
Span(Graph): a Canonical Feedback Algebra of
Open Transition Systems ?

Elena Di Lavore1, Alessandro Gianola2, Mario Román1, Nicoletta Sabadini3,
and Pawe l Sobociński1

1 Tallinn University of Technology, Ehitajate tee 5, 12616 Tallinn, Estonia
2 Free University of Bozen-Bolzano, Piazza Domenicani, 3, 39100 Bolzano BZ, Italy

3 Università degli Studi dell’Insubria, Via Ravasi, 2, 21100 Varese VA, Italy

Abstract. We show that Span(Graph)∗, an algebra for open transition
systems introduced by Katis, Sabadini and Walters, satisfies a universal
property. By itself, this is a justification of the canonicity of this model
of concurrency. However, the universal property is itself of interest, being
a formal demonstration of the relationship between feedback and state.
Indeed, feedback categories, also originally proposed by Katis, Sabadini
and Walters, are a weakening of traced monoidal categories, with various
applications in computer science. A state bootstrapping technique, which
has appeared in several different contexts, yields free such categories.
We show that Span(Graph)∗ arises in this way, being the free feedback
category over Span(Set). Given that the latter can be seen as an algebra
of predicates, the algebra of open transition systems thus arises – roughly
speaking – as the result of bootstrapping state to that algebra.
Finally, we generalize feedback categories endowing state spaces with
extra structure: this extends the framework from mere transition systems
to automata with initial and final states.

? Di Lavore, Román and Sobociński were supported by the European Union through
the ESF funded Estonian IT Academy research measure (2014-2020.4.05.19-0001).
This work was also supported by the Estonian Research Council grant PRG1210.

Table of Contents

1 Introduction . 3
1.1 Related Work . 6
1.2 Synopsis . 7

2 Preliminaries: Symmetric Monoidal Categories . 7
2.1 Theories of Processes . 7
2.2 Monoidal Equivalence . 12

3 Feedback Categories . 14
3.1 Feedback Categories . 14
3.2 Traced Monoidal Categories . 16
3.3 Delay and Feedback . 18
3.4 St(•), the Free Feedback Category . 20
3.5 Examples . 22

4 Span(Graph): an Algebra of Transition Systems . 25
4.1 The Algebra of Spans . 25
4.2 The Algebra of Open Transition Systems . 27
4.3 Span(Graph) as a Feedback Category . 30
4.4 Cospan(Graph) as a Feedback Category . 35
4.5 Syntactical Presentation of Cospan(FinGraph) 37

5 Structured state spaces . 39
5.1 Structured Feedback Categories . 39
5.2 Structured St(•) Construction . 40
5.3 Categories of Automata . 41
5.4 Automata in Span(Graph) . 42

6 Conclusions and Further Work . 44
6.1 Discussion . 44
6.2 Conclusion . 45

Span(Graph): a Canonical Feedback Algebra of Open Transition Systems 3

1 Introduction

Software engineers need models. In fact, models developed in the early years of
computer science have been extremely influential on the emergence of software
engineering as a discipline. Prominent examples include flowcharts and state
machines, and a part of the reason for their impact and longevity is the fact that
they are underpinned by relevant and well-understood mathematical theories.

However, while concurrent software has been intensively studied since the
early 60s, the theoretical research landscape remains quite fragmented. Indeed,
Abramsky [1] argues that the reason for the proliferation of models, their some-
times overly locally-optimised techniques, and the difficulty of understanding
and relating their expressivity, is the fact that we still do not have a satisfactory
understanding of the underlying mathematical principles of concurrency.

A way to identify such principles and arrive at more canonical models is to
look for logical or mathematical justifications. An example is the recent discovery
and work on of Curry-Howard style connections between calculi for concurrency
and fragments of linear logic, which guided the development of session types [15].
Another possible route is to search for models that satisfy some universal prop-
erty.

The latter approach is the remit of this paper: we focus on the Span(Graph)∗
model of concurrency, introduced by Katis, Sabadini and Walters [32] as an al-
gebra of open transition systems, and show that it satisfies a universal property:
it is the free feedback category over the category of spans of functions.

The free construction is in itself interesting and can be described as a kind
of “state-bootstrapping”. We thus position our main result within the theoret-
ical context of feedback categories, their relationship with state, and the more
restrictive—yet better known—notion of traced monoidal categories. Our explo-
ration of this wider context is justified, given the panoply of related, yet partial,
accounts in the literature.

Set

Reset A

A

Fig. 1: NOR latch.

The relationship between feedback and
state is well-known by engineers. In fact, a
remarkable fact from electronic circuit design
is how data-storing components can be built
out of a combination of stateless components
and feedback. A famous example is the (set-
reset) “NOR latch”: a circuit with two stable
configurations that stores one bit.

