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Abstract

Partial Markov categories are a recent framework for categorical probability theory, providing an abstract account of partial
probabilistic computation. In this article, we discuss two order relations on the morphisms of a partial Markov category.
In particular, we prove that every partial Markov category is canonically enriched over the category of preordered sets and
monotone maps. We show that our construction recovers several well-known order enrichments. We also demonstrate that
the existence of codiagonal maps (comparators) is closely related to order properties of partial Markov categories.
We propose a synthetic version of the Cauchy–Schwarz inequality to facilitate inequational reasoning in partial Markov
categories. We apply this new axiom to prove that updating a prior distribution with an evidence predicate increases the
likelihood of the evidence in the posterior.
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1 Introduction

Markov categories [Fri20,CJ19] are a synthetic framework for probability theory. They allow us to reason
about probabilistic processes using a few basic axioms that model key aspects of probabilistic computation.
Morphisms in a Markov category can be composed both in sequence and in parallel, via a symmetric
monoidal structure. Every object is equipped with a commutative comonoid, which allows for copying and
discarding information. An important axiom is the existence of conditionals, which are an abstraction of
conditional probability distributions. This simple setting has been successfully applied to various areas in
probability theory [CFG+24,FK23,Jac21], semantics of probabilistic programming [Ste21,SS21,AFK+24] ,
causal inference [JKZ21,LT23,YZ22] and information theory [Per24].

Morphisms in Markov categories can be thought of as total probabilistic computations. Totality is
encoded by an axiom – naturality of discarding – declaring that maps can be discarded without affecting
the meaning of the process. However, many operations in probability theory are inherently partial. An
important example is bayesian updating: if one tries to learn from evidence that is incompatible with the
prior belief, updating is impossible. Markov categories lack the structure to express this partiality.

In order to express partiality, we need to drop naturality of discarding, and thus work with copy-
discard (CD) categories [CJ19,CG99]. Morphisms in such copy-discard categories correspond to partial
probabilistic computations. We would like to highlight two recent works following this approach. In
[LT23], the authors start from a copy-discard category, and derive conditional distributions from equality
comparison and normalisation of subprobability kernels. While the theory is elegant, it is mostly suited for
discrete probability. In contrast, the framework of partial Markov categories [DR23] starts from a copy-
discard category with conditionals. The advantage of this approach is the abundance of models. Examples
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of partial Markov categories include Kleisli-categories of ‘subprobability monads’, cartesian restriction
categories [CL02,CL03,CL07], and cartesian bicategories of relations [CW87].

The main contribution of this paper is to show that every partial Markov category is enriched in the
category of partial orders and monotone maps. That is, every hom-set in a partial Markov category is
a preorder, and the operations of the symmetric monoidal category structure are monotone with respect
to this preorder. The existence of such an order-enrichment makes the setting particularly appealing for
developing the basics of inequational reasoning in synthetic probability theory. This is important, since
some crucial properties of bayesian reasoning are inequational, such as the fact that updating a prior with
evidence increases the likelihood of the evidence being true in the posterior.

This paper is structured as follows. In Section 2 we recall the basic theory of partial Markov categories.
We also introduce some running examples. In Section 3, we define the preorder enrichment on partial
Markov categories; we display several well-known order enrichments as instances of our construction.
Section 4 is dedicated to the study of least conditionals in partial Markov categories. Our main results in
this section are about the relationship of least conditionals and the existence of comparators (Theorems 4.4
and 4.6). Finally, Section 5 is an application of the conditional preorder. We derive a synthetic analogue
of the validity-increase theorem, under suitable assumptions (Theorem 5.13).

Throughout this paper we will use string-diagrammatic notation with the diagrams written from left
to right. For a detailed introduction to string-diagrammatic calculi, see [Sel10]. Occasionally, we will also
apply equational reasoning. To ease notation, we will treat all monoidal categories as if they were strict.

Related work
Inequalities play an important role in the theory of cartesian restriction categories [CL02] and carte-

sian bicategories of relations [CW87]. In fact, restriction categories have a canonical ordering on mor-
phisms [CL02, §2.1.4] and can be seen as enriched categories [CG14]. Similarly, morphisms in bicategories
of relations have a canonical ordering that forms an enrichment [Nes24]. These canonical inequalities are
instances of the ordering we introduce in this paper, see Propositions 3.11 and 3.12.

Order enrichments for categories of probabilistic maps have been considered before, in the context of
effectus theory [CJWW15,Cho19,Jac18].

One of the anonymous reviewers pointed out the recent work on so-called quasi-Markov categories
[FGL+25], which generalise cartesian restriction categories. Quasi-Markov categories are poset-enriched
by the normalisation order. Investigation of the relationship between partial Markov categories and quasi-
Markov categories is left for future work.

2 Preliminaries

Copy-discard categories (Definition 2.8) are theories of processes – symmetric monoidal categories – where
resources can be copied and discarded. Partial Markov categories are copy-discard categories that addi-
tionally have conditionals: a factorization property often needed in categorical probability.

We go a step further and explicitly introduce copy-discard-compare (CDC) categories (Definition 2.8):
theories of processes where we can assert the equality of two resources (“compare” them). Discrete
partial Markov categories are copy-discard-compare categories with conditionals (Definition 2.9). Table 1
summarises the terminology related to variations copy-discard categories.

