝑄) (X;Y) B
∫ 𝑀 ∈C

hom (𝑋0, 𝑀⊗𝑌0)×𝑄 (𝑀 ·X+,Y+).

B.1 Initial algebras, final coalgebras
Definition B.10 (Algebras and coalgebras). Let C be a cate-
gory and let 𝐹 : C→ C be an endofunctor. An algebra (𝑋, 𝛼)
is an object𝑋 ∈ C, together with a morphism 𝛼 : 𝐹𝑋 → 𝑋 . A
coalgebra (𝑌, 𝛽) is an object𝑌 ∈ C, together with amorphism
𝛽 : 𝑌 → 𝐹𝑌 .

An algebra morphism 𝑓 : (𝑋, 𝛼) → (𝑋 ′, 𝛼 ′) is a morphism
𝑓 : 𝑋 → 𝑋 ′ such that the diagram on the left commutes.
A coalgebra morphism 𝑔 : (𝑌, 𝛽) → (𝑌 ′, 𝛽 ′) is a morphism
𝑓 : 𝑌 → 𝑌 ′ such that the diagram on the right commutes.

𝐹𝑋 𝐹𝑋 ′ 𝑌 𝑌 ′

𝑋 𝑋 ′ 𝐹𝑌 𝐹𝑌 ′

𝛼

𝐹 𝑓

𝛼′

𝑔

𝛽 𝛽′

𝑓 𝐹𝑔

Algebras for an endofunctor form a category with algebra
morphisms between them. The initial algebra is the initial
object in this category. Coalgebras for an endofunctor form
a category with coalgebra morphisms between them. The
final coalgebra is the terminal object in this category.

Definition B.11 (Fixpoints of an endofunctor). Let C be a
category and let 𝐹 : C → C be an endofunctor. A fixpoint
is an algebra (𝑋, 𝛼) such that 𝛼 : 𝐹𝑋 → 𝑋 is an isomor-
phism. Equivalently, a fixpoint is a coalgebra (𝑌, 𝛽) such
that 𝛽 : 𝑌 → 𝐹𝑌 is an isomorphism.
Fixpoints form a category with algebra morphisms (or,

equivalently, coalgebra morphisms) between them.

Theorem B.12 (Lambek, [50]). The final coalgebra of a func-
tor is a fixpoint. As a consequence, when it exists, it is the final
fixpoint.

Theorem B.13 (Adamek, [4]). Let D be a category with a
final object 1 and 𝜔-shaped limits. Let 𝐹 : D→ D be an endo-
functor. We write 𝐿 = lim𝑛 𝐹

𝑛1 for the limit of the following
𝜔-chain, which is called the terminal sequence.

1
!←− 𝐹1

𝐹 !←− 𝐹𝐹1
𝐹𝐹 !←− 𝐹𝐹𝐹1

𝐹𝐹𝐹 !←− . . .

Monoidal Streams for Dataflow Programming

Assume that 𝐹 preserves this limit, meaning that the canonical
morphism 𝐹𝐿 → 𝐿 is an isomorphism. Then, 𝐿 is the final
𝐹 -coalgebra.

B.2 Size concerns, limits and colimits
Remark B.14. We call Set to the category of sets and func-
tions below a certain Grothendieck universe. We do take
colimits (and coends) over this category without creating
size issues: we can be sure of their existence in our metathe-
oretic category of sets.

Proposition B.15. Terminal coalgebras exist in Set. More
generally, the category of sets below a certain regular uncount-
able cardinal is algebraically complete and cocomplete; mean-
ing that every Set-endofunctor has a terminal coalgebra and
an initial algebra. See [5, Theorem 13].

Theorem B.16 (Coproducts commute with connected lim-
its). Let 𝐼 be a set, understood as a discrete category, and let A
be a connected category with 𝐹 : 𝐼 × A→ Set a functor. The
canonical morphism∑

𝑖∈𝐼
lim
𝑎∈𝐴

𝐹 (𝑖, 𝑎) → lim
𝑎∈𝐴

∑
𝑖∈𝐼

𝐹 (𝑖, 𝑎)

is an isomorphism.
In particular, let 𝐹𝑛 : 𝐼 → Set be a family of functors indexed

by the natural numbers with a family of natural transforma-
tions 𝛼𝑛 : 𝐹𝑛+1 → 𝐹𝑛 . The canonical morphism∑

𝑖∈𝐼
lim
𝑛∈N

𝐹𝑛 (𝑖) → lim
𝑛∈N

∑
𝑖∈𝐼

𝐹𝑛 (𝑖)

is an isomorphism.

Proof. Note that there are no morphisms between any two
indices 𝑖, 𝑗 ∈ 𝐼 . Once some 𝑖 ∈ 𝐼 is chosen in any factor of
the connected limit, it forces any other factor to also choose
𝑖 ∈ 𝐼 . This makes the local choice of 𝑖 ∈ 𝐼 be equivalent to
the global choice of 𝑖 ∈ 𝐼 . □

C The List+ opmonoidal comonad and
Fox’s theorem

Proposition C.1. Cartesian monoidal categories are produc-
tive.

Proof. Let ⟨𝛼 | ∈ Stage1 (X,Y). For some given representa-
tive 𝛼 : 𝑋0 → 𝑀 ⊗ 𝑌0, we define the two projections 𝛼𝑌 =

𝛼 ; 𝑀 : 𝑋0 → 𝑌0 and 𝛼𝑀 = 𝛼 ; 𝑌 . The second projection 𝛼𝑀
depends on the specific representative 𝛼 we have chosen;
however, the first projection 𝛼𝑌 is defined independently of
the specific representative 𝛼 , as a consequence of natural-
ity of the discarding map (see Fox’s theorem for cartesian
monoidal categories Theorem C.5). We define 𝛼0 = 𝛿𝑋0 ;𝛼𝑌 .
Then, we can factor any representative as 𝛼 = 𝛼0;𝛼𝑀 (see
Figure 19). Now, assume that we have two representatives
⟨𝛼𝑖 | = ⟨𝛼 𝑗 | for which ⟨𝛼𝑖 ;𝑢 | = ⟨𝛼 𝑗 ; 𝑣 |. By naturality of the
discarding map, 𝛼𝑖 ; = 𝛼 𝑗 ; , and we call this map 𝛼𝑌 . Again

𝑋

𝛼

𝑌

𝛼

𝑋

𝑌𝑀

=
𝛼0

𝑋

𝑌𝑀

𝛼
=

𝛼

𝑀

Figure 19. Productivity for cartesian categories.

by naturality of the discarding map, 𝛼𝑖 ;𝑢; = 𝛼 𝑗 ; 𝑣 ; , and
discarding the output in 𝑌 , we get that 𝛼𝑀,𝑖 ;𝑢; = 𝛼𝑀,𝑗 ; 𝑣 ; ,
which implies ⟨𝛼𝑀,𝑖 ;𝑢 | = ⟨𝛼𝑀,𝑗 ; 𝑣 |. □

Definition C.2 (Opmonoidal comonad). In a monoidal cat-
egory (C, ⊗, 𝐼), a comonad (𝑅, Y, 𝛿) is an opmonoidal como-
nad when the endofunctor 𝑅 : C → C is oplax monoidal
with laxators𝜓𝑋,𝑌 : 𝑅(𝑋 ⊗ 𝑌) → 𝑅𝑋 ⊗ 𝑅𝑌 and𝜓 𝐼 : 𝑅𝐼 → 𝐼 ,
and both the counit Y𝑋 : 𝑅𝑋 → 𝑋 and the comultiplication
𝛿𝑋 : 𝑅𝑋 → 𝑅𝑅𝑋 are monoidal natural transformations.

Explicitly, Y𝐼 = 𝜓0, Y𝑋 ⊗𝑌 = 𝜓𝑋,𝑌 ; (Y𝑋 ⊗ Y𝑌), 𝛿𝐼 ;𝜓0;𝜓0 = 𝜓0
and 𝛿𝑋 ⊗𝑌 ;𝜓𝑋,𝑌 ;𝜓𝑅𝑋,𝑅𝑌 = 𝜓𝑋,𝑌 ; (𝛿𝑋 ⊗ 𝛿𝑌).
Alternatively, an opmonoidal comonad is a comonoid in

the bicategoryMonOplax of oplax monoidal functors with
composition and monoidal natural transformations between
them.

Definition C.3. Let (C, ⊗, 𝐼) be a symetric monoidal cate-
gory. There is a functor List+ : C → C defined on objects
by

List+ (𝑋)𝑛 B
𝑛⊗
𝑖=0

𝑋𝑖 .

This functor is monoidal, with oplaxators𝜓+0 : List
+ (𝐼) → 𝐼

and 𝜓𝑋,𝑌 : List+ (𝑋 ⊗ 𝑌) → List+ (𝑋) ⊗ List+ (𝑌) given by
symmetries, associators and unitors.

Theorem C.4 (From Theorem 6.1). The opmonoidal functor
List+ has an opmonoidal comonad structure if and only if its
base monoidal category (C, ⊗, 𝐼) is cartesian monoidal.

Proof. When C is cartesian, we can construct the comonad
structure using projections

∏𝑛
𝑖=0𝑋𝑖 → 𝑋𝑛 and copying to-

gether with braidings
∏𝑛

𝑖=0𝑋𝑖 →
∏𝑛

𝑖=0
∏𝑖

𝑘=0𝑋𝑘 . These are
monoidal natural transformations making List+ a monoidal
comonad.
Suppose (𝐿, Y, 𝛿) is an opmonoidal comonad structure.

This means it has families of natural transformations

𝛿𝑛 :
𝑛⊗
𝑖=0

𝑋𝑖 →
𝑛⊗
𝑖=0

𝑖⊗
𝑘=0

𝑋𝑘 and Y𝑛 :
𝑛⊗
𝑖=0

𝑋𝑖 → 𝑋𝑛 .

We will use these to construct a uniform counital comagma
structure on every object of the category. By a refined version
of Fox’s theorem (Theorem C.7), this will imply that C is
cartesian monoidal.