The NOR latch is controlled by two in-
puts, Set and Reset. Activating the first sets
the output value to A = 1; activating the second makes the output value return
to A = 0. This change is permanent: even when both Set and Reset are deacti-
vated, the feedback loop maintains the last value the circuit was set to4—to wit,

4 In its original description: “the relay is designed to produce a large and permanent
change in the current flowing in an electrical circuit by means of a small electrical
stimulus received from the outside” ([17], emphasis added).

4 Di Lavore, Gianola, Román, Sabadini, Sobociński

a bit of data has been conjured out of thin air. The results of this paper allow
one to see the latch as an instance of a more abstract phenomenon.

Indeed, there is a natural weakening of the notion of traced monoidal cate-
gories called feedback categories [35]. The construction of the free feedback cate-
gory coincides with a “state-bootstrapping” construction, St(•), that appears in
several different contexts in the literature [7,28,31]. We recall this construction
and its mathematical status (Theorem 3.11), which can be summed up by the
following intuition:

Theory of Processes + Feedback = Theory of Stateful Processes.

The Span(Graph) model of concurrency, introduced in [32], is an algebra
of communicating state machines, or — equivalently — open transition systems.

Let us first explain some terminology. A span X → Y in a category C is a
pair of morphisms l : A → X and r : A → Y with a common domain (Defini-
tion 4.1). When C has enough structure, spans form a category. This is the case
for the category of graphs Graph, where objects are graphs and morphisms are,
intuitively, pairs of functions that respect the graph structure (Definition 4.6).
Summarizing the above, the morphisms of Span(Graph) are given by pairs of
graph homomorphisms, l : G → X and r : G → Y , with a common domain G.
We think of a span of graphs as a transition system, the graph G, with boundary
interfaces X and Y .

Open transition systems interact by synchronization along a common bound-
ary, producing a simultaneous change of state. This corresponds to a composition
of spans, realized by taking a pullback in Graph (see Definition 4.7). The dual
algebra of Cospan(Graph) was introduced in [34] (see Definition 4.17).

Informally, a morphism X → Y of Span(Graph) is a state machine with
states and transitions, i.e. a finite graph given by the ‘head’ of the span. The
transition system is equipped with left and right interfaces or communication
ports, X and Y , and every transition is labeled by the effect it produces in all
its interfaces. Let us focus on some concrete examples.

Let B = { 0, 1 }. We abuse notation by considering B as a single-vertex graph
with two edges, corresponding to the signals 0 and 1. Indeed, as we shall see
in examples below, it is useful to think of single-vertex graphs as alphabets of
signals available on interfaces.

In Figure 2, we depict two open transition systems as arrows of Span(Graph).
The first represents a NOR gate B × B → B. To give an arrow of this type in
Span(Graph) is to give a span of graph homomorphisms

B× B l←− N r−→ B.

The graphical rendering (Figure 2, left) is a compact representation of the com-
ponents of this span: the unlabeled graph in the bubble is N , and the labels wit-
ness the action of two homomorphisms, respectively l : N → B×B and r : N → B.
Transitions represent the valid input/output configurations of the NOR gate. For
example, the edge with label (

(
0
0

)
, 1), witnesses a transition whose behaviour on

Span(Graph): a Canonical Feedback Algebra of Open Transition Systems 5

the left boundary is
(
0
0

)
and on the right boundary 1. Note that, since the graph

N has a single vertex, gates are stateless components.
The second component is a span L = {Set,Reset, Idle} → {A,A} = R that

models a set-reset latch. The diagram below right (Figure 2), again, is a conve-
nient illustration of the span L← D → R. Latches store one bit of information,
they are stateful components; consequently, their transition graph has two states.

(
0
0

)
,1

(
0
1

)
,0

(
1
0

)
,0

(
1
1

)
,0

Set,A

Reset,A

Idle,A Reset,A

Set,A Idle,A

B

B

B L R

Fig. 2: A NOR gate and set-reset latch, in Span(Graph).

In both transition systems of Figure 2 the interfaces are stateless: indeed,
they are determined by a mere set – the self-loops of a single-vertex graph. This
is a restriction that occurs rather frequently: in fact, transition systems with in-
terfaces are the arrows of the full subcategory of Span(Graph) on objects that
are single-vertex graphs, which we denote by Span(Graph)∗. The objects of
Span(Graph)∗ represent interfaces, and a morphism X → Y encodes a transi-
tion system with left interface X and right interface Y . Analogously, the relevant
subcategory of Cospan(Graph) is Cospan(Graph)∗, the full subcategory on
sets, or graphs with an empty set of edges.