Definition 2.1 (Copy-discard category) A copy-discard category [CG99,Fri20] is a symmetric monoidal
category (C,⊗, I) in which every object X has a compatible commutative comonoid structure, consisting of
a counit or discard, εX : X → I; and a comultiplication or copy, δX : X → X ⊗X, satisfying the following
axioms. 1.

(i) Comultiplication is associative, δX # (δX ⊗ id) = δX # (id ⊗ δX).

(ii) Counit is neutral for comultiplication, δX # (εX ⊗ id) = id = δX # (id ⊗ εX).

(iii) Comultiplication is uniform, δX⊗Y = (δX ⊗ δY ) # (id ⊗ σ ⊗ id), and δI = id.

(iv) Counit is uniform, εX⊗Y = εX ⊗ εY and εI = id.

(v) Comultiplication is commutative, δX # σX,X = δX , where σX,X : X ⊗X → X ⊗X is the symmetry.
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Structure Maps are Comparators/caps Conditionals

Copy-discard category

Copy-discard-compare category ✓

Cartesian restriction category deterministic

Discrete cartesian restriction category deterministic ✓

Quasi-Markov category self-normalising [FGL+25]

Partial Markov category ✓

Discrete partial Markov category ✓ ✓

Markov category Maps are total

Markov category with conditionals Maps are total ✓

Table 1
In each row, the structure entails all properties listed (✓).

The counits and comultiplications are not required to form natural transformations.

such that = = =

Fig. 1. Structure and axioms of a commutative comonoid.

The language of copy-discard categories can express when morphisms are deterministic, total and
self-normalising.

Definition 2.2 (Deterministic, total)A morphism f : X → Y in a copy-discard category is determin-
istic if it commutes with the copy, f # δY = δX # (f ⊗ f). It is total if it commutes with the discard,
f # εY = εX .

Definition 2.3 (Normalisation) ([DR23,LT23]) Let C be a copy-discard category.

(i) We say that a map g : X → Y is a normalisation of f : X → Y if f = δX # (g ⊗ (f # εY )). In this
situation, we write f ⪯ g. See Figure 2 for an illustration.

(ii) A map f is called self-normalising if f ⪯ f . Clearly, deterministic maps are self-normalising.

The collection of self-normalising maps is partially ordered by normalisation [LT23, Lemma 98].

f ⪯ g if and only if f =
g

f

Fig. 2. The normalisation order

Definition 2.4 The conditional composition of two morphisms, f : X → A and g : A ⊗ X → B, of a
copy-discard category, is the morphism defined by the equation in Figure 3. In other words, conditional
composition passes a copy of the input and the output of the first morphism to the second morphism.

(f ◁ g) = δX # ((f # δA) ⊗ idX) # (idA ⊗ g) f ◁ g = f
gX

A

B

Fig. 3. Conditional composition.
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Definition 2.5 (Conditionals) A copy-discard category has conditionals if every morphism f : X →
A ⊗ B can be decomposed as f = (f # (idA ⊗ εB)) ◁ c, for some self-normalising c : A ⊗X → B. In this
situation we say that x is a conditional of f . For morphisms f : X → A and g : A → B, a Bayesian inverse

of g with respect to f is a conditional g†f : B ⊗X → A of f # δA # (g ⊗ id).

Definition 2.6 ([DR23]) A partial Markov category is a copy-discard category with conditionals.

We will later work with a particular subclass of copy-discard categories: those that are balanced.
Balanced copy-discard categories cover a large class of examples, and they are particularly well-behaved
with respect to the partial order we introduce in Definition 3.1. The name balanced is related to properties
of idempotent morphisms: in a balanced copy-discard category every idempotent is balanced [FGL+23,
Theorem 4.1.8.].

Definition 2.7 (Balanced copy-discard category [FGL+23])A copy-discard category C is balanced
if the following implication holds for all appropriately typed morphisms.

f
g

g

h

h
= f g

h

h
⇒ f

g

g

h

= f g
h

Being balanced was introduced as the Cauchy–Schwarz property [FGL+23, Definition A.5.1]; we avoid this
name to avoid confusion with the synthetic version of the Cauchy–Schwarz inequality we introduce later.
We moreover remark that there is another notion of balanced category in the literature [Joh14], unrelated
to ours.

Definition 2.8 (Copy-Discard-Compare category) A copy-discard-compare category is a copy-discard
category in which every object, X, has a compatible partial Frobenius structure, consisting of an additional
commutative multiplication, or comparator, µX : X ⊗X → X, satisfying the following axioms.

(i) Multiplication is associative, (µX ⊗ id) # µX = (id ⊗ µX) # µX .

(ii) Multiplication is commutative, σX,X # µX = µX .

(iii) Multiplication is right inverse to comultiplication, δX # µX = id.

(iv) Multiplication satisfies the Frobenius rule, (δX ⊗ id) # (id ⊗ µX) = µX # δX = (id ⊗ δX) # (µX ⊗ id).

(v) Multiplication is uniform, µX⊗Y = (id ⊗ σY,X ⊗ id) # (µX ⊗ µY ), and µI = id.

such that = = = =

Fig. 4. Structure and axioms of comparators.

Definition 2.9 (Discrete Partial Markov category [DR23]) A discrete partial Markov category is
a copy-discard-compare category with conditionals.