Elena Di Lavore, Giovanni de Felice, and Mario Román

Let 𝑋 ∈ C be any object. Choosing 𝑛 = 2, 𝑋0 = 𝑋 and
𝑋1 = 𝐼 ; and using coherence maps, we get 𝛿2 : 𝑋 → 𝑋 ⊗ 𝑋
and Y2 : 𝑋 → 𝐼 . These are coassociative, counital, natural
and uniform because the corresponding transformations 𝛿
and Y are themselves coassociative, counital, natural and
monoidal. This induces a uniform comagma structure in
every object (𝑋, 𝛿2, Y2); with this structure, every morphism
of the category is a comagma homomorphism because 𝛿2
and Y2 are natural. □

Theorem C.5 (Fox’s theorem [29]). A symmetric monoi-
dal category (C, ⊗, 𝐼) is cartesian monoidal if and only if ev-
ery object 𝑋 ∈ C has a cocommutative comonoid structure
(𝑋, Y𝑋 , 𝛿𝑋), every morphism of the category 𝑓 : 𝑋 → 𝑌 is a
comonoid homomorphism, and this structure is uniform across
the monoidal category: meaning that Y𝑋 ⊗𝑌 = Y𝑋 ⊗ Y𝑌 , that
Y𝐼 = id, that 𝛿𝐼 = id and that 𝛿𝑋 ⊗𝑌 = (𝛿𝑋 ⊗𝛿𝑌); (id⊗𝜎𝑋,𝑌 ⊗id).

Remark C.6. Most sources ask the comonoid structure in
Fox’s theorem (Theorem C.5) to be cocommutative [28, 29].
However, cocommutativity and coassociativity of the como-
noid structure are implied by the fact that the structure is
uniform and natural. We present an original refined version
of Fox’s theorem.

Theorem C.7 (Refined Fox’s theorem). A symmetric monoi-
dal category (C, ⊗, 𝐼) is cartesian monoidal if and only if every
object 𝑋 ∈ C has a counital comagma structure (𝑋, Y𝑋 , 𝛿𝑋), or
(𝑋, 𝑋 , 𝑋), every morphism of the category 𝑓 : 𝑋 → 𝑌 is a
comagma homomorphism, and this structure is uniform across
the monoidal category: meaning that Y𝑋 ⊗𝑌 = Y𝑋 ⊗ Y𝑌 , Y𝐼 = id,
𝛿𝐼 = id and 𝛿𝑋 ⊗𝑌 = (𝛿𝑋 ⊗ 𝛿𝑌); (id ⊗ 𝜎𝑋,𝑌 ⊗ id).

Proof. We prove that such a comagma structure is necessarily
coassociative and cocommutative. Note that any comagma
homomorphism 𝑓 : 𝐴→ 𝐵 must satisfy 𝛿𝐴; (𝑓 ⊗ 𝑓) = 𝑓 ;𝛿𝐵 .
In particular, 𝛿𝑋 : 𝑋 → 𝑋 ⊗ 𝑋 must itself be a comagma
homomorphism (see Figure 20), meaning that

𝛿𝑋 ; (𝛿𝑋 ⊗ 𝛿𝑋) = 𝛿𝑋 ;𝛿𝑋 ⊗𝑋 = 𝛿𝑋 ; (𝛿𝑋 ⊗ 𝛿𝑋); (id ⊗ 𝜎𝑋,𝑌 ⊗ id),
(3)

where the second equality follows by uniformity.

=

Figure 20. Comultiplication is a comagma homomorphism.

Now, we prove cocommutativity (Figure 21): composing
both sides of Equation (3) with (𝜖𝑋 ⊗ id ⊗ id ⊗ 𝜖𝑋) discards
the two external outputs and gives 𝛿𝑋 = 𝛿𝑋 ;𝜎𝑋 .

== =

Figure 22. Coassociativity

== =

Figure 21. Cocommutativity

Now, we prove coassociativity (Figure 22): composing both
sides of Equation (3) with (id ⊗ 𝜖𝑋 ⊗ id ⊗ id) discards one of
the middle outputs and gives 𝛿𝑋 ; (id ⊗ 𝛿𝑋) = 𝛿𝑋 ; (𝛿𝑋 ⊗ id).

A coassociative and cocommutative comagma is a cocom-
mutative comonoid. We can then apply the classical form of
Fox’s theorem (Theorem C.5). □

Distributive laws. One could hope to add effects such as
probability or non-determinism to set-based streams via the
bikleisli category arising from amonad-comonad distributive
law List+ ◦ T ⇒ T ◦ List+ [7, 64], as proposed by Uustalu
and Vene [75]. This would correspond to a lifting of the
List+ comonad to the kleisli category of some commutative
monad 𝑇 ; the arrows X→ Y of such a category would look
as follows,

𝑓𝑛 : 𝑋1 × · · · × 𝑋𝑛 → 𝑇𝑌𝑛 .

However, we have already shown that this will not result
in a monoidal comonad whenever kl(𝑇) is not cartesian. To
see explicitly what fails, we use the string diagrams to show
how composition should work for the case 𝑛 = 2 (Figure 23).
This composition is not associative or unital whenever the
kleisli category does not have natural comultiplications or
counits, respectively (Figures 24 and 25).

𝑋0

𝑓1

𝑓0

𝑔1

𝑋1

𝑌1

Figure 23. Composition in the case 𝑛 = 2.

D Productive categories
DefinitionD.1 (Truncating coherently). Let 𝑓 𝑘𝑛 : 𝑋𝑛⊗𝑀𝑛−1 →
𝑌𝑛 ⊗ 𝑀𝑛 be a family of families of morphisms of increasing
length, indexed by 𝑘 ∈ N and 𝑛 ⩽ 𝑘 . We say that this family

Monoidal Streams for Dataflow Programming

𝑋0

𝑓1

𝑓0

𝑋1

𝑌1

𝑓1≠

𝑋0 𝑋1

𝑌1

Figure 24. Failure of unitality if discarding is not natural, as
it happens, for instance, with partial functions.

𝑋0

𝑓1𝑓0

𝑔1

𝑋1

𝑌1

𝑔0

ℎ1

𝑓0

𝑔0

𝑓0 𝑓1

𝑔1

ℎ1

𝑌1

𝑋0 𝑋1

≠

Figure 25. Failure of associativity if copying is not natural,
as it happens, for instance, with stochastic functions.

truncates coherently if ⟨𝑓 𝑝0 | . . . |𝑓
𝑝
𝑛 | = ⟨𝑓

𝑞

0 | . . . |𝑓
𝑞
𝑛 | for each

𝑝, 𝑞 ∈ N and each 𝑛 ⩽ min{𝑝, 𝑞}.

Lemma D.2 (Factoring a family of processes). In a produc-
tive category, let (⟨𝑓 𝑘0 | . . . |𝑓 𝑘𝑘 |)𝑘∈N be a sequence of sequences
that truncates coherently. Then, there exists a sequence ℎ𝑖 with
𝑠𝑘𝑖−1 𝑓

𝑘
𝑖 = ℎ𝑖𝑠

𝑘
𝑖 such that, for each 𝑘 ∈ N and each 𝑛 ⩽ 𝑘 ,

⟨𝑓 𝑘0 | . . . |𝑓 𝑘𝑛 | = ⟨ℎ0 | . . . |ℎ𝑛 |. Moreover, this family ℎ𝑖 is such
that ⟨ℎ0 . . . ℎ𝑛𝑠𝑝𝑛𝑢 | = ⟨ℎ0 . . . ℎ𝑛𝑠

𝑞
𝑛𝑣 | implies ⟨𝑠𝑝𝑛𝑢 | = ⟨𝑠

𝑞
𝑛𝑣 |.

Proof. We construct the family by induction. In the case
𝑛 = 0, we use that the family truncates coherently to have
that ⟨𝑓 𝑝0 | = ⟨𝑓

𝑞

0 | and thus, by productivity, create an ℎ0 with
𝑓 𝑘0 = ℎ0𝑠

𝑘
0 such that ⟨ℎ0𝑠𝑝0𝑢 | = ⟨ℎ0𝑠

𝑞

0𝑣 | implies ⟨𝑠𝑝0𝑢 | = ⟨𝑠
𝑞

0𝑣 |.
In the general case, assume we already have constructed

ℎ0, . . . , ℎ𝑛−1 with 𝑠𝑘𝑖−1 𝑓
𝑘
𝑖 = ℎ𝑖𝑠

𝑘
𝑖 such that, for each 𝑘 ∈ N and

⟨𝑓 𝑘0 | . . . |𝑓 𝑘𝑛−1 | = ⟨ℎ0 | . . . |ℎ𝑛−1 |. Moreover, ⟨ℎ0 . . . ℎ𝑛−1𝑠𝑝𝑛−1𝑢 | =
⟨ℎ0 . . . ℎ𝑛−1𝑠𝑞𝑛−1𝑣 | implies ⟨𝑠𝑝

𝑛−1𝑢 | = ⟨𝑠
𝑞

𝑛−1𝑣 |.
In this case, we use the fact that composition “along a

bar” is dinatural: ⟨𝑓 𝑝0 | . . . |𝑓
𝑝
𝑛 | = ⟨𝑓

𝑞

0 | . . . |𝑓
𝑞
𝑛 | implies that

⟨𝑓 𝑝0 . . . 𝑓
𝑝
𝑛 | = ⟨𝑓

𝑞

0 . . . 𝑓
𝑞
𝑛 |. This can be then rewritten as

⟨ℎ0 . . . ℎ𝑛−1𝑠𝑝𝑛−1 𝑓
𝑝
𝑛 | = ⟨ℎ0 . . . ℎ𝑛−1𝑠

𝑞

𝑛−1 𝑓
𝑞
𝑛 | ,

which in turn implies ⟨𝑠𝑝
𝑛−1 𝑓

𝑝
𝑛 | = ⟨𝑠

𝑞

𝑛−1 𝑓
𝑞
𝑛 |. By productivity,

there exists ℎ𝑛 with 𝑠𝑘𝑛−1 𝑓
𝑘
𝑛 = ℎ𝑛𝑠

𝑘
𝑛 such that ⟨𝑓 𝑘0 | . . . |𝑓 𝑘𝑛 | =

⟨ℎ0 | . . . |ℎ𝑛 |.

Finally, assume that ⟨ℎ0 . . . ℎ𝑛−1ℎ𝑛𝑠𝑝𝑛𝑢 | = ⟨ℎ0 . . . ℎ𝑛−1ℎ𝑛𝑠
𝑞
𝑛𝑣 |.