Definition. Span(Graph)∗ is the full subcategory of Span(Graph) with ob-
jects the single-vertex graphs.

The problem with Span(Graph)∗ is that it is mysterious from the cate-
gorical point of view; the morphisms are graphs, but the boundaries are sets.
Decorated and structured spans and cospans [19,3] are frameworks that capture
such phenomena, which occur frequently when composing network structures.
Nevertheless, they do not answer the question of why they arise naturally.

As stated previously, the main contribution of this paper is the characteriza-
tion of Span(Graph)∗ in terms of a universal property: it is the free feedback
category over the category of spans of functions. We now state this more formally.

Theorem. The free feedback category over Span(Set) is isomorphic to the full
subcategory of Span(Graph) given by single-vertex graphs, Span(Graph)∗.
That is, there is an isomorphism of categories

St(Span(Set)) ∼= Span(Graph)∗.

Universal constructions, such as the “state-bootstrapping” St(•) construction
that yields free categories with feedback, characterize the object of interest up
to equivalence, making it the canonical object satisfying some properties. Recall

6 Di Lavore, Gianola, Román, Sabadini, Sobociński

that Abramsky’s concern [1] is that the lack of consensus about the intrinsic
primitives of concurrency risks making the results about any particular model
of concurrency too dependent on the specific syntax employed. Characterising a
model as satisfying a universal property side-steps this concern.

Given that Span(Set), the category of spans of functions, can be considered
an algebra of predicates [4,10], the high level intuition that summarizes our main
contribution (Theorem 4.12) can be stated as:

Algebra of Predicates + Feedback = Algebra of Transition Systems.

We similarly prove (in Section 4.4) that the free feedback category over
Cospan(Set) is isomorphic to Cospan(Graph)∗, the full subcategory on dis-
crete graphs of Cospan(Graph).

Finally, Section 5 shows how the same framework of feedback categories can
be extended from transition systems to categories with a structured state space
(Theorem 5.6), such as categories of automata. As examples, we recover Mealy
deterministic finite automata (Proposition 5.10) and we introduce span automata
(Definition 5.11).

1.1 Related Work

This article is an extended version of “A Canonical Algebra of Open Transition
Systems” [38], presented at the International Conference on Formal Aspects
of Component Software (FACS) 2021. With respect to the conference version,
we significantly generalised the framework of feedback categories: Section 5 is
completely new material. At the same time, Sections 3 and 4 extend the orig-
inal manuscript adding new proofs (to propositions 4.9 and 4.10, lemma 4.11,
and theorem 4.12) and giving a more complete account of the algebra of spans
(Sections 4.1 and 4.2). In an effort to make the paper more self-contained, we also
include a new preliminary Section 2, which summarises the necessary concepts
from category theory.

Span/Cospan(Graph) has been used for the modeling of concurrent sys-
tems [9,20,21,22,32,34,48,51,52]. Similar approaches to compositional modeling
of networks have used decorated and structured cospans [19,3]. However, these
models have not previously been characterized in terms of a universal property.

In [35], the St(•) construction (under a different name) is exhibited as the
free feedback category. Feedback categories have been arguably under-appreciated
but, at the same time, the St(•) construction has made multiple appearances as
a “state bootstrapping” technique across the literature. The St(•) construction
is used to describe a string diagrammatic syntax for concurrency theory in [7]; a
variant of it had been previously applied in the setting of cartesian bicategories
in [31]; and it was again rediscovered to describe a memoryful geometry of in-
teraction in [28]. However, a coherent account of both feedback categories and
their relation with these stateful extensions has not previously appeared. This
motivates our extensive preliminaries in Sections 3.1 and 3.2.

Span(Graph): a Canonical Feedback Algebra of Open Transition Systems 7

1.2 Synopsis

Section 2 consists of background material on symmetric monoidal categories
and equivalences between them. Section 3 contains preliminary discussions on
traced monoidal categories and categories with feedback; it explicitly describes
St(•), the free feedback category. It collects mainly expository material. Section 4
exhibits a universal property for the Span(Graph)∗ and Cospan(Graph)∗
models of concurrency and Section 4.5 highlights a specific application. Section 5
extends the framework of feedback categories to capture categories of automata.

2 Preliminaries: Symmetric Monoidal Categories

2.1 Theories of Processes

Resources and processes. We start by setting up an abstract framework for what
it means to describe a theory of processes. A theory of processes contains two
kinds of components: some resource types, which we name A,B,C, . . . ; and some
processes, which we name f, g, h,

Each process f has an associated input resource type (say, A); and an as-
sociated output resource type (say, B). Executing the process f will require
some inputs of type A and will produce some outputs of type B. We write this
situation as f : A→ B.