We provide an alternative characterization of copy-discard-compare categories via cap morphisms. This
is the approach followed by Lorenz and Tull [LT23], where it was mentioned that the presentations via
caps and comparators are equivalent. We provide a proof for completeness.

Definition 2.10 (Caps [LT23, Definition 6]) A copy-discard category is said to have caps if it is
equipped with morphisms ∩X : X ⊗X → I, satisfying the following axioms.

(i) Caps are commutative, σX,X # ∩X = ∩X .

(ii) Caps interact with the comultiplication, δX # ∩X = εX .

(iii) Caps satisfy the Frobenius rule, (δX ⊗ id) # (id ⊗ ∩X) = (id ⊗ δX) # (∩X ⊗ id).

(iv) Caps are uniform, ∩X⊗Y = (id ⊗ σY,X ⊗ id) # (∩X ⊗ ∩Y ), and ∩I = id.

4



Di Lavore, Román, Sobociński, Széles

such that = = =

Fig. 5. Structure and axioms of caps.

Proposition 2.11 A copy-discard category is a copy-discard-compare category if and only if it has caps.

Proof. Assume that C is a copy-discard-compare category. We may define caps via ∩X = µX # εX ; the
cap axioms follow immediately.

Conversely, assume that C has caps. Define the comparator as one of the two sides of the Frobenius
rule (iii), µX = (δX ⊗ id) # (id ⊗ ∩X) = (id ⊗ δX) # (∩X ⊗ id).

First, we show commutativity using (a) the definition of the compare map, (b) naturality of symmetries,
(c) commutativity of the cap, and (d) commutativity of copy.

(a)
=

(b)
=

(c)
=

(d)
=

(a)
=

For associativity, we use (a) the definition of the compare map, and (b) associativity of copy.

(a)
=

(b)
=

(a)
=

Compare is right inverse to copy by (a) definition of the compare map, (b) associativity of copy, (c) axioms
of caps, and (d) counitality of copy.

(a)
=

(b)
=

(c)
=

(d)
=

Finally, we show the Frobenius equation using (a) the definition of the compare map, and (b) associativity
of copy.

(a)
=

(b)
=

(a)
=

2

2.1 Examples

We introduce some partial Markov categories as running examples.

Categories of subprobability kernels
The category BorelStoch≤1 of standard Borel spaces and measurable subprobability kernels is a dis-

crete partial Markov category [DR23]. The subcategory FinStoch≤1 ↪→ BorelStoch≤1 of finite sets and
substochastic matrices is also a discrete partial Markov category. One can see that both BorelStoch≤1 and
FinStoch≤1 are balanced, by essentially the same argument as in [FGL+23, Proposition A.5.2.].

Cartesian restriction categories
Cartesian restriction categories [CL02,CL03,CL07] are an abstraction of the category Par of sets and

partial functions. They are copy-discard categories where comultiplication is natural, i.e. all morphisms are
deterministic but not necessarily total. Similarly, discrete Cartesian restriction categories are Cartesian
restriction categories with a comparator.
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We now show that cartesian restriction categories have conditionals. That is, cartesian restriction
categories are partial Markov categories where all morphisms are deterministic.

Proposition 2.12 All cartesian restriction categories are partial Markov categories.

Proof. All morphisms in cartesian restriction categories are, by definition, deterministic. We use this to
show that there are conditionals.

f = f =
f

f

c

These conditionals are self-normalising because every morphism is deterministic. 2

Since all maps are deterministic, cartesian restriction categories are balanced.

Cartesian bicategories of relations
Cartesian bicategories of relations are an abstraction of the category Rel of sets and relations. They

are copy-discard-compare categories with extra structure and axioms that give them the expressive power
of regular logic (see Figure A.1). They are also an example class of partial Markov categories.

Proposition 2.13 All cartesian bicategories of relations are partial Markov categories.

Proof. The compact closed structure and idempotency of convolution give self-normalising conditionals.
We use the syntax of cartesian bicategories of relations [CW87]. Every morphism in a cartesian bicategory
of relations is self-normalising because convolution is idempotent (see Figure A.1).

m

m
= m

The equation for conditionals can be simplified using the Frobenius equation.

f

f

c
=

f

f

Cartesian bicategories of relations are poset-enriched (see Equation (1)). We use this partial order to
bound the morphism above from above with f using adjointness of the discard and the codiscard (i), and
lax naturality of the discard morphism (ii).

f

f

(i)

≤
f

f

(ii)

≤
f

= f

We bound the same morphism also from below with f using lax naturality of the copy morphism (i), and
adjointness of the copy with the cocopy (ii).

f

f

(i)

≥ f
(ii)

≥ f = f

2

Cartesian bicategories of relations are not balanced in general. One can easily adapt [FGL+23, Example
A.5.4.] to get a counterexample in Rel.
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3 Conditional inequality

Let us endow partial Markov categories with a preorder-enrichment, given by the conditional inequal-
ity (Definition 3.1). We prove that this order is an enrichment in Theorem 3.3 and derive some basic
inequalities.

Definition 3.1 (Conditional inequality). In any copy-discard category, conditional inequality relates
two parallel morphisms, f ⊑ g for f : X → Y and g : X → Y , if and only if there exists some morphism
r : Y ⊗X → I such that f = g ◁ r. In this case, we say that r witnesses the inequality f ⊑ g, and write
f ⊑r g.

fX Y =
g

rX

Y

Proposition 3.2 Conditional inequality (⊑) is a preorder.