Thus, we have ⟨ℎ0 . . . ℎ𝑛−1𝑠𝑝𝑛−1 𝑓
𝑝
𝑛 𝑢 | = ⟨ℎ0 . . . ℎ𝑛−1𝑠

𝑞

𝑛−1 𝑓
𝑞
𝑛 𝑣 |

and ⟨𝑠𝑝
𝑛−1 𝑓

𝑝
𝑛 𝑢 | = ⟨𝑠

𝑞

𝑛−1 𝑓
𝑞
𝑛 𝑣 |. This can be rewritten as ⟨ℎ𝑛𝑠

𝑝
𝑛𝑢 | =

⟨ℎ𝑛𝑠𝑞𝑛𝑣 |, which in turn implies ⟨𝑠𝑝𝑛𝑢 | = ⟨𝑠
𝑞
𝑛𝑣 |. We have shown

that the ℎ𝑛 that we constructed satisfies the desired prop-
erty. □

LemmaD.3. In a productive category, the set of observational
sequencesis isomorphic to the limit of the terminal sequence
of the endofunctor (hom ⊙ •) via the canonical map between
them.

Proof. We start by noting that observational equivalence of
sequences is, by definition, the same thing as being equal
under the canonical map to the limit of the terminal sequence

lim
𝑛

∫ 𝑀0,...,𝑀𝑛
𝑛∏
𝑖=0

hom (𝑋𝑖 ⊗ 𝑀𝑖−1, 𝑌𝑖 ⊗ 𝑀𝑖).

We will show that this canonical map is surjective. That
means that the domain quotiented by equality under the
map is isomorphic to the codomain, q.e.d.
Indeed, given any family 𝑓 𝑘𝑛 that truncates coherently,

we can apply Lemma D.2 to find a sequence ℎ𝑖 such that
⟨𝑓 𝑘0 | . . . |𝑓 𝑘𝑛 | = ⟨ℎ0 | . . . |ℎ𝑛 |. This means that it is the image of
the stateful sequence ℎ𝑖 . □

Lemma D.4 (Factoring two processes). In a productive cat-
egory, let ⟨𝑓0 | = ⟨𝑔0 |. Then there exists ℎ0 with 𝑓0 = ℎ0𝑠0 and
𝑔0 = ℎ0𝑡0 such that

⟨𝑓0 | . . . |𝑓𝑛 | = ⟨𝑔0 | . . . |𝑔𝑛 |
implies the existence of a family ℎ𝑖 together with 𝑠𝑖 and 𝑡𝑖 such
that 𝑠𝑖−1 𝑓𝑖 = ℎ𝑖𝑠𝑖 and 𝑡𝑖−1𝑔𝑖 = ℎ𝑖𝑡𝑖 ; and moreover, such that

⟨ℎ0 . . . ℎ𝑛𝑠𝑛𝑢 | = ⟨ℎ0 . . . ℎ𝑛𝑡𝑛𝑣 | implies ⟨𝑠𝑛𝑢 | = ⟨𝑡𝑛𝑣 | .

Proof. By productivity, we can find such a factorization 𝑓0 =

ℎ0𝑠0 and 𝑔0 = ℎ0𝑡0.
Assume now that we have a family of morphisms such

that ⟨𝑓0 | . . . |𝑓𝑛 | = ⟨𝑔0 | . . . |𝑔𝑛 |. We proceed by induction on
𝑛, the size of the family. The case 𝑛 = 0 follows from the
definition of productive category.

In the general case, we will construct the relevant ℎ𝑛 . The
assumption ⟨𝑓0 | . . . |𝑓𝑛 | = ⟨𝑔0 | . . . |𝑔𝑛 | implies, in particular,
that ⟨𝑓0 | . . . |𝑓𝑛−1 | = ⟨𝑔0 | . . . |𝑔𝑛−1 |. Thus, by induction hy-
pothesis, there exist ℎ1, . . . , ℎ𝑛−1 together with 𝑠𝑖−1 𝑓𝑖 = ℎ𝑖𝑠𝑖
and 𝑡𝑖−1𝑔𝑖 = ℎ𝑖𝑡𝑖 , such that

⟨ℎ0 . . . ℎ𝑛𝑠𝑛−1𝑢 | = ⟨ℎ0 . . . ℎ𝑛𝑡𝑛−1𝑣 | implies ⟨𝑠𝑛−1𝑢 | = ⟨𝑡𝑛−1𝑣 | .
We know that ⟨𝑓0 . . . 𝑓𝑛 | = ⟨𝑔0 . . . 𝑔𝑛 | and thus,

⟨ℎ0 . . . ℎ𝑛−1𝑠𝑛−1 𝑓𝑛 | = ⟨ℎ0 . . . ℎ𝑛−1𝑡𝑛−1𝑔𝑛 | ,
which, by induction hypothesis, implies ⟨𝑠𝑛−1 𝑓𝑛 | = ⟨𝑡𝑛−1𝑔𝑛 |.
By productivity, there exists ℎ𝑛 with 𝑠𝑛−1 𝑓𝑛 = ℎ𝑛𝑠𝑛 and
𝑡𝑛−1𝑔𝑛 = ℎ𝑛𝑡𝑛 such that ⟨ℎ𝑛𝑠𝑛𝑢 | = ⟨ℎ𝑛𝑡𝑛𝑣 | implies ⟨𝑠𝑛𝑢 | =
⟨𝑡𝑛𝑣 |.

Elena Di Lavore, Giovanni de Felice, and Mario Román

Finally, assume that ⟨ℎ0 . . . ℎ𝑛−1ℎ𝑛𝑠𝑛𝑢 | = ⟨ℎ0 . . . ℎ𝑛−1ℎ𝑛𝑡𝑛𝑣 |.
Thus, we have ⟨ℎ0 . . . ℎ𝑛−1𝑠𝑛−1 𝑓𝑛𝑢 | = ⟨ℎ0 . . . ℎ𝑛−1𝑡𝑛−1𝑔𝑛𝑣 | and
⟨𝑠𝑛−1 𝑓𝑛𝑢 | = ⟨𝑡𝑛−1𝑔𝑛𝑣 |. This can be rewritten as ⟨ℎ𝑛𝑠𝑛𝑢 | =
⟨ℎ𝑛𝑡𝑛𝑣 |, which in turn implies ⟨𝑠𝑛𝑢 | = ⟨𝑡𝑛𝑣 |. We have shown
that the ℎ𝑛 that we constructed satisfies the desired prop-
erty. □

Lemma D.5 (Removing the first step). In a productive cate-
gory, let ⟨𝑓0 | = ⟨𝑔0 |. Then there exists ℎ with 𝑓0 = ℎ𝑠 and 𝑔0 =
ℎ𝑡 such that ⟨𝑓0 | . . . |𝑓𝑛 | = ⟨𝑔0 | . . . |𝑔𝑛 | implies ⟨𝑠 𝑓1 | . . . |𝑓𝑛 | =
⟨𝑡𝑔1 | . . . |𝑔𝑛 |.

Proof. By Lemma D.4, we obtain a factorization 𝑓0 = ℎ𝑠 and
𝑔0 = ℎ𝑡 . Moreover, each time that we have ⟨𝑓0 | . . . |𝑓𝑛 | =
⟨𝑔0 | . . . |𝑔𝑛 |, we can obtain a family ℎ𝑖 together with 𝑠𝑖 and
𝑡𝑖 such that 𝑠𝑖−1 𝑓𝑖 = ℎ𝑖𝑠𝑖 and 𝑡𝑖−1 𝑓𝑖 = ℎ𝑖𝑡𝑖 . Using the fact that
⟨ℎ𝑛𝑠𝑛 | = ⟨ℎ𝑛𝑡𝑛 |, we have that ⟨ℎ1 | . . . |ℎ𝑛𝑠𝑛 | = ⟨ℎ1 | . . . |ℎ𝑛𝑡𝑛 |,
which can be rewritten using dinaturality as ⟨𝑠0 𝑓1 | . . . |𝑓𝑛 | =
⟨𝑡0𝑔1 | . . . |𝑔𝑛 |. □

Lemma D.6. In a productive category, the final coalgebra of
the endofunctor (hom ⊙ •) does exist and it is given by the
limit of the terminal sequence

𝐿 B lim
𝑛

∫ 𝑀0,...,𝑀𝑛
𝑛∏
𝑖=0

hom (𝑋𝑖 ⊗ 𝑀𝑖−1, 𝑌𝑖 ⊗ 𝑀𝑖).

Proof. Wewill apply Theorem 1.5. The endofunctor (hom ⊙ •)
acts on the category [([N,C])𝑜𝑝 × [N,C], Set], which, being
a presheaf category, has all small limits. We will show that
there is an isomorphism hom ⊙ 𝐿 � 𝐿 given by the canonical
morphism between them.

First, note that the set 𝐿(X;Y) is, explicitly,

lim
𝑛

∫ 𝑀1,...,𝑀𝑛
𝑛∏
𝑖=1

hom (𝑋𝑖 ⊗ 𝑀𝑖−1, 𝑌𝑖 ⊗ 𝑀𝑖).

A generic element from this set is a sequence of sequences
of increasing length. Moreover, the sequences must truncate
coherently (Definition D.1).
Secondly, note that the set (hom ⊙ 𝐿) (X;Y) is, explicitly,∫ 𝑀0

hom (𝑋0, 𝑌0 ⊗ 𝑀0)×

lim
𝑛

∫ 𝑀1,...,𝑀𝑛
𝑛∏
𝑖=1

hom (𝑋𝑖 ⊗ 𝑀𝑖−1, 𝑌𝑖 ⊗ 𝑀𝑖).

A generic element from this set is of the form

⟨𝑓 | (⟨𝑓 𝑘1 | . . . |𝑓 𝑘𝑘 |)𝑘∈N | ,
that is, a pair consisting on a first morphism 𝑓 : 𝑋0 → 𝑌0 ⊗
𝑀0 and a family of sequences (⟨𝑓 𝑘1 | . . . |𝑓 𝑘𝑘 |), quotiented by
dinaturality of𝑀0 and truncating coherently. The canonical
map to 𝐿(X;Y) maps this generic element to the family of
sequences (⟨𝑓0 |𝑓 𝑘1 | . . . |𝑓 𝑘𝑘 |)𝑘∈N, which truncates coherently
because the previous family did and we are precomposing
with 𝑓0, which is dinatural.