Throughout the paper, we make use of string diagrams: a formal diagram-
matic syntax for theories of processes [29,39]. In a diagram, every ocurrence of a
resource type is represented by a laballed wire; every process is represented by
a box, with input wires representing its input type on the left, and output wires
representing its output type on the right (Figure 3).

f

process

outputinput

A B

Fig. 3: String diagram for a process f : A→ B.

Operations in a theory of processes. Theories of processes allow two operations
on processes: sequential composition (#) and parallel composition (⊗). The for-
mer is depicted as horizontal concatenation of diagrams, the latter as vertical
juxtaposition.

f() # g() = f g()

f() ⊗ g() =
f()
g

8 Di Lavore, Gianola, Román, Sabadini, Sobociński

Joining resources. In a theory of processes, resources can be joined. Given a
resource type A and a resource type B, we can construct the joint resource type
A⊗B, which puts together resources of type A and type B. Resource joining may
be implemented in diverse ways, depending on the theory of processes. However,
it must satisfy some basic axioms:

• joining three process resource types together can be done in two ways; these
should coincide,

A⊗ (B ⊗ C) = (A⊗B)⊗ C, (1)

=
A

B
C

A
B

C

• there must exist a resource type representing the absence of resources, which
we call the unit resource type I; it must be neutral with respect to process
joining

A⊗ I = A = A⊗ I. (2)

A
I = = A

I

Sequential composition. In a theory of processes, we can compose processes in
two different ways. The first is sequential composition: given two processes such
that the output type of the first coincides with the input type of the second, say
f : A→ B and g : B → C, their sequential composition is the process (f #g) : A→
C that results from executing f and using its output to execute g.

Composing may mean different things in different process theories, but it
must always satisfy the following axioms:

• sequencing together three processes f : A → B, g : B → C and h : C → D
can be done in two different ways, these should coincide,

(f # g) # h = f # (g # h); (3)

f g h f g h=

• there must exist a process representing “doing nothing” with a resource A
that we write as idA – the identity transformation – which must be neutral
with respect to sequential composition,

idA # f = f = f # idB . (4)

f=f =fA BB A B A

We say that a process f : A → B is reversible if it has a reverse counterpart,
f−1 : B → A, such that executing one after the other is the same as having done
nothing, f # f−1 = idA and f−1 # f = idB . This is usually called an isomorphism.
In this situation, we say that A and B are isomorphic, and we write that as
A ∼= B.

Span(Graph): a Canonical Feedback Algebra of Open Transition Systems 9

Parallel composition. The second way of composing two processes is to do so
in parallel. Given any two processes f : A → B and f ′ : A′ → B′, their parallel
composition is a process (f ⊗ f ′) : A ⊗ A′ → B ⊗ B′ that results from jointly
executing both processes over the joint input resource type, so as to produce the
joint output resource type.

The implementation of parallel composition will usually be related to the im-
plementation of resource joining in the same theory. It must satisfy the following
axioms:

• composing three processes in parallel can be done in two ways; these should
coincide,

f ⊗ (g ⊗ h) = (f ⊗ g)⊗ h; (5)

f

g

h

f

g

h

=

• doing nothing with no resources should be the unit for parallel composition;
the identity transformation on the unit resource type I must satisfy

f ⊗ idI = f = idI ⊗ f ; (6)

fA B

I I

= fA B =

fA B

I I

• executing two processes in parallel and then other two processes in parallel
must yield the same result as executing in parallel the sequential composi-
tions of both pairs,

(f ⊗ g) # (h⊗ k) = (f # h)⊗ (g # k). (7)

f

g

h

k

f

g

h

k
=

Swapping. Finally, we want to be able to route resources to each specific process.
Any theory of processes, given any two resource types A and B, must contain
a process σA,B : A ⊗ B → B ⊗ A. This process is called the swap, which only
permutes the order in which resources are organized. It must satisfy the following
axioms.

• Swapping twice is the same as swapping once with a joint type,

σA,B⊗C = (σA,B # idC) # (idB ⊗ σA,C); (8)

10 Di Lavore, Gianola, Román, Sabadini, Sobociński

σA⊗B,C = (idA # σB,C) # (σA,C ⊗ idB). (9)

=

=

• Swapping two process inputs is the same as swapping the executing place
and swapping the output.

(f ⊗ g) # σB,B′ = σA,A′ # (g ⊗ f). (10)

f

g

f

g
=

• Swapping and swapping again is the same as doing nothing.

σA,B # σB,A = idA⊗B . (11)

=

Symmetric monoidal categories. The algebraic structures that capture this no-
tion of process theory are “symmetric monoidal categories” [39]. The resource
types are usually called objects, while the processes are usually called morphisms.
Reversible processes are called isomorphisms.