Proof. Reflexivity is witnessed by the discard morphism, f ◁ ε = f , as on the left below. Let us prove
transitivity. If we assume f ⊑r g and g ⊑s h, then by associativity of conditional composition, f = g ◁ r =
(h ◁ s) ◁ r = h ◁ (s ◁ r). Thus, s ◁ r witnesses f ⊑ h, as on the right below.

f =
f

f =
g

r
=

h

s
r

=
h s

r

2

Theorem 3.3 Any partial Markov category is a preorder-enriched symmetric monoidal category.

Proof. We show that the preorder (⊑) on hom-sets is respected by composition and monoidal products.

Assuming that g ⊑r g′, we can see that f # g ⊑ f # g′ by f # g = f # (g′ ◁ r) = (f # g′) ◁ (g′†f ◁ (r ⊗ ε)).

f g = f
g′

r = f g′

g′†f
r =

f g′

g′†f

r

Assuming that g ⊑r g′, we can see that g # h ⊑ g′ # h by

g # h = (g′ ◁ r) # h = (g′ # h) ◁ (h†g′ ◁ (ε⊗ r)).

g h = g′

r

h
=

g′ h
h†
g′

r
=

g′ h
h†
g′

r

Assuming that g ⊑r g′, we can see that f ⊗ g ⊑ f ⊗ g′ by

f ⊗ g = f ⊗ (g′ ◁ r) = (f ⊗ g′) ◁ (ε⊗ r).

f

g
= g′

r

f

= g′

r

f

We proceed analogously to show that f ⊑ f ′ implies f ⊗ g ⊑ f ′ ⊗ g. We showed that composition and
tensors are monotone. Therefore, the conditional preorder is an enrichment. 2

We collect a few elementary properties of the conditional preorder.
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Proposition 3.4 Let C be a discrete partial Markov category.

(i) For all f : X → Y , δ # (f ⊗ f) # µ ⊑ f

(ii) Multiplication and comultiplication form an adjoint pair δ ⊣ µ in the sense of 2-categories [Lac10].
That is, id ⊑ δ # µ and µ # δ ⊑ id.

Proof. For point (i), observe that the equality below left follows from the partial Frobenius axioms. For
point (ii), the first inequality holds by definition, while the second one can be derived from the partial
Frobenius axioms.

f

f
=

f

f
r

=
r

2

3.1 Subunital enrichments

One may be interested in partial Markov categories with additional logical structure. In such categories,
effects X → I can be viewed as (fuzzy) predicates: e.g., the discard map, εX : X → I, is interpreted as
the ‘true’ predicate. When equipping a partial Markov category with a preorder enrichment, one would
reasonably expect truth to be the largest predicate.

Call a preorder enrichment subunital if p ≤ εX for all effects p : X → I.

Proposition 3.5 In any partial Markov category, the conditional preorder is subunital.

Proof. By counitality of copy.

fX = f
X r

2

Moreover, as the next proposition shows, the conditional preorder is the least subunital preorder
enrichment on a partial Markov category.

Proposition 3.6 Let (C,≤) be a preorder-enriched partial Markov category satisfying p ≤ εX for all
effects p : X → I.

Then, for any two parallel morphisms, f, g : X → Y , the following implication holds:

f ⊑ g =⇒ f ≤ g.

An immediate consequence of this is that, if (≤) is a poset-enrichment, then the conditional preorder is
also a poset, i.e., it is antisymmetric.

Proof. Let f ⊑ g be witnessed by r : Y ⊗X → I. Then,

f =
g

r ≤
g

= g .

2

3.2 Normalisation and the conditional preorder

In this subsection, we relate the conditional preorder to the normalisation order.
The proof of the following statement is immediate from the relevant definitions.

Lemma 3.7 Let C be copy-discard category, and let f, g : X → Y be two self-normalising parallel mor-
phisms. Then, f ⪯ g implies f ⊑ g.

8
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Proof. The conditional inequality f ⊑ g is witnessed by f # εY . 2

The converse implication does not hold in general, see Example 3.13. However, under certain assumptions,
we can derive it for self-normalising maps.

Definition 3.8 (Sharp witness property) A partial Markov category, C, satisfies the sharp witness
property if each inequality, f ⊑ g, between parallel self-normalising morphisms, f, g : X → Y , is witnessed
by a deterministic effect r : Y ⊗X → I.

Proposition 3.9 Let C be a balanced copy-discard category that satisfies the sharp witness property. Let
f, g : X → Y be parallel self-normalising maps. Then, f ⊑ g if and only if f ⪯ g.

Proof. By Lemma 3.7, f ⪯ g implies f ⊑ g. For the other direction, we use balance and sharp witnesses.
Suppose f ⊑ g with a sharp witness r. Since f is self-normalising, we obtain:

g r

r
=

g
r = f =

f

f
=

g
r

g
r

By balance, we obtain the equality below left.

g r
=

g
r

g
f =

g

r
(a)
=

g
r

g
=

f

g

By, then, discarding the second output, we obtain the equality (a) below right, which shows that f ⪯ g.2

3.3 Examples

We finish this section by instantiating the conditional preorder in our running examples.