Thirdly, this map is injective. Imagine a pair of elements
⟨𝑓0 | (⟨𝑓 𝑘1 | . . . |𝑓 𝑘𝑘 |)𝑘∈N | and ⟨𝑔0 | (⟨𝑔

𝑘
1 | . . . |𝑔𝑘𝑘 |)𝑘∈N | that have the

same image, meaning that, for each 𝑘 ∈ N,

⟨𝑓0 |𝑓 𝑘1 | . . . |𝑓 𝑘𝑘 | = ⟨𝑔0 |𝑔
𝑘
1 | . . . |𝑔𝑘𝑘 | .

By Lemma D.5, we can find ℎ with 𝑓0 = ℎ𝑠 and 𝑔0 = ℎ𝑡 such
that, for each 𝑘 ∈ N, ⟨𝑠 𝑓 𝑘1 | . . . |𝑓 𝑘𝑘 | = ⟨𝑡𝑔

𝑘
1 | . . . |𝑔𝑘𝑘 |. Thus,

⟨𝑓0 | (⟨𝑓 𝑘1 | . . . |𝑓 𝑘𝑘 |)𝑘∈N | = ⟨ℎ | (⟨𝑠 𝑓
𝑘
1 | . . . |𝑓 𝑘𝑘 |)𝑘∈N | =

⟨ℎ | (⟨𝑡𝑔𝑘1 | . . . |𝑔𝑘𝑘 |)𝑘∈N | = ⟨𝑔0 | (⟨𝑡𝑔
𝑘
1 | . . . |𝑔𝑘𝑘 |)𝑘∈N | .

Finally, this map is also surjective. From Lemma D.2, it
follows that any family that truncates coherently can be
equivalently written as ⟨ℎ0 | . . . |ℎ𝑛 |𝑛∈N, which is the image
of the element ⟨ℎ0 | ⟨ℎ1 | . . . |ℎ𝑛 |𝑛∈N |. □

Theorem D.7 (From Theorem 4.11). In a productive cate-
gory, the final coalgebra of the endofunctor (hom ⊙ •) exists
and it is given by the set of stateful sequences quotiented by
observational equivalence.(∫ 𝑀 ∈[N,C] ∞∏

𝑖=0
hom (𝑋𝑖 ⊗ 𝑀𝑖−1, 𝑌𝑖 ⊗ 𝑀𝑖)

) /
≈

Proof. By Lemma D.6, we know that the final coalgebra ex-
ists and is given by the limit of the terminal sequence. By
Lemma D.3, we know that it is isomorphic to the set of state-
ful sequences quotiented by observational equivalence. □

E Monoidal streams
Lemma E.1. Sequential composition of streams with memo-
ries (Definition 5.3) is associative. Given three streams
• 𝑓 ∈ Stream(𝐴 · X,Y),
• 𝑔 ∈ Stream(𝐵 · Y,Z),
• and ℎ ∈ Stream(𝐵 · Z,W);

we can compose them in two different ways,
• (𝑓 𝐴;𝑔𝐵);ℎ𝐶 ∈ Stream((𝐴 ⊗ 𝐵) ⊗ 𝐶 · X,W), or
• 𝑓 𝐴; (𝑔𝐵 ;ℎ𝐶) ∈ Stream(𝐴 ⊗ (𝐵 ⊗ 𝐶) · X,W).

We claim that

((𝑓 𝐴;𝑔𝐵);ℎ𝐶) = 𝛼𝐴,𝐵,𝐶 · (𝑓 𝐴; (𝑔𝐵 ;ℎ𝐶)).

Proof. First, we note that both sides of the equation represent
streams with different memories.
• 𝑀 ((𝑓 𝐴;𝑔𝐵);ℎ𝐶) = (𝑀 (𝑓) ⊗ 𝑀 (𝑔)) ⊗ 𝑀 (ℎ),
• 𝑀 (𝑓 𝐴; (𝑔𝐵 ;ℎ𝐶)) = 𝑀 (𝑓) ⊗ (𝑀 (𝑔) ⊗ 𝑀 (ℎ)).

We will prove they are related by dinaturality over the associ-
ator𝛼 .We know that now((𝑓 𝐴;𝑔𝐵);ℎ𝐶) = now(𝑓 𝐴; (𝑔𝐵 ;ℎ𝐶))
by string diagrams (see Figure 26). Then, by coinduction, we
know that

(later(𝑓)𝑀 (𝑓) ; later(𝑔)𝑀 (𝑔)); later(ℎ)𝑀 (ℎ) =
𝛼 · (later(𝑓)𝑀 (𝑓) ; (later(𝑔)𝑀 (𝑔) ; later(ℎ)𝑀 (ℎ))),

that is, later((𝑓 𝐴;𝑔𝐵);ℎ𝐶) = 𝛼 · later(𝑓 𝐴; (𝑔𝐵 ;ℎ𝐶)). □

Monoidal Streams for Dataflow Programming

=

𝑀𝑓

𝐴 𝐵 𝐶 𝑋

𝑀𝑔 𝑀ℎ 𝑊

𝐴 𝐵 𝐶 𝑋

𝑀𝑓 𝑀𝑔 𝑀ℎ 𝑊

now(𝑓)

now(𝑔)

now(ℎ)

now(𝑓)

now(𝑔)

now(ℎ)

Figure 26. Associativity for sequential composition

LemmaE.2. Sequential composition of streams (Definition 5.3)
is associative. Given three streams
• 𝑓 ∈ Stream(X,Y),
• 𝑔 ∈ Stream(Y,Z),
• and ℎ ∈ Stream(Z,W);

we claim that ((𝑓 ;𝑔);ℎ) = (𝑓 ; (𝑔;ℎ)).

Proof. Direct consequence of Lemma E.1, after considering
the appropriate coherence morphisms. □

Lemma E.3. Parallel composition of streams with memories
is functorial with regards to sequential composition of streams
with memories. Given four streams
• 𝑓 ∈ Stream(𝐴 · X,Y),
• 𝑓 ′ ∈ Stream(𝐴′ · X′,Y′),
• 𝑔 ∈ Stream(𝐵 · Y,Z), and
• 𝑔′ ∈ Stream(𝐵′ · Y′,Z′),

we can compose them in two different ways,

• (𝑓 𝐴 ⊗ 𝑓 ′𝐴
′) (𝐴⊗𝐴

′) ; (𝑔𝐵 ⊗ 𝑔′𝐵′) (𝐵⊗𝐵
′) , and

• (𝑓 𝐴 ; 𝑔𝐵) (𝐴⊗𝐵) ⊗ (𝑓 ′𝐴′ ; 𝑔′𝐵′) (𝐴′⊗𝐵′) ,
having slightly different types, respectively,
• Stream((𝐴 ⊗ 𝐴′) ⊗ (𝐵 ⊗ 𝐵′) · X ⊗ X′,Z ⊗ Z′), and
• Stream((𝐴 ⊗ 𝐵) ⊗ (𝐴′ ⊗ 𝐵′) · X ⊗ X′,Z ⊗ Z′).

We claim that

(𝑓 𝐴 ⊗ 𝑓 ′𝐴
′) (𝐴⊗𝐴

′) ; (𝑔𝐵 ⊗ 𝑔′𝐵′) (𝐵⊗𝐵
′)
=

𝜎𝐴′,𝐵 · (𝑓 𝐴 ; 𝑔𝐵) (𝐴⊗𝐵) ⊗ (𝑓 ′𝐴
′
; 𝑔′𝐵

′
) (𝐴′⊗𝐵′) .

Proof. First, we note that both sides of the equation (which,
from now on, we call 𝐿𝐻𝑆 and 𝑅𝐻𝑆 , respectively) represent
strams with different memories.
• 𝑀 (𝐿𝐻𝑆) = (𝑀 (𝑓) ⊗ 𝑀 (𝑓 ′)) ⊗ (𝑀 (𝑔) ⊗ 𝑀 (𝑔′)),
• 𝑀 (𝑅𝐻𝑆) = (𝑀 (𝑓) ⊗ 𝑀 (𝑔)) ⊗ (𝑀 (𝑓 ′) ⊗ 𝑀 (𝑔′)).

We will prove they are related by dinaturality over the sym-
metry 𝜎 . We know that now(𝐿𝐻𝑆);𝜎 = now(𝑅𝐻𝑆) by string

𝐵

𝑀𝑓

now(𝑓) now(𝑓 ′)

now(𝑔) now(𝑔′)

𝐴 𝐴′ 𝐵′ 𝑋 𝑋 ′

𝑀 ′
𝑓
𝑀𝑔 𝑀 ′𝑔 𝑍 𝑍 ′

now(𝑓) now(𝑓 ′)

now(𝑔) now(𝑔′)

𝐴 𝐴′ 𝐵 𝐵′ 𝑋 𝑋 ′

𝑀𝑓 𝑀 ′
𝑓
𝑀𝑔 𝑀 ′𝑔 𝑍 𝑍 ′

=

Figure 27. Functoriality of parallel composition.

diagrams (see Figure 27). Then, by coinduction, we know
that later(𝐿𝐻𝑆) = 𝜎 · later(𝑅𝐻𝑆). □

Lemma E.4. Parallel composition of streams is functorial
with respect to sequential composition of streams. Given four
streams

• 𝑓 ∈ Stream(X,Y),
• 𝑓 ′ ∈ Stream(X′,Y′),
• 𝑔 ∈ Stream(Y,Z), and
• 𝑔′ ∈ Stream(Y,Z);

we claim that (𝑓 ⊗ 𝑓 ′); (𝑔 ⊗ 𝑔′) = (𝑓 ;𝑔) ⊗ (𝑓 ′;𝑔′).

Proof. Direct consequence of Lemma E.3, after considering
the appropriate coherence morphisms. □

Theorem E.5 (see [65]). Monoidal streams over a symme-
tric monoidal category (C, ⊗, 𝐼) form a symmetric monoidal
category Stream.

Proof. Sequential composition of streams (Definition 5.3) is
associative (Lemma E.2) and unital with respect to identities.
Parallel composition is bifunctorial with respect to sequen-
tial composition (Lemma E.4); this determines a bifunctor,
which is the tensor of the monoidal category. The coherence
morphisms and the symmetry can be included from sets, so
they still satisfy the pentagon and triangle equations. □

Lemma E.6. The structure (Stream, fbk) with memories sat-
isfies the tightening axiom (A1). Given three streams

• 𝑢 ∈ Stream(𝐴 · X′,X),
• 𝑓 ∈ Stream(𝐵 ⊗ 𝑇 · 𝜕S ⊗ X,S ⊗ Y), and
• 𝑣 ∈ Stream(𝐶 · Y,Y′);

we claim that

fbk𝑆 (𝑢𝐴; 𝑓 𝐵 ; 𝑣𝐶) = 𝜎 · 𝑢𝐴; fbk𝑆 (𝑓 𝐵⊗𝑇); 𝑣𝐶 .