Definition 2.1. A symmetric monoidal category [39] is a tuple

C = (Cobj,Cmor, (#), id, (⊗)obj, (⊗)mor, I, σ),

specifying a set of objects, or resource types, Cobj; a set of morphisms, or pro-
cesses, Cmor; a composition operation; a family of identity morphisms; a tensor
operation on objects and morphisms; a unit object and a family of swapping
morphisms; satisfying all of the axioms of this section (1-11), possibly up to
reversible coherence isomorphisms of the form,

αA,B,C : (A⊗B)⊗ C → A⊗ (B ⊗ C),

λA : I ⊗A→ A, and

ρA : A⊗ I → A.

Coherence isomorphisms must commute with all suitably typed processes and
must satisfy all possible formal equations between them. We usually denote by
C(A,B) the set of morphisms from A to B.

Span(Graph): a Canonical Feedback Algebra of Open Transition Systems 11

Note that we do allow the axioms to be satisfied up to a reversible coherence
isomorphism. For an example, consider the theory of pure functions between sets
joined by the cartesian product. It is not true that, given three sets A, B and
C, the following two sets are equal, A× (B×C) ∼= (A×B)×C; they are merely
in a one-to-one correspondence. A symmetric monoidal category is strict only if
these reversible transformations are identities. It was proven by MacLane (his
Coherence Theorem, Theorem 2.8 [39]) that the axioms (1-11) are valid for both
strict and non-strict monoidal categories.

Example 2.2. The paradigmatic theory of processes uses mathematical sets as
types and functions as processes. We can check that the following functions,
with the cartesian product, satisfy the axioms (1-11), thus forming a symmetric
monoidal category.

Set = (Sets,Functions, (◦), id,×, 〈•, •〉, 1, (a, (b, c)) 7→ ((a, b), c),

(a, ∗) 7→ a, (∗, a) 7→ a, (a, b) 7→ (b, a)).

Example 2.3. The theory of linear transformations uses dimensions (natural
numbers) as types and matrices over the real numbers as processes. We can
check that matrices, with the direct sum, satisfy the axioms (1-11), thus forming
a symmetric monoidal category.

Mat = (N,Matrices, (·), (+),⊕, 0, I, I, I, I,S),

where I is the identity matrix and S is the permutation matrix,

In =

(
1 ... 0
...

. . .n
...

0 ... 1

)
; Sn,m =

0 ... 0 1 ... 0
...

. . .
...

...
. . .n

...
0 ... 0 0 ... 1
1 ... 0 0 ... 0
...

. . .m
...

...
. . .

...
0 ... 1 0 ... 0

.
Example 2.4. It can happen that two theories of processes share the same ele-
ments, but differ on how they are combined. The theory of choice in finite sets
uses again functions, but instead of the cartesian product, it uses the disjoint
union. We can check that the following functions satisfy again the axioms (1-11).

FinSet = (FinSets,Functions, (◦), id, (+), [•, •], 0, (a|(b|c)) 7→ ((a|b)|c),
(a|∅) 7→ a, (∅|a) 7→ a, (a|b) 7→ (b|a)).

When designing software, the advantage of an algebraic structure such as
monoidal categories is reusability: we can encapsulate the operations of our the-
ory of processes into a separate module, and we can abstractly work with them
without knowing the particulars of the theory of processes at hand. The axioms
(1-11) are straightforward to check for most theories of processes – even if we
will not take the time to do so in this text – but they are a powerful abstraction:
once the axioms are satisfied, we can start reasoning with string diagrams.

12 Di Lavore, Gianola, Román, Sabadini, Sobociński

2.2 Monoidal Equivalence

In this final preliminary section, we recall what it means to have a transforma-
tion between monoidal categories (symmetric strong monoidal functor, Defini-
tion 2.5), what it means to have two equivalent monoidal categories (monoidal
equivalence, Definition 2.7) and the statement of the Coherence Theorem: every
monoidal category is equivalent to a strict one (Theorem 2.8).

Monoidal functors. Every time we consider an algebraic structure, it is natural
to also consider what is a good notion of transformation between two such al-
gebraic structures. A transformation of algebraic structures should preserve the
key ingredients of the algebraic construction. In the case of symmetric monoidal
categories, these transformations are called monoidal functors, and they preserve
the operation of composition.

Definition 2.5. A symmetric strong monoidal functor between two symmetric
monoidal categories with coherence isomorphisms

C = (Cobj,Cmor, (#), id, (⊗)obj, (⊗)mor, I, α
C, λC, ρC, σC), and

D = (Dobj,Dmor, (#), id, (⊗)obj, (⊗)mor, I, α
D, λD, ρD, σD)

is a tuple F = (Fobj, Fmor, φ, ϕ), consisting of

• a function that assigns objects of the first category to objects of the second
category, Fobj : Cobj → Dobj,
• and a function that assigns morphisms of the first category to morphisms of

the second category, Fmor : Cmor → Dmor.
• a coherence isomorphism φA,B : FA⊗ FB → F (A⊗B),
• and a coherence isomorphism ϕ : J → FI.