Finitary subdistributions
Let f, g : X → D≤1(Y ) be two parallel substochastic channels in FinStoch≤1. The inequality f ⊑ g holds

exactly when f is pointwise dominated by g; that is, for all y ∈ Y and x ∈ X, we have f(y | x) ≤ g(y | x).
TODO:sharp witness property.

Standard Borel spaces and subprobability kernels
One can define a pointwise order on parallel maps f, g : (X,σX) → (Y, σY ) in BorelStoch≤1 by setting

f ≤ g if and only if f(T | x) ≤ g(T | x) for all points x ∈ X and measurable sets T ∈ σY . This
pointwise order is a subunital enrichment, see e.g. [Cho19, Proposition 3.2.7. and Section 3.3.2.]. The
next proposition shows that the conditional preorder coincides with the pointwise order.

Proposition 3.10 For any two parallel morphisms f, g : (X,σX) → (Y, σY ) in BorelStoch≤1, f ⊑ g if
and only if f ≤ g.

Proof. (⇒) Immediate from Proposition 3.6.
(⇐) Let f ≤ g pointwise. The Radon-Nikodým Theorem for kernels (see e.g. [VO18, Theorem 10])

states that there exists an r : (Y, σY ) × (X,σX) → [0,∞] such that f(A | x) =
∫
A r(y, x) · g(dy|x) for all

measurable sets A ∈ σy.
It only remains to show that one can pick r to be [0, 1]-valued. Fix an x ∈ X, and let Bx = {y ∈ Y :|

r(y, x) > 1}. This Bx is clearly measurable. We show that g(Bx|x) = 0. By assumption,∫
Bx

r(y, x) · g(dy | x) = f(Bx | x) ≤ g(Bx | x) =

∫
Bx

1 · g(dy | x).

9
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By definition of Bx, the converse inequality also holds, so
∫
Bx

r(y, x) · g(dy | x) =
∫
Bx

1 · g(dy | x). Let

qx(y) = (r(y, x) − 1) · χ(y ∈ Bx). Then q ≥ 0, and also
∫
Bx

qx(y) · g(dy | x) = 0. Therefore, qx is g(− | x)

-almost-surely zero, and thus r(−, x) ≤ 1 almost surely. We now set

p(y, x) =

{
r(y, x) if r(y, x) ≤ 1,

0 otherwise.

This p then satisfies 0 ≤ p ≤ 1, and f(A | x) =
∫
A p(y, x) · g(dy | x) for all A ∈ σY .

Finally, we check that p is jointly measurable. This is easy, since for any measurable T ⊆ [0, 1] we have

p−1(T ) =

{
r−1(T ) if 0 /∈ T,

r1(T ) ∪ r−1((1,∞)) otherwise.

2

Cartesian restriction categories
We now instantiate Definition 3.1 in cartesian restriction categories. Such categories have a canonical

poset enrichment [CL02, §2.1.4], where f ≤ g if and only if f ⪯ g. This means that f is a restriction of
g on a smaller domain. Since all morphisms are deterministic, cartesian restriction categories satisfy the
sharp witness property.

Proposition 3.11 In a cartesian restriction category, the normalisation order and the restriction order
coincide: f ⪯ g if and only if f ⊑ g.

Proof. Since cartesian restriction categories are balanced and satisfy the sharp witness property, this is
immediate from Proposition 3.9. 2

Cartesian bicategories of relations
Let us instantiate Definition 3.1 in cartesian bicategories of relations. These also have a canonical poset

enrichment where f ≤ g means that f is a ‘subrelation’ of g, in the following sense:

f ≤ g if and only if f =
g

f
. (1)

This presentation of the poset enrichment is equivalent to the usual one [Nes24, Lemma 4.1.5]. The next
proposition relates the two orderings.

Proposition 3.12 In a cartesian bicategory of relations, for two parallel morphisms f, g : X → A, f ≤ g
if and only if f ⊑ g.

Proof. (⇒) If f ≤ g (i), then we may take r = (id ⊗ f) # µ # ε and obtain that f ⊑ g by the Frobenius
axioms (ii).

f
(i)
=

g

f

(ii)
=

g

f

r

(⇐) We apply Proposition 3.6 because (≤) is also subunital. 2

Every morphism in a cartesian bicategory of relations is self-normalising. However, since these cate-
gories are not balanced, the normalisation order may differ from the conditional preorder. The following
example demonstrates that this is indeed the case.

Example 3.13 Let R,S ⊆ N × N be morphisms in Rel, given by R = {(1, 2)} and S = {(1, 2), (1, 3)}.
Then R ≤ S, but R ̸⪯ S, since δ # (R⊗ (S # ε)) = R ̸= S.

10



Di Lavore, Román, Sobociński, Széles

4 Least conditionals

Asking partial Markov categories to have unique conditionals is too strong. In any partial Markov category
with unique conditionals, f # εY = g # εY implies f = g for all parallel maps f, g : X → Y [DR23]. This is
similar to how Markov categories with unique conditionals are posetal

However, once we have an order in partial Markov categories, there might be a canonical choice of
conditional, namely the smallest among all conditionals. In this section, we consider least conditionals
with respect to two orders on self-normalising maps: the conditional preorder ⊑ and the normalisation
order ⪯. We demonstrate how least conditionals are related to the existence of comparators.