Elena Di Lavore, Giovanni de Felice, and Mario Román

𝐶𝐴 𝐵 𝑇 𝑋 ′

now(𝑢)

now(𝑓)

now(𝑣)

𝑀𝑢 𝑀𝑓 𝑀𝑣𝑆0 𝑌 ′

𝐶𝐴 𝐵 𝑇 𝑋 ′

now(𝑢)

now(𝑓)

now(𝑣)

𝑀𝑢 𝑀𝑓 𝑆0 𝑀𝑣 𝑌 ′

=

Figure 28. The tightening axiom (A1).

Proof. First, we note that both sides of the equation (which,
from now on, we call 𝐿𝐻𝑆 and 𝑅𝐻𝑆 , respectively) represent
streams with different memories.
• 𝑀 (𝐿𝐻𝑆) = 𝐴 ⊗ 𝐵 ⊗ 𝐶 ⊗ 𝑇 ,
• 𝑀 (𝑅𝐻𝑆) = 𝐴 ⊗ 𝐵 ⊗ 𝑇 ⊗ 𝐶 .

We will prove that they are related by dinaturality over the
symmetry 𝜎 . We know that now(𝐿𝐻𝑆);𝜎 = now(𝑅𝐻𝑆) by
string diagrams (see Figure 28). Then, by coinduction, we
know that later(𝐿𝐻𝑆) = 𝜎 · later(𝑅𝐻𝑆). □

Lemma E.7. The structure (Stream, fbk) satisfies the tight-
ening axiom (A1). Given streams
• 𝑢 ∈ Stream(X′,X),
• 𝑓 ∈ Stream(𝜕S ⊗ X,S ⊗ Y), and
• 𝑣 ∈ Stream(Y,Y′);

we claim that fbk𝑆 (𝑢; 𝑓 ; 𝑣) = 𝑢; fbk𝑆 (𝑓); 𝑣 .
Proof. Consequence of Lemma E.6, after applying the neces-
sary coherence morphisms. □

Lemma E.8. The structure (Stream, fbk) with memories sat-
isfies the vanishing axiom (A2). Given a stream
• 𝑓 ∈ Stream(𝐴 · 𝜕S ⊗ X,S ⊗ Y),

we claim that fbk𝐼 (𝑓 𝐴) = 𝜌 · 𝑓 .
Proof. First, we note that both sides of the equation rep-
resent streams with different memories, 𝑀 (fbk𝐼 (𝑓 𝐴)) =

𝑀 (𝑓) ⊗ 𝐼 . We will prove that they are related by dinatural-
ity over the right unitor 𝜌 . We know that now(fbk𝐼 (𝑓 𝐴)) =
now(𝑓) by definition. Then, by coinduction, we konw that
later(fbk𝐼 (𝑓 𝐴)) = 𝜌 · later(𝑓). □

Lemma E.9. The structure (Stream, fbk) satisfies the van-
ishing axiom (A2). Given a stream 𝑓 ∈ Stream(𝜕S⊗X,S⊗Y),
we claim that fbk𝐼 (𝑓) = 𝑓 .

𝑃𝐴 𝐵 𝑋 𝑋 ′

=now(𝑓) now(𝑔) now(𝑓) now(𝑔)

𝐴 𝐵 𝑃 𝑋 𝑋 ′

𝑀𝑓 𝑀𝑔 𝑆0 𝑌 𝑌 ′ 𝑀𝑓 𝑀𝑔 𝑆0 𝑌 𝑌 ′

Figure 29. The strength axiom (A4).

Proof. Consequence of Lemma E.8, after applying the neces-
sary coherence morphisms. □

Lemma E.10. The structure (Stream, fbk) with memories
satisfies the joining axiom (A3). Given a stream
• 𝑓 ∈ Stream((𝐴 ⊗ 𝑃 ⊗ 𝑄) · 𝜕S ⊗ X,S ⊗ Y),

we claim that

fbk𝑆⊗𝑇 (𝑓 𝐴⊗(𝑃⊗𝑄)) = 𝛼 · fbk𝑇 (𝜎 · fbk𝑆 (𝜎 · 𝑓 (𝐴⊗𝑄) ⊗𝑃)) .

Proof. First, we note that both sides of the equation (which,
from now on, we call 𝐿𝐻𝑆 and 𝑅𝐻𝑆 , respectively) represent
strams with different memories.
• 𝑀 (𝐿𝐻𝑆) = 𝑀 (𝑓) ⊗ (𝑆0 ⊗ 𝑇0),
• 𝑀 (𝑅𝐻𝑆) = (𝑀 (𝑓) ⊗ 𝑆0) ⊗ 𝑇0.

We will prove that they are related by dinaturality over the
associator 𝛼 . We know that now(𝐿𝐻𝑆);𝛼 = now(𝑅𝐻𝑆) by
definition. Then, by coinduction, we know that later(𝐿𝐻𝑆) =
𝛼 · later(𝑅𝐻𝑆). □

Lemma E.11. The structure (Stream, fbk) satisfies the join-
ing axiom (A3). Given a stream
• 𝑓 ∈ Stream(𝜕S ⊗ X,S ⊗ Y),

we claim that fbk𝑆⊗𝑇 (𝑓) = fbk𝑇 (fbk𝑆 (𝑓)).

Proof. Consequence of Lemma E.10, after applying the nec-
essary coherence morphisms. □

Lemma E.12. The structure (Stream, fbk) with memories
satisfies the strength axiom (A4). Given two streams
• 𝑓 ∈ Stream((𝐴 ⊗ 𝑃) · 𝜕S ⊗ X,S ⊗ Y), and
• 𝑔 ∈ Stream(𝐵 · X′,Y′),

we claim that

𝛼 · fbk𝑆 (𝑓 𝐴 ⊗ 𝑔𝐵) = fbk𝑆 (𝑓 𝐴⊗𝑃)𝐴⊗𝑃 ⊗ 𝑔𝐵 .

Proof. First, we note that both sides of the equation (which,
from now on, we call 𝐿𝐻𝑆 and 𝑅𝐻𝑆 , respectively) represent
streams with different memories.
• 𝑀 (𝐿𝐻𝑆) = (𝑀 (𝑓) ⊗ 𝑆0) ⊗ 𝑀 (𝑔),
• 𝑀 (𝑅𝐻𝑆) = 𝑀 (𝑓) ⊗ (𝑆0 ⊗ 𝑀 (𝑔)).

We will prove that they are related by dinaturality over the
symmetry 𝛼 . We know that now(𝐿𝐻𝑆) = now(𝑅𝐻𝑆);𝛼 by
string diagrams (see Figure 29). Then, by coinduction, we
know that 𝛼 · later(𝐿𝐻𝑆) = later(𝑅𝐻𝑆). □

Monoidal Streams for Dataflow Programming

𝑀𝑓 𝑀𝑟

𝐴 𝐵 𝑄 𝑋

𝑘

now(𝑟)

now(𝑓)

𝑘

now(𝑟)

now(𝑓)

=

𝑆0 𝑌 𝑀𝑓 𝑀𝑟 𝑆0 𝑌

𝐴 𝐵 𝑄 𝑋

Figure 30. The sliding axiom (A5).

Lemma E.13. The structure (Stream, fbk) with memories
satisfies the strength axiom (A4). Given two streams
• 𝑓 ∈ Stream(S ⊗ X,S ⊗ Y), and
• 𝑔 ∈ Stream(X′,Y′),

we claim that

𝛼 · fbk𝑆 (𝑓 ⊗ 𝑔) = fbk𝑆 (𝑓) ⊗ 𝑔.

Proof. Consequence of Lemma E.12, after applying the nec-
essary coherence morphisms. □

Lemma E.14. The structure (Stream, fbk) with memories
satisfies the sliding axiom (A5). Given two streams
• 𝑓 ∈ Stream(𝐴 · 𝜕S ⊗ X,T ⊗ Y), and
• 𝑟 ∈ Stream(𝐶 · T,S)

we claim that, for each 𝑘 : 𝐵 ⊗ 𝑄 → 𝐶 ⊗ 𝑃 ,
𝑘 · fbkS (𝑓 𝐴⊗𝑃 ; (𝑟𝐶 ⊗ id)) = fbkT (𝑘 · (𝜕𝑟𝐶 ⊗ id); 𝑓 𝐴⊗𝑃).

Proof. First, we note that both sides of the equation (which,
from now on, we call 𝐿𝐻𝑆 and 𝑅𝐻𝑆 , respectively) represent
streams with different memories.
• 𝑀 (𝐿𝐻𝑆) = 𝑀 (𝑓) ⊗ 𝑀 (𝑟) ⊗ 𝑆0,
• 𝑀 (𝑅𝐻𝑆) = 𝑀 (𝑟) ⊗ 𝑀 (𝑓) ⊗ 𝑇0.