Traditionally, functions both on objects, Fobj and morphisms, Fmor are denoted
by F . The functor must be such that every morphism f : A → B is assigned
a morphism F (f) : FA → FB, whose source and target are the images of the
original source and target. Moreover, it must satisfy the following axioms,

• compositions must be preserved, F (f # g) = F (f) # F (g),
• identities must be preserved, F (idA) = idFA,
• tensoring must be transported by the natural transformations, meaning that

F (f ⊗ g) = µ # (F (f)⊗ F (g)) # µ−1,

• associators, unitors and swaps must be transported by the natural transfor-
mations, meaning that

F (αC) = µ−1 # (µ−1⊗ id) # αD # (id⊗ µ) # µ,

F (λC) = µ−1 # (ϕ−1⊗ id) # λD,

F (ρC) = µ−1 # (id⊗ ϕ−1) # ρD,

F (σC) = µ−1 # σD # µ.

Span(Graph): a Canonical Feedback Algebra of Open Transition Systems 13

Example 2.6. For instance, there is a strong monoidal functor translating from
the theory of choice in finite sets, FinSet+ (Example 2.4), to the theory of linear
transformations Mat (Example 2.3) that sends the finite sets A = {a0, . . . , an−1}
and B = {b0, . . . , bm−1} to their cardinalities, n and m; and each function
f : A → B to the matrix Fij : n → m that contains a 1 on the entry Fij when
f(ai) = bj , and contains a 0 otherwise.

Definition 2.7. A monoidal equivalence of categories is a symmetric strong
monoidal functor F : C→ D that is

1. essentially surjective on objects, meaning that for each X ∈ Dobj, there exists
A ∈ Cobj such that F (A) ∼= X;

2. essentially injective on objects, meaning that F (A) ∼= F (B) implies A ∼= B;
it can be proven that every monoidal functor is essentially injective, so this
condition, though conceptually important, is superfluous;

3. surjective on morphisms, or full, meaning that for each g : FA→ FB there
exists some f : A→ B such that F (f) = g;

4. injective on morphisms, or faithful, meaning that given any two morphisms
f : A→ B and g : A→ B such that F (f) = F (g), it holds that f = g.

In this situation, we say that C and D are equivalent, and we write that as
C ∼= D. Moreover, when the monoidal functor is injective and surjective on
objects, we say that C and D are isomorphic.

Theorem 2.8 (Coherence theorem, [39, Theorem 2.1, Chapter VII]).
Every monoidal category is monoidally equivalent to a strict monoidal category.

Let us comment further on how we use the coherence theorem. Each time we
have a morphism f : A → B in a monoidal category, we have a corresponding
morphismA→ B in its strictification. This morphism can be lifted to the original
category to uniquely produce, say, a morphism (λA # f # λB

−1) : I ⊗ A→ I ⊗B.
Each time the source and the target are clearly determined, we simply write f
again for this new morphism.

The reason to avoid this explicit notation on our definitions and proofs is
that it would quickly become verbose and distractive. Equations seem concep-
tually easier to understand when written assuming the coherence theorem – and
they become even clearer when drawn as string diagrams, which implicitly hide
these bureaucratic isomorphisms. In fact, in the work of Katis, Sabadini and
Walters [35], strictness is assumed from the start for the sake of readibility, even
though—as argued above—it is not a necessary assumption.

Theorem 2.8 and Section 2.1 can be summarized by the slogan:

“Any theory of processes satisfying the axioms of symmetric monoidal
categories (1-11) can be reasoned about using string diagrams”.

14 Di Lavore, Gianola, Román, Sabadini, Sobociński

3 Feedback Categories

In this section we recall feedback categories, originally introduced in [35], and
contrast them with the stronger notion of traced monoidal categories in Sec-
tion 3.2. We discuss the relationship between feedback and delay in Section 3.3.
Next, we recall the construction of the free feedback category in Section 3.4, and
give examples in Section 3.5.

3.1 Feedback Categories

Feedback categories [35] were motivated by examples such as Elgot automata [18],
iteration theories [6] and continuous dynamical systems [33]. These categories
feature a feedback operator , fbk(•), which takes a morphism S⊗A→ S⊗B and
“feeds back” one of its outputs to one of its inputs of the same type, yielding
a morphism A → B (Figure 4, left). When using string diagrams, we depict
the action of the feedback operator as a loop with a double arrowtip (Figure 4,
right): string diagrams must be acyclic, and so the feedback operator cannot be
confused with a normal wire.

f : S ⊗A→ S ⊗B
fbkS(f) : A→ B f

A B

S

Fig. 4: Type and graphical notation for the operator fbkS(•).