Definition 4.1 (Least conditionals) Let f : X → Y ⊗ Z be a morphism in a (locally small) partial
Markov category. Write Cf = {c : Z⊗X → Y | f = (f # (id⊗ ε)) ◁ c} for the set of conditionals of f . Now,
we say that a conditional, g ∈ Cf , is

(i) a ⊑-least conditional of f when it is a least element of Cf , ordered by the conditional preorder, (⊑);

(ii) or, a ⪯-least conditional of f if it is the least element of Cf ordered by the normalisation order (⪯).

By Lemma 3.7, every ⪯-least conditional is a ⊑-least conditional.

4.1 Least conditionals and copy-discard-compare categories

We start by characterising conditionals of copy and identity maps in a copy-discard category.

Lemma 4.2 Let C be a copy-discard category.

(i) A morphism f : X ⊗X → X is a conditional of the copy δX : X → X ⊗X if and only if δX # f = idX .

(ii) A morphism g : X ⊗X → I is a conditional of the identity idX : X → X if and only if δX # g = εX .

Note that the condition of Item (i) holds by definition for the multiplication µX . Similarly, the definition
of the cap (∩X) contains the condition of Item (ii).

Proof. For point (i), suppose that δX # f = idX . Then, the defining equation of conditionals can be
derived as below left. Conversely, if f is a conditional of δX , then the middle equality on the right holds
by definition. Is then easy to see that δX # f = idX .

f
=

f
= f = f =

f
= =

For point (ii), suppose that δX # g = εX . Then, the defining equation of conditionals can be derived
as below left. Conversely, discarding the output on both sides of the equality on the left below shows
δX # g = εX , as below right.

g = g = = g =
g

=

2

Lemma 4.3 Let C be a copy-discard category. If f : X ⊗X → X is a conditional of the copy δX : X →
X ⊗X, then f # εX : X ⊗X → I is a conditional of the identity map idX : X → X. Moreover, if f is the
⪯-least conditional of δX then f # εX is the ⪯-least conditional of idX .

Proof. By Lemma 4.2, f #εX is a conditional of the identity. Now assume that f is the ⪯-least conditional
of the copy map, and let g : X ⊗X → I be a conditional of the identity. We have to show that f # εX ⪯ g.
Let t = (idX ⊗ δX) # (g⊗ idX). Step (a) below left uses that g is a conditional of the identity to show that
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this t is a conditional of the copy map δX . Since f is the ⪯-least conditional of the copy map, δX , then
f ⪯ t (below right).

t =
g

= g
(a)
= f =

t

f
=

g

f

Discarding both sides of the above equation yields f # εX ⪯ g. 2

We are ready to show that, if they exist, comparators and caps are least conditionals.

Theorem 4.4 Let C be a copy-discard-compare category. The multiplication µX : X ⊗ X → X is the
⪯-least conditional of the copy map δX : X → X ⊗X. The cap ∩X : X ⊗X → I is the least conditional
of the identity idX : X → X with respect to the ⪯ order. By Lemma 3.7, µX and ∩X are also ⊑-least
conditionals.

Proof. By Lemma 4.2, µX and ∩X are conditionals of the copy and identity maps, respectively. We show
that µX is the ⪯-least conditional of δX . Let f : X ⊗X → X be any conditional of the copy map. Using
(i) the Frobenius equations and (ii) Lemma 4.2, we show that f ⪯ µX .

f
(i)
= f

(ii)
=

By Lemma 4.3, the cap is the ⪯-least conditional of identity. 2

Since ⪯-least conditionals are unique, the following is an immediate consequence of the previous propo-
sition.

Corollary 4.5 A copy-discard category can admit at most one copy-discard-compare structure.

Next, we prove a converse to Theorem 4.4. We demonstrate that, under certain conditions, least
conditionals of copier maps give rise to a copy-discard-compare category structure. As it turns out, one
needs to consider the normalisation order ⪯ to prove the following proposition.

Theorem 4.6 Let C be a copy-discard category, and assume the following.

(i) All copy maps δX : X → X ⊗ X have a ⪯-least conditional µX : X ⊗ X → X. By Lemma 4.3, the
identity maps then also have ⪯-least conditionals ∩X = µX # εX : X ⊗X → I.

(ii) The ∩X maps satisfy Item (iv) of Definition 2.10.

In this situation, the µX maps make C a copy-discard-compare category.

Proof. We show that the equations (i)-(iii) of Definition 2.10 are satisfied. The equality (ii) δX #∩X = εX
holds by Lemma 4.2. We show commutativity. Using commutativity of the copy map and equality (i), we
obtain that δX #σX,X #∩X = εX also holds (below left). By Lemma 4.2, this implies that σX,X #∩X is also
a conditional of idX . Therefore, ∩X ⪯ ∩X ◦ σX,X . We use this fact in steps (a) and (c) below right. Step
(b) applies naturality of the symmetries.

∩ = ∩ = ∩ (a)
=

∩
∩

(b)
=

∩
∩

(c)
= ∩

At last, we need to show equation (iii), whose two sides we name t and u.

t = ∩ =
∩

= u

12
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Using coassociativity of copy, equality (i) and counitality of copy, one can easily show that δ #t = id = δ #u.
By Lemma 4.2, we obtain that both t and u are conditionals of the copy δX : X → X ⊗X. We now prove
that t = µX = u. Steps marked with (a) use minimality of µX . Equations (b) use associativity and
commutativity of the copier. Steps (c) use that ∩X is self-normalising.