We will prove that they are related by dinaturality over the
symmetry and the first action of 𝑟 , that is, 𝜎 ; (now(𝑟) ⊗ id).
We know that now(𝐿𝐻𝑆) = now(𝑅𝐻𝑆); (𝜎 ; (id ⊗ now(𝑟)))
by string diagrams (see Figure 30). Using coinduction,
(𝜎 ; now(𝑟)) · later(𝐿𝐻𝑆)

=(𝜎 ; now(𝑟)) · fbkS (later(𝑓)𝑀 (𝑓) ⊗𝑆0 ; (later(𝑟)𝑀 (𝑟) ⊗ id))
=fbkT ((𝜎 ; now(𝑟)) · (𝜕 later(𝑟)𝑀 (𝑟) ⊗ id); later(𝑓)𝑀 (𝑓) ⊗𝑆0)
=fbkT (𝜎 · (later(𝜕𝑟)𝑀 (𝑟) ⊗ id); later(𝑓)𝑀 (𝑓) ⊗𝑆0)
= later(𝑅𝐻𝑆),
we show that (𝜎 ; now(𝑟)) · later(𝐿𝐻𝑆) = later(𝑅𝐻𝑆). □

Lemma E.15. The structure (Stream, fbk) satisfies the slid-
ing axiom (A5). Given two streams

Gen
𝑓 ∈ G(𝐴1, . . . , 𝐴𝑛 ;𝐵) Γ1 ⊢ 𝑥1 : 𝐴1 . . . Γ𝑛 ⊢ 𝑥𝑛 : 𝐴𝑛

Shuf (Γ1, . . . , Γ𝑛 ; Γ) ⊢ 𝑓 (𝑥1, . . . , 𝑥𝑛) : 𝐵

Pair
Γ1 ⊢ 𝑥1 : 𝐴1 . . . Γ𝑛 ⊢ 𝑥𝑛 : 𝐴𝑛

Shuf (Γ,Δ) ⊢ [𝑥1, . . . , 𝑥𝑛] : 𝐴1 ⊗ · · · ⊗ 𝐴𝑛

Var

𝑥 : 𝐴 ⊢ 𝑥 : 𝐴

Split
Δ ⊢𝑚 : 𝐴1 ⊗ · · · ⊗ 𝐴𝑛 Γ, 𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛 ⊢ 𝑧 : 𝐶
Shuf (Γ1, . . . , Γ𝑛) ⊢ Split𝑚 → [𝑥1, . . . , 𝑥𝑛] in 𝑧 : 𝐶

Figure 31. Type theory of symm. monoidal categories [70].

• 𝑓 ∈ Stream(𝜕S ⊗ X,T ⊗ Y), and
• 𝑟 ∈ Stream(T,S)

we claim that, fbkS (𝑓 ; (𝑟 ⊗ id)) = fbkT ((𝜕𝑟 ⊗ id); 𝑓).
Proof. Consequence of Lemma E.14, after applying the nec-
essary coherence morphisms. □

Theorem E.16 (From Theorem 5.10). Monoidal streams over
a symmetric monoidal category (C, ⊗, 𝐼) form a 𝜕-feedback
monoidal category (Stream, fbk).
Proof. We have proven that it satisfies all the feedback ax-
ioms:
• the tightening axiom by Lemma E.7,
• the vanishing axiom by Lemma E.9,
• the joining axiom by Lemma E.11,
• the strength axiom by Lemma E.13,
• and the sliding axiom by Lemma E.15.

Thus, it is a feedback structure □

F Type theory
As our base type theory, we consider the that of symmetric
monoidal categories over some generators forming a multi-
graph G, as described by Shulman [70]. Our only change
will be to consider an unbiased presentation, meaning that we
consider n-ary tensor products instead of only binary and
0-ary (the monoidal unit). This reduces the number of rules:
the binary case and the 0-ary case of the usual presentation
are taken care of by a single n-ary case.

Definition F.1 (Shuffling contexts [70]). A shuffle of contexts
Shuf (Γ1, . . . , Γ𝑛) is the result of a permutation of

⊔𝑛
𝑖=0 Γ𝑛

that leaves invariant the internal order of each Γ𝑖 . Shuffles
allow us to derive morphisms that make use of the symmetry
without introducing redundancy in our type theory.

Substitution is admissible in the type theory for symmetric
monoidal categories [70]. It can be inductively defined: we
write 𝑃 [𝑚/𝑥] for the substitution of the variable 𝑥 by a term
𝑚 inside the term 𝑝 . Using substitution, we can state a pair
of 𝛽/[-reduction equalities for the terms of our type theory.

Elena Di Lavore, Giovanni de Felice, and Mario Román

• Split [𝐸1, . . . , 𝐸𝑛] → [𝑥1, . . . , 𝑥𝑛] in 𝑧 ≡ 𝑧 [𝐸1/𝑥1, . . .]
• Split [𝐸1, . . . , 𝐸𝑛] → [𝑥1, . . . , 𝑥𝑛] in𝑁 [[𝑥1, . . . , 𝑥𝑛]/𝑢]
≡ 𝑁 [[𝐸1, . . . , 𝐸𝑛]/𝑢]

F.1 Type theory for a strong monoidal endofunctor
Definition F.2 (Signature). Let𝑇 be a set of basic types. We
write

𝑇★
𝜕 B {𝜕𝑛1𝑡1𝜕

𝑛2𝑡2 . . . 𝜕
𝑛𝑘 𝑡𝑘 | 𝑛1, . . . , 𝑛𝑘 ∈ N, 𝑡𝑖 ∈ 𝑇 }

for the free monoid-with-an-endomorphism 𝜕 : 𝑇★
𝜕 → 𝑇★

𝜕

over 𝑇 . The signature for a type theory of monoidal cat-
egories with a monoidal endofunctor is given by a pair of
functions 𝑠, 𝑡 : O ⇒ 𝑇★

𝜕 , assigning source and target to every
generator from a set O.
Example F.3. We will usually include two families of genera-
tors in our theory. For each type 𝑡0 ∈ 𝑇 that can be copied,
we have a copy ∈ O generator with 𝑠 (copy) = 𝑡0 ∈ 𝑇★

𝜕 and
𝑡 (copy) = 𝑡0 · 𝑡0 ∈ 𝑇★

𝜕 .

Definition F.4. The type theory of symmetric monoidal
categories with a symmetric monoidal endofunctor over a
signature O ⇒ 𝑇★

𝜕 is the type theory of symmetric monoidal
categories extended with an operator 𝜕 on types such that

𝜕[] = [] and 𝜕(Γ, 𝑥 :𝐴) = 𝜕Γ, 𝑥 :𝜕𝐴,
and the following Delay introduction rule.

Delay
Γ ⊢ 𝑥 : 𝐴

𝜕Γ ⊢ Delay(𝑥) : 𝜕𝐴
The delay operator is a monoid homomorphism on types,
satisfying 𝜕𝐼 ≡ 𝐼 and 𝜕(𝐴 ⊗ 𝐵) ≡ 𝜕𝐴 ⊗ 𝜕𝐵. The Delay in-
troduction rule satisfies the following conversion equalities,
that state that it acts as a functor preserving the monoidal
structure.
• Delay(𝑥) ≡ 𝑥 for 𝑥 a variable,
• [Delay(𝑒1), . . . ,Delay(𝑒𝑛)] ≡ Delay([𝑒1, . . . , 𝑒𝑛]),
• Split Delay(𝑚) → [𝑒1, . . . , 𝑒𝑛] in Delay(𝑧)

≡ Delay(Split𝑚 → [𝑒1, . . . , 𝑒𝑛] in 𝑧),
We choose not to explicitly state the delay rule when writing
terms of the type theory (as we do in Section 8.2), as it does
not cause ambiguity with the typing. However, we do write
it when typechecking.

F.2 Type Theory for Delayed Feedback
We finally augment the type theory of symmetric monoi-
dal categories with a monoidal endofunctor by adding the
following derivation rule.

Fbk
Γ, 𝑠 : 𝜕𝑆 ⊢ 𝑥 (𝑠) : 𝑆 ⊗ 𝐴
Γ ⊢ Fbk 𝑠 . 𝑥 (𝑠) : 𝐴

Following the axioms of categories with delayed feedback
and their normalization theorem, we introduce rules that fol-
low from the feedback axioms. Note that these rules simplify

multiple applications of feedback into a single application at
the head of the term.

1. 𝑔(Fbk 𝑠 in 𝑥 (𝑠)) ≡
Fbk 𝑠 in Let [𝑡, 𝑏] ← 𝑥 (𝑠) in [𝑡, 𝑔(𝑏)]

2. [Fbk 𝑠 in 𝑥 (𝑠), Fbk 𝑡 in 𝑦 (𝑡)] ≡ Fbk𝑚 in
Split𝑚 → [𝑠, 𝑡] in
Split 𝑥 (𝑠) → [𝑢, 𝑣] in
Split 𝑦 (𝑡) → [𝑢 ′, 𝑣 ′] in
[[𝑢,𝑢 ′], [𝑣, 𝑣 ′]]

3. Split𝑚 → [𝑥1, . . . , 𝑥𝑛] in Fbk 𝑠 in 𝑧 ≡
Fbk 𝑠 in Split𝑚 → [𝑥1, . . . , 𝑥𝑛] in 𝑧

4. Split (Fbk 𝑢 in 𝑧 (𝑢)) → [𝑥1, . . . , 𝑥𝑛] in𝑚 ≡
Fbk 𝑢 in Split 𝑧 (𝑢) → [𝑣, 𝑛] in
Split 𝑛 → [𝑥1, . . . , 𝑥𝑛] in [𝑣,𝑚]

5. 𝑥 ≡ Fbk 𝑖 in Split 𝑖 → [] in [𝑡, 𝑥]
6. Fbk 𝑥 in Fbk 𝑦 in𝑚(𝑥,𝑦) ≡

Fbk 𝑛 in Split 𝑛 → [𝑥,𝑦] in𝑚(𝑥,𝑦)
Finally, we introduce an equality representing the sliding

axiom (Figure 7). Having all of these rules together means
that we can always rewrite a term in the type theory with
feedback as a term of the type theory of symmetric monoidal
categories up to sliding. These are precisely the morphisms
of the St(•)-construction, the free category with feedback.

1. Fbk 𝑠 in 𝑓 (Delay(ℎ(𝑠)), 𝑥) ≡
Fbk 𝑡 in Split 𝑓 (𝑥, 𝑡) → [𝑦, 𝑠] in [𝑦,ℎ(𝑠)]

F.3 Categories with copy and syntax sugar
Definition F.5. A category with copying is a symmetric
monoidal category (C, ⊗, 𝐼) in which every object 𝐴 ∈ C has
a (non-necessarily natural) coassociative and cocommutative
comultiplication 𝛿𝐴 = ()𝐴 : 𝐴→ 𝐴 ⊗ 𝐴, called the “copy”.

Every cartesian category and every kleisli category of a
Set-based commutative monad is a category with copying.
In our type theory, this is translated into a Copy generator
acting as follows.

Copy
Γ ⊢ 𝑥 : 𝐴

Γ ⊢ Copy(𝑥) : 𝐴 ⊗ 𝐴

Definition F.6. A category with 𝜕-merging is a symmetric
monoidal category (C, ⊗, 𝐼) with a symmetric monoidal end-
ofunctor 𝜕 : C → C in which every object 𝐴 ∈ C has an
associated morphism 𝜙𝐴 : 𝐴 ⊗ 𝜕𝐴→ 𝐴.

In our type theory, this is translated by a Fby generator
acting as follows.