Capturing a reasonable notion of feedback requires the operator to interact
coherently with the flow imposed by the structure of a symmetric monoidal
category. This interaction is expressed by a few straightforward axioms, which
we list below.

Definition 3.1. A feedback category [35] is a symmetric monoidal category C
endowed with an operator fbkS : C(S⊗A,S⊗B)→ C(A,B), which satisfies the
following axioms (A1-A5, see also Figure 5).

(A1). Tightening. Feedback must be natural in A,B ∈ C, its input and output.
This is to say that for every morphism f : S ⊗ A → S ⊗ B and every
pair of morphisms u : A′ → A and v : B → B′,

u # fbkS(f) # v = fbkS((id⊗ u) # f # (id⊗ v)).

(A2). Vanishing. Feedback on the empty tensor product, the unit, does nothing.
That is to say that, for every f : A→ B,

fbkI(f) = f.

(A3). Joining. Feedback on a monoidal pair is the same as two consecutive
applications of feedback. That is to say that, for every morphism f : S⊗
T ⊗A→ S ⊗ T ⊗B,

fbkT (fbkS(f)) = fbkS⊗T (f).

Span(Graph): a Canonical Feedback Algebra of Open Transition Systems 15

(A4). Strength. Feedback has the same result if it is taken in parallel with
another morphism. That is to say that, for every morphism f : S⊗A→
S ⊗B and every morphism g : A′ → B′,

fbkS(f)⊗ g = fbkS(f ⊗ g).

(A5). Sliding. Feedback is invariant to applying an isomorphism “just before”
or “just after” the feedback. In other words, feedback is dinatural over the
isomorphisms of the category. That is to say that for every f : T ⊗A→
S ⊗B and every isomorphism h : S → T ,

fbkT (f # (h⊗ id)) = fbkS((h⊗ id) # f).

f
A B

S

u
A′

v
B′

(A1)
= f

A B

S

u
A′

v
B′

f
A B

I

(A2)
= f

A B

f
A B

S

T

(A3)
= f

A B

S ⊗ T
f

A B

S

g
A′ B′

(A4)
=

f

A B

S

g
A′ B′

f
A B

T

h (A5)
= f

A B

S

h
(h isomorphism)

Fig. 5: Diagrammatic depiction of the axioms of feedback.

The natural notion of homomorphism between feedback categories is that of
a symmetric monoidal functor that moreover preserves the feedback structure.
These are called feedback functors.

Definition 3.2. A feedback functor F : C→ D between two feedback categories
(C, fbkC) and (D, fbkD) is a strong symmetric monoidal functor such that feed-
back is transported, that is,

F (fbkCS (f)) = fbkDF (S)(µ # Ff # µ−1),

where µA,B : F (A)⊗F (B)→ F (A⊗B) is the isomorphism of the strong monoidal
functor F . We write Feedback for the category of (small) feedback categories and
feedback functors. There is a forgetful functor U : Feedback→ SymMon.

16 Di Lavore, Gianola, Román, Sabadini, Sobociński

Remark 3.3. Thanks to the coherence theorem (Theorem 2.8), we can present
the axioms of a feedback category as in Definition 3.1, omitting associators and
unitors. In fact, to be explicit, the statement of the vanishing axiom is

fbkI(λA # f # λB
−1) = f

because the feedback operator, fbkI , needs to be applied to a morphism I ⊗
A → I ⊗ B, and the only morphism whose strictification has type A → B is
(λA # f # λB

−1) : I ⊗ A → I ⊗ B (see Theorem 2.8). Similarly, the joining axiom
really states that

fbkS(fbkT (f)) = fbkS⊗T (αS,T,A # f # α−1S,T,B).

Remark 3.4. Our feedback operator takes a morphism S ⊗A→ S ⊗B with the
first component S of the tensor in both the domain and the codomain being the
object “fed back”. Given that S appears in the first position in both the domain
and the codomain, we refer to this as aligned feedback.