µ (a)
=

µ

t
=

∩

∩
(b)
=

∩
∩

(c)
= ∩ = t

µ (a)
=

µ

u
=

∩
∩

(b)
= ∩

∩
(c)
=

∩
= u

This shows that C is a copy-discard category with caps, which, by Proposition 2.11, is also a copy-discard-
compare category. 2

The following is an immediate consequence of the previous theorem and Proposition 3.9.

Corollary 4.7 Let C be a balanced partial Markov category that satisfies the sharp witness property.
Assume that the copier and identity maps have ⊑-least conditionals µX and ∩X , and that the ∩X maps
satisfy Item (iv) of Definition 2.10. Then C is a discrete partial Markov category.

4.2 Examples

Proposition 4.8 The category FinStoch≤1 is balanced and satisfies the sharp witness property. Therefore,
⪯-least conditionals are the same as ⊑-least conditionals.

Given f : X → A ⊗ B, write ∥f(− | x)∥ =
∑

b′∈B f(a, b′ | x) for the total mass of the subdistribution
f(− | x). The least conditional c0 : A⊗X → B f f is given by

c0(b | a, x) =

{
f(a,b|x)∑

b′∈B f(a,b′|x) if ∥f(− | x)∥ ≠ 0,

0 if ∥f(− | x)∥ = 0.

Let x ∈ X such that ∥f(− | x)∥ ≠ 0. Then for any conditional c : A⊗X → B of f , the value c(b | a, x)
is forced to be equal to c0(b | a, x). If ∥f(− | x)∥ = 0, then c(− | a, x) could be any subdistribution. The
least conditional is the solution that contains no ‘junk information’.

Proposition 4.9 By Proposition 3.11, ⪯-least conditionals are the same as ⊑-least conditionals in a
discrete cartesian restriction category.

Any discrete cartesian restriction category has least conditionals. Given a map f : X → A ⊗ B, the
least conditional of f is given by c0 = (id ⊗ f) # ((µ # ε) ⊗ id).

Proof. We check that this is indeed a self-normalising conditional. It is self-normalising because every
morphism is deterministic (i). We check the conditional equation using the partial Frobenius axioms (ii).

f
(ii)
= f

(i)
=

f

f

(ii)
=

f

f

c0

Suppose there is another conditional c : A⊗X → B of f (iii).

f

c
(ii)
= f

c

(iii)
= f = c0

Then, c0 ≤ c. 2

13
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Proposition 4.10 Any cartesian bicategory of relations has ⪯-least conditionals.

Proof. By Proposition 2.13, the morphism c0 = (id⊗ f) # ((µ # ε)⊗ id) is a self-normalising conditional of
f : X → A⊗B. Suppose there is another self-normalising conditional, c : A⊗X → B, of f .

f

(i)
= f

c

(ii)
=

f

c

We use that (i) c is a conditional of f , and (ii) the Frobenius axioms of cartesian bicategories of relations
to show that c0 ⪯ c. 2

5 Updates increase validity

In its most general form, Bayesian updating involves a prior distribution and a (fuzzy) evidence predicate.
From these inputs, one can compute a posterior distribution by incorporating the evidence into the prior.

Given a distribution σ and a predicate p, the validity of p in σ is a real number in the unit interval
[0, 1]. This validity expresses the probability that the predicate p holds for a random sample from σ.

A key property of Bayesian updating is that the validity of the evidence is greater or equal in the
posterior than in the prior. A proof of this fact for discrete probability can be found in [Jac19, Theorem 2.1].
Ultimately, the result is a consequence of the well-known Cauchy–Schwarz inequality. The Cauchy–Schwarz
inequality states that the square of the inner product of two vectors u, v ∈ Rn is smaller than the product
of their squared norms: (∑

i
ui · vi

)2
≤

(∑
i
u2i

)
·
(∑

j
v2j

)
.

The inequality also holds if we allow parameters x, y and z, thus considering families of vectors h : X → Rn

f : Y → Rn, and g : Z → Rn. If we write fi(x) for f(x)i (similarly for g and h) and let ui =
√
hi(x) · fi(y)

and vj =
√

hj(x) · gj(z), the Cauchy–Schwarz inequality becomes:

(∑
i
hi(x) · fi(y) · gi(z)

)2
≤

(∑
i
hi(x) · fi(y)2

)
·
(∑

j
hj(x) · gj(z)2

)
. (2)

We consider this general form and express it synthetically, using the conditional preorder.

Definition 5.1 (Cauchy–Schwarz inequality)A discrete partial Markov category satisfies the Cauchy–
Schwarz inequality if, for all triples of morphisms h : X → A, f : A → Y , and g : A → Z, the following
inequality holds.

h

h

f

f

g

g

⊑
h

h

f

f

g

g

Example 5.2 Instantiating the above definition in FinStoch≤1 yields precisely the usual Cauchy–Schwarz
inequality (2). Therefore, FinStoch≤1 satisfies the synthetic Cauchy–Schwarz inequality.

Example 5.3 The Cauchy–Schwarz inequality holds as equality in discrete cartesian restriction categories.