Fby
Γ ⊢ 𝑥 : 𝐴 Δ ⊢ 𝑦 : 𝜕(𝐴)
Shuf (Γ,Δ) ⊢ 𝑥 Fby 𝑦 : 𝐴

We allow three pieces of syntax sugar in our language,
suited only for the case of categories with copying. These

Monoidal Streams for Dataflow Programming

make the language more Lucid-like without changing its
formal description.

1. We allow multiple occurences of a variable, implicily
copying it.

2. We applyDelay rules where needed for type-checking,
without explicitly writing the rule.

3. Recursive definitions are syntax for the Fbk rule and
the Copy rule. That is,

𝑀 = 𝑥 (𝑀) means 𝑀 = Fbk𝑚 in Copy(𝑥 (𝑚)) .
4. We useWait to declare an implicit feedback loop.

Wait(𝑥) means Fbk 𝑦 in [𝑥,𝑦] .

G Implementation
We use the Haskell [39] programming language for com-
putations. We use Arrows [40] to represent monoidal cate-
gories with an identity-on-objects monoidal functor from
our base category of Haskell types and functions. Notations
for arrows [61] have been explained in terms of Freyd cate-
gories [63]. In particular, the loop notation is closely related
to feedback, as it is usually employed to capture traces.

Our definition of monoidal streams follows Definition 5.1.
type Stream c = StreamWithMemory c ()

data StreamWithMemory c n x y where
StreamWithMemory :: (Arrow c) =>

c (n , x) (m , y)
-> StreamWithMemory c m x y
-> StreamWithMemory c n x y

Their sequential and parallel composition (comp and tensor)
follow from Definitions 5.3 and 5.5. In Appendix G.2 we de-
scribe both first on the now part; and then trivially extended
by coinduction.

now(𝑓 ;𝑁𝑔) = (𝜎⊗id𝐴);(id⊗now(𝑓));(𝜎⊗id𝐵); (id⊗now(𝑔)) .
now(𝑓 ⊗𝑁 𝑔) = (id⊗𝜎⊗ id); (now(𝑓)⊗now(𝑔)); (id⊗𝜎⊗ id).

Example G.1 (Fibonacci example). The code for fibonacci
in Appendix G.2 follows the definition in Section 6.3. We can
execute it to obtain the first 10 numbers from the Fibonacci
sequence.

> take 10 <$> run fibonacci
Identity [0,1,1,2,3,5,8,13,21,34]

Example G.2 (Random walk example). The code for walk
in Appendix G.2 follows the definition in Example 7.4. We
can execute it multiple times to obtain different random
walks starting from 0.

> take 10 <$> run walk
[0,1,0,-1,-2,-1,-2,-3,-2,-3]
> take 10 <$> run walk
[0,1,2,1,2,1,2,3,4,5]
> take 10 <$> run walk
[0,-1,-2,-1,-2,-1,0,-1,0,-1]

Example G.3 (Ehrenfest model). The code for ehrenfest
in Appendix G.2 follows the definition in Figure 12. We can
execute it to simulate the Ehrenfest model.

> take 10 <$> run ehrenfest
[([2,3,4],[1]),([2,3],[1,4]),
([2,3,4],[1]),([2,4],[1,3]),
([2],[1,3,4]),([2,4],[1,3]),
([2],[1,3,4]),([2,3],[1,4]),
([3],[1,2,4]),([2,3],[1,4])]

Elena Di Lavore, Giovanni de Felice, and Mario Román

G.1 Term derivations
Example G.4 (Fibonacci).

⊢ 0 : N0

𝑓 : N ⊢ 𝑓 : N

𝑓 : N ⊢ Copy(𝑓) : N ⊗ N

𝑓1 : N ⊢ 𝑓1 : N

⊢ 1 : N0

𝑓2 : N ⊢ 𝑓2 : N

𝑓2 : N ⊢Wait(𝑓2) : 𝜕N
𝑓2 : N ⊢ 1 Fby Wait(𝑓2) : N

𝑓1 : N, 𝑓2 : N ⊢ 𝑓1 + 1 Fby Wait(𝑓2) : N

𝑓 : N ⊢ Split Copy(𝑓) → [𝑓1, 𝑓2] in (𝑓1 + 1 Fby Wait(𝑓2)) : N

𝑓 : 𝜕N ⊢ Split Copy(𝑓) → [𝑓1, 𝑓2] in (𝑓1 + 1 Fby Wait(𝑓2)) : 𝜕N
𝑓 : 𝜕N ⊢ 0 Fby Split Copy(𝑓) → [𝑓1, 𝑓2] in (𝑓1 + 1 Fby Wait(𝑓2)) : N

𝑓 : 𝜕N ⊢ Copy(0 Fby Split Copy(𝑓) → [𝑓1, 𝑓2] in (𝑓1 + 1 Fby Wait(𝑓2))) : N ⊗ N

⊢: Fbk 𝑓 in Copy(0 Fby Split Copy(𝑓) → [𝑓1, 𝑓2] in (𝑓1 + 1 Fby Wait(𝑓2))) : N

Example G.5 (Random walk).

⊢ 0 : N0

⊢ Uniform(−1, 1) : N 𝑤 : 𝜕N ⊢ 𝑤 : 𝜕N
𝑤 : 𝜕N ⊢ Uniform(−1, 1) +𝑤 : 𝜕N

𝑤 : 𝜕N ⊢ 0 Fby (Uniform(−1, 1) +𝑤) : N

𝑤 : 𝜕N ⊢ Copy(0 Fby (Uniform(−1, 1) +𝑤)) : N ⊗ N

⊢ Fbk𝑤 in Copy(0 Fby (Uniform(−1, 1) +𝑤)) : N

Example G.6 (Ehrenfest model).

⊢ (1, 2, 3, 4) : Urn0
⊢ () : Urn0

⊢ [(1, 2, 3, 4), ()]
: Urn0 ⊗ Urn0

𝑢 : Urn ⊗ Urn ⊢
𝑢 : Urn ⊗ Urn

⊢ Uniform : N

⊢ Copy(Uniform) : N ⊗ N

𝑛1 : N ⊢
𝑛1 : N

𝑢1 : Urn ⊢
𝑢1 : Urn

𝑛1 : N, 𝑢1 : Urn ⊢
Move(𝑛1, 𝑢1) : Urn

𝑛2 : N ⊢
𝑛2 : N

𝑢2 : Urn ⊢
𝑢2 : Urn

𝑛2 : N, 𝑢2 : Urn ⊢
Move(𝑛2, 𝑢2) : Urn

𝑛1 : N, 𝑛2 : N, 𝑢1 : Urn, 𝑢2 : Urn ⊢
[Move(𝑛1, 𝑢1),Move(𝑛2, 𝑢2)] : Urn ⊗ Urn

𝑢1 : Urn, 𝑢2 : Urn ⊢ Split Copy(Uniform) → [𝑛1, 𝑛2] in
[Move(𝑛1, 𝑢1),Move(𝑛2, 𝑢2)] : Urn ⊗ Urn

𝑢 : Urn ⊗ Urn ⊢ Split 𝑢 → [𝑢1, 𝑢2] in
Split Copy(Uniform) → [𝑛1, 𝑛2] in [Move(𝑛1, 𝑢1),Move(𝑛2, 𝑢2)] : Urn ⊗ Urn

𝑢 : 𝜕(Urn ⊗ Urn) ⊢ Split 𝑢 → [𝑢1, 𝑢2] in
Split Copy(Uniform) → [𝑛1, 𝑛2] in [Move(𝑛1, 𝑢1),Move(𝑛2, 𝑢2)] : 𝜕(Urn ⊗ Urn)
𝑢 : 𝜕(Urn ⊗ Urn) ⊢ [(1, 2, 3, 4), ()] Fby Split 𝑢 → [𝑢1, 𝑢2] in

Split Copy(Uniform) → [𝑛1, 𝑛2] in [Move(𝑛1, 𝑢1),Move(𝑛2, 𝑢2)] : Urn ⊗ Urn

𝑢 : 𝜕(Urn ⊗ Urn) ⊢ Copy([(1, 2, 3, 4), ()] Fby Split 𝑢 → [𝑢1, 𝑢2] in
Split Copy(Uniform) → [𝑛1, 𝑛2] in [Move(𝑛1, 𝑢1),Move(𝑛2, 𝑢2)]) : (Urn ⊗ Urn) ⊗ (Urn ⊗ Urn)

⊢ Fbk 𝑢 in Copy([(1, 2, 3, 4), ()] Fby Split 𝑢 → [𝑢1, 𝑢2] in
Split Copy(Uniform) → [𝑛1, 𝑛2] in [Move(𝑛1, 𝑢1),Move(𝑛2, 𝑢2)]) : Urn ⊗ Urn

Monoidal Streams for Dataflow Programming

G.2 Code
The following code has been compiled under GHCi, version 8.6.5. The “random” library may need to be installed.

-- | Monoidal Streams for Dataflow Programming.

-- Anonymous.

-- The following code implements the category of monoidal streams over a
-- monoidal category with an identity-on-objects functor from the
-- (pseudo)category of Haskell types.

-- During the manuscript, we have needed to perform some computations: for
-- instance, to see that according to our definitions the Fibonacci morphism we
-- describe really computes the Fibonacci sequence. Computations of this kind
-- are difficult and tedious to write and to justify, and the reader may find
-- difficult to reproduce them. Instead of explicitly writing these
-- computations, we implement them and we provide the necessary code so that the
-- reader can verify the result from the computation.

-- Morphisms in a monoidal category are written in "Arrow" notation, using (>>>)
-- for sequential composition and (***) for parallel composition. Coherence
-- morphisms need to be written explicitly, we usually write them at the side of
-- the diagram.

{-# LANGUAGE GADTs #-}
{-# LANGUAGE TypeSynonymInstances #-}
{-# LANGUAGE FlexibleInstances #-}

module Main where

import Prelude hiding (id)
import Data.Functor.Identity
import Data.List
import Control.Category
import Control.Arrow
import System.Random
import System.IO.Unsafe

-- Fixpoint equation for monoidal streams. Figure 5.
type Stream c = StreamWithMemory c ()

data StreamWithMemory c n x y where
StreamWithMemory :: (Arrow c) =>

c (n , x) (m , y)
-> StreamWithMemory c m x y
-> StreamWithMemory c n x y

-- EXAMPLES --

fibonacci :: Stream (Kleisli Identity) () Int
fibonacci = fbk $ runitS

Elena Di Lavore, Giovanni de Felice, and Mario Román

>>> copy >>> lunitinvS *** id
>>> delay (k1 *** wait) *** id
>>> delay fby *** id
>>> plus >>> lunitinvS
>>> k0 *** id
>>> fby
>>> copy

walk :: Stream (Kleisli IO) (()) (Int)
walk = fbk

$ (id *** unif)
>>> plus >>> lunitinvS
>>> k0 *** id
>>> fby
>>> copy

where
unif :: Stream (Kleisli IO) () Int
unif = lift $ Kleisli (\() -> do

boolean <- randomIO
return $ if boolean then 1 else -1)

type Urn = [Int]

ehrenfest :: Stream (Kleisli IO) (()) (Urn,Urn)
ehrenfest = fbk $ runitS>>> lunitinv *** lunitinv
>>> (full *** idS) *** (empty *** idS) >>> runitinv
>>> (fby *** fby) *** unif
>>> idS *** copy >>> associnv >>> idS *** assoc
>>> idS *** (sigma *** idS) >>> idS *** associnv >>> assoc
>>> move *** move
>>> copy *** copy >>> associnv >>> idS *** assoc
>>> idS *** (sigma *** idS) >>> idS *** associnv >>> assoc
where
unif :: Stream (Kleisli IO) () Int
unif = lift $ Kleisli (\() -> randomRIO (1,4))

empty :: Stream (Kleisli IO) () Urn
empty = lift $ arr (\() -> [])

full :: Stream (Kleisli IO) () Urn
full = lift $ arr (\() -> [1,2,3,4])

move :: Stream (Kleisli IO) (Urn, Int) Urn
move = lift $ arr (\(u,i) ->
if elem i u

then (delete i u)
else (insert i u))

--- take 10 <$> run fibonacci
--- take 10 <$> run walk
--- take 10 <$> run ehrenfest

Monoidal Streams for Dataflow Programming

-- THE FEEDBACK CATEGORY --

compS :: (Arrow c) =>
StreamWithMemory c m x y ->
StreamWithMemory c n y z ->
StreamWithMemory c (m , n) x z

compS
(StreamWithMemory fnow flater)
(StreamWithMemory gnow glater) =
StreamWithMemory (sequentialComposition fnow gnow) (compS flater glater)

where

-- Definition 5.2.
-- Sequential composition, "now".
sequentialComposition :: Arrow c

=> c (m , x) (p , y)
-> c (n , y) (q , z)
-> c ((m,n),x) ((p,q),z)

sequentialComposition f g =
sigma *** id >>> associnv

>>> id *** f >>> assoc
>>> sigma *** id >>> associnv
>>> id *** g >>> assoc

comp :: (Arrow c) => Stream c x y -> Stream c y z -> Stream c x z
comp f g = lact lunitinv (compS f g)

tensorS :: (Arrow c) =>
StreamWithMemory c p x y ->
StreamWithMemory c p' x' y' ->
StreamWithMemory c (p , p') (x,x') (y,y')

tensorS
(StreamWithMemory fnow flater)
(StreamWithMemory gnow glater) =
StreamWithMemory (parallelCompTosition fnow gnow) (tensorS flater glater)

where

-- Definition 5.3. Parallel compTosition.
parallelCompTosition :: Arrow c
=> c (m,x) (p,z)
-> c (n,y) (q,w)
-> c ((m,n),(x,y)) ((p,q),(z,w))

parallelCompTosition f g =
associnv >>> id *** assoc

>>> (id *** (sigma *** id)) >>> id *** associnv >>> assoc
>>> (f *** g) >>> associnv >>> id *** assoc
>>> (id *** (sigma *** id)) >>> id *** associnv >>> assoc

tensor :: Arrow c => Stream c x y -> Stream c x' y' -> Stream c (x,x') (y,y')
tensor f g = lact lunitinv (tensorS f g)

Elena Di Lavore, Giovanni de Felice, and Mario Román

lact :: (Arrow c) => c n m -> StreamWithMemory c m x y -> StreamWithMemory c n x y
lact f (StreamWithMemory now later) = StreamWithMemory ((f *** id) >>> now) later

fbkS :: (Arrow c) =>
StreamWithMemory c m (s,x) (s,y) ->
StreamWithMemory c (m, s) x y

fbkS (StreamWithMemory now later) =
StreamWithMemory (nowFeedback now) (fbkS later)

where

-- Definition 5.7. Feedback operation.
nowFeedback :: (Arrow c) => c (m,(s,x)) (n,(t,y)) -> c ((m,s),x) ((n,t),y)
nowFeedback f = associnv >>> f >>> assoc

fbk :: (Arrow c) => Stream c (s,x) (s,y) -> Stream c x y
fbk t = lact (arr (\() -> ((),undefined))) (fbkS t)

idS :: (Arrow c) => Stream c x x
idS = StreamWithMemory (id) idS

lift :: (Arrow c) => c x y -> Stream c x y
lift f = StreamWithMemory (id *** f) (lift f)

liftarr :: (Arrow c) => (x -> y) -> Stream c x y
liftarr s = lift $ arr s

instance (Arrow c) => Category (Stream c) where
id = idS
(.) f g = comp g f

instance (Arrow c) => Arrow (Stream c) where
arr = liftarr
(***) = tensor

instance (Arrow c) => ArrowLoop (Stream c) where
loop f = fbk $ sigma >>> f >>> sigma

delay :: (Arrow c) => Stream c x y -> Stream c x y
delay f = StreamWithMemory (id *** undefined) f

-- ARROWS --

assoc :: Arrow c => c (x,(y,z)) ((x,y),z)
assoc = arr $ \(x,(y,z)) -> ((x,y),z)
assocS :: Arrow c => Stream c (x,(y,z)) ((x,y),z)

Monoidal Streams for Dataflow Programming

assocS = lift assoc

associnv :: Arrow c => c ((x,y),z) (x,(y,z))
associnv = arr $ \((x,y),z) -> (x,(y,z))
associnvS :: Arrow c => Stream c ((x,y),z) (x,(y,z))
associnvS = lift $ associnv

lunit :: Arrow c => c ((),a) a
lunit = arr $ \((),a) -> a
lunitS :: Arrow c => Stream c ((),a) a
lunitS = lift $ lunit

lunitinv :: Arrow c => c a ((),a)
lunitinv = arr $ \a -> ((),a)
lunitinvS :: Arrow c => Stream c a ((),a)
lunitinvS = lift $ lunitinv

runit :: Arrow c => c (a,()) a
runit = arr $ \(a,()) -> a
runitS :: Arrow c => Stream c (a,()) a
runitS = lift $ runit

runitinv :: Arrow c => c a (a,())
runitinv = arr $ \a -> (a,())
runitinvS :: Arrow c => Stream c a (a,())
runitinvS = lift $ runitinv

sigma :: Arrow c => c (x,y) (y,x)
sigma = arr $ \(x,y) -> (y,x)

sigmaS :: Arrow c => Stream c (x,y) (y,x)
sigmaS = lift $ sigma

-- GENERATORS --

fby :: (Monad t) => Stream (Kleisli t) (a , a) a
fby = StreamWithMemory (Kleisli $ \((),(x,y)) -> pure ((),x)) (lift (arr snd))

copy :: (Monad t) => Stream (Kleisli t) a (a,a)
copy = lift (Kleisli $ \a -> pure (a,a))

k0,k1,k2 :: (Arrow c) => Stream c () Int
k0 = lift $ arr (\() -> 0)
k1 = lift $ arr (\() -> 1)
k2 = lift $ arr (\() -> 2)

plus :: (Arrow c) => Stream c (Int,Int) Int
plus = lift $ arr (\(a,b) -> a + b)

wait :: (Arrow c) => Stream c a a

Elena Di Lavore, Giovanni de Felice, and Mario Román

wait = fbk sigmaS

-- SYSTEM --

class (Monad m) => IOMonad m where unsafeRun :: m a -> m a
instance IOMonad IO where unsafeRun = unsafeInterleaveIO
instance IOMonad Identity where unsafeRun = id

runUnsafeWithMemory :: (IOMonad t) => m -> StreamWithMemory (Kleisli t) m a b -> [a] -> t [b]
runUnsafeWithMemory m (StreamWithMemory (Kleisli now) later) (a:as) = do

(n , b)<- now (m , a)
l <- unsafeRun $ runUnsafeWithMemory n later as
pure (b : l)

runUnsafe :: (IOMonad t) => Stream (Kleisli t) a b -> [a] -> t [b]
runUnsafe = runUnsafeWithMemory ()

run :: (IOMonad t) => Stream (Kleisli t) () a -> t [a]
run s = runUnsafe s (repeat ())

--

main :: IO ()
main = return ()

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Related work
	1.3 Synopsis
	1.4 Prelude: Coalgebra

	2 Intensional Monoidal Streams
	2.1 The fixpoint equation
	2.2 Intensional sequences
	2.3 Interlude: Dinaturality
	2.4 Towards extensional memory channels

	3 Extensional Monoidal Streams
	3.1 Feedback monoidal categories
	3.2 Extensional monoidal streams
	3.3 Towards observational processes

	4 Observational Monoidal Streams
	4.1 Observational streams
	4.2 Observational sequences
	4.3 Productive categories

	5 The Category of Monoidal Streams
	5.1 The symmetric monoidal category of streams
	5.2 Delayed feedback for streams

	6 Cartesian Streams
	6.1 Causal stream functions
	6.2 Cartesian monoidal streams
	6.3 Example: the Fibonacci sequence

	7 Stochastic Streams
	7.1 Stochastic processes
	7.2 Examples

	8 A dataflow programming language
	8.1 Type theory for monoidal categories
	8.2 Adding feedback
	8.3 Adding generators
	8.4 Examples

	9 Conclusions
	9.1 Further work

	References
	A Monoidal categories
	A.1 Markov categories
	A.2 Stochastic processes

	B Coend Calculus and Profunctors
	B.1 Initial algebras, final coalgebras
	B.2 Size concerns, limits and colimits

	C The List+ opmonoidal comonad and Fox's theorem
	D Productive categories
	E Monoidal streams
	F Type theory
	F.1 Type theory for a strong monoidal endofunctor
	F.2 Type Theory for Delayed Feedback
	F.3 Categories with copy and syntax sugar

	G Implementation
	G.1 Term derivations
	G.2 Code