14
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Example 5.4 Cartesian bicategories of relations satisfy the Cauchy–Schwarz inequality.

h

h

f

f

g

g

⊑
h

h

f

g

=
h

h

f

g
=

h

h

f

f

g

g

Proposition 5.5 A partial Markov category that satisfies the Cauchy–Schwarz inequality also satisfies the
inequality below, called the means inequality, for all u : X → A and v : A → Y .

u

u

v

v
⊑ u

v

v

Proof. Let h = u, f = v and g = ε. We apply (i) the Cauchy–Schwarz inequality and (ii) Proposition 3.5.

u

u

v

v
=

u

u

v

v

(i)

⊑
u

u

v

v
=

u

u

v

v

(ii)

⊑ u
v

v = u
v

v

2

Remark 5.6 (QM-AM inequality) The means inequality owes its name to the inequality between the
weighted arithmetic and quadratic means of a vector of positive real numbers, x1, . . . , xn with weights
w1 + · · · + wn = 1. (∑

i∈I
wi · xi

)2
≤

∑
i∈I

wi · x2i .

Example 5.7 The partial Markov category of substochastic channels, FinStoch≤1, satisfies the means
inequality. In particular, if f is a state σ : I → X, and g is a predicate p : X → I, then the means
inequality gives the well-known inequality between expectations of random variables, usually written as
E[X]2 ≤ E[X2].

With this setup, we can work towards a synthetic analogue of the validity-increase theorem. We start
by providing the relevant definitions.

Definition 5.8 (Validity) In a partial Markov category, the validity of a predicate p : X → I with
respect to a prior σ : I → X is the scalar obtained by composition, (σ # p).

Definition 5.9 (Bayesian update) Let σ : I → X, p : X → I. The bayesian update of σ with evidence

p is defined to be the bayesian inverse p†σ : I → X.

We first prove a special case of the validity increase theorem for deterministic evidence.

Proposition 5.10 Let σ : I → X, p : X → I in a partial Markov category such that p is deterministic.
Then updating a prior state with a predicate increases the predicate’s validity in the posterior. That is,

σ # p ⊑ p†σ # p.

Proof. The conditional equation for the Bayesian inverse is σ # δX # (p ⊗ idX) = (σ # p) ⊗ p†σ. Therefore,

σ # δX # (p⊗ idX) ⊑ p†σ; and, as a consequence, σ # p = σ # δX # (p⊗ p) ⊑ p†σ # p. 2
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For the case where p is not necessarily deterministic, we will need the means inequality and the following
notion of zero scalars.

Definition 5.11 Let C be a copy-discard category.

(i) A scalar s : I → I is called a zero scalar, if it satisfies s⊗ f = s⊗ g for all f, g : X → Y . Any scalar
that does not satisfy this property is said to be non-zero.

(ii) We say that the non-zero scalars in C are cancellative if s⊗f = s⊗g implies f = g for all f, g : X → Y
and non-zero scalar s : I → I.

Lemma 5.12 Let C be a copy-discard category whose non-zero scalars are cancellative. Then, the following
cancellation property holds for the conditional inequality. If s : I → I is a non-zero scalar and f, g : X → Y ,
then s⊗ f ⊑ s⊗ g implies f ⊑ g.

Proof. Let s⊗f ⊑ rs⊗g. Then, by definition f ⊗s = (s⊗g)◁r = s⊗ (g ◁r). By cancellativity, f = g ◁r,
and thus f ⊑ rg. 2

Theorem 5.13 Let C be a partial Markov category that satisfies the means inequality and whose non-zero
scalars are cancellative. Then, updating a prior state with a predicate increases the predicate’s validity in
the posterior. That is, for all σ : I → X and p : X → I,

σ # p ⊑ p†σ # p.

Proof. We apply the means inequality in the following calculation.

σ

σ

p

p
⊑ σ

p

p
=

σ

p†σ

p

p

Since the non-zero scalars are cancellative, we obtain that σ # p ⊑ p†σ # p, because the scalar is either zero
or cancellative. 2

6 Concluding remarks

We introduced a novel preorder enrichment in the general setting of partial Markov categories; we showed
that it generalizes the canonical preorder enrichments of two categories of probability kernels, cartesian
restriction categories, and cartesian bicategories of relations. We showed how comparators relate to least
conditionals of copier maps. We axiomatized the Cauchy–Schwarz inequality and the quadratic-arithmetic
mean inequality. From these, we abstractly derived the fact that Bayesian updating increases the validity
of the evidence in the posterior.

Further exploration of the basic theory of the conditional inequality is warranted. One interesting
question is about antisymmetry of the order, which is related to inverses of scalars. An inverse of s : I → I
is a scalar s−1 : I → I such that s⊗ s−1 = εI . Clearly, conditional inequality is antisymmetric only when
the only scalar with an inverse is εI ; it is an open question whether the converse statement holds. It
would also be interesting to find necessary conditions for the conditional preorder to form an enrichment.
Relatedly, the synthetic formulation of the Cauchy–Schwarz inequality and the means inequality opens
the way for a more refined axiomatization: can we derive both from some more fundamental principle?

Finally, a potential application of the synthetic means inequality lies in mixing it with the additive
structure of some partial Markov categories, like effectuses with copiers [CJWW15]. In that setting it may
be possible to develop a synthetic theory of variance and covariance.
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A Additional diagrams

= = =

= = =

=
f

f
= f

Fig. A.1. Structure and axioms of cartesian bicategories of relations.
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