An alternative definition is possible, and appears in the exposition of traces
by Ponto and Shulman [44]. We call this twisted feedback : here fbk(•) is an
operator that takes a morphism S ⊗ A→ B ⊗ S—note the position of S in the
codomain—and yields a morphism A→ B.

f : S ⊗A→ B ⊗ S
fbkS(f) : A→ B

The advantage of using twisted feedback is that sequential composition of pro-
cesses with feedback does not require symmetry of the underlying monoidal cat-
egory (see [31], where the authors consider a category with twisted feedback).
However, parallel composition does require symmetry. Given that we study the
monoidal category of feedback processes, and aligned feedback diagrams are
more readable, we use only aligned feedback in this paper.

f f

Fig. 6: Twisted vs. aligned feedback

3.2 Traced Monoidal Categories

Feedback categories are a weakening of traced monoidal categories, which have
found several applications in computer science. Indeed, since their conception [29]
as an abstraction of the trace of a matrix in linear algebra, they were used in
linear logic and geometry of interaction [1,23,24], programming language seman-
tics [26], semantics of recursion [2] and fixed point operators [27,5].

Span(Graph): a Canonical Feedback Algebra of Open Transition Systems 17

Between feedback categories and traced monoidal categories there is an inter-
mediate notion called right traced category [49]. Here, the sliding axiom applies
not only to isomorphisms but rather to arbitrary morphisms. This strength-
ening is already unsuitable for our purposes (see Remark 3.12). However, the
difference in the sliding axiom is not dramatic: we will generalize the notion of
feedback category to allow the choice of morphisms that can be “slid” through
the feedback loop (Section 5). For example, it is possible to require the sliding
axiom for all the morphisms, as in the case of right traced categories, or just
isomorphisms, as in the case of feedback categories. The more serious concep-
tual difference between feedback categories and traced monoidal categories is
the “yanking axiom” of traced monoidal categories (in Figure 7). The yanking
axiom is incontestably elegant from the geometrical point of view: strings are
“pulled”, and feedback (the loop with two arrowtips) disappears.

=

Fig. 7: The yanking axiom.

Strengthening the sliding axiom and adding the yanking axiom yields the
definition of traced monoidal category.

Definition 3.5. A traced monoidal category [29,49] is a feedback category that
additionally satisfies the yanking axiom fbk(σ) = id and the sliding axiom,
fbkT (f # (h⊗ id)) = fbkS((h⊗ id) # f), for an arbitrary morphism h : S → T . We
commonly denote by tr(•) the feedback operator of a traced monoidal category.

Fig. 8: Diagram for the NOR latch, modeled with a trace in Span(Graph).

There is scope for questioning the validity of the yanking axiom in many
applications that feature feedback. If feedback can disappear without leaving
any imprint, that must mean that it is instantaneous: its output necessarily
mirrors its input.5 Importantly for our purposes, this implies that a feedback
satisfying the yanking equation is “memoryless”, or “stateless”.

5 In other words, traces are used to talk about processes in equilibrium, processes that
have reached a fixed point. A theorem by Hasegawa [27] and Hyland [5] corroborates
this interpretation: a trace in a cartesian category corresponds to a fixpoint operator.

18 Di Lavore, Gianola, Román, Sabadini, Sobociński

In engineering and computer science, instantaneous feedback is actually a
rare concept; a more common notion is that of guarded feedback. Consider signal
flow graphs [50,40]: their categorical interpretation in [8] models feedback not
by the usual trace, but by a trace “guarded by a register”, that delays the signal
and violates the yanking axiom (see Remark 7.8 op.cit.).

Example 3.6. Let us return to our running example of the NOR latch from Fig-
ure 1. We have seen how to model NOR gates in Span(Graph) in Figure 2,
and the algebra of Span(Graph) does include a trace. However, imitating the
real-world behavior of the NOR latch with just a trace is unsatisfactory: the
trace of Span(Graph) is built out of stateless components, and tracing state-
less components yields a stateless component (see Figure 8, later detailed in
Section 4.2).

3.3 Delay and Feedback

As we have discussed previously, the major conceptual difference between feed-
back categories and traced monoidal categories is the rejection of the yanking
axiom. Indeed, a non-trivial delay is what sets apart feedback categories from
traced monoidal categories.

We can isolate the delay component in a feedback category. Consider the
process that only “feeds back” the input to itself and then just outputs that
“fed back” input. The process interpretation of monoidal categories (Section 2.1)
allows us to understand this process as delaying its input and returning it as
output [16]. This process, ∂A := fbkA(σA,A), is called the delay endomorphism
and is illustrated in Figure 9.

:=∂

Fig. 9: Definition of delay.

If a category has enough structure, feedback can be understood as the com-
bination of trace and delay in a formal sense. Compact closed categories are
traced monoidal categories where every object A has a dual A? and the trace is
constructed from two pieces ε : A⊗A? → I and η : I → A?⊗A. While not every
traced monoidal category is compact closed, they all embed fully faithfully into
a compact closed category.6 In a compact closed category, a feedback operator
is necessarily a trace “guarded” by a delay.

Proposition 3.7 (Feedback from delay [7]). Let C be a compact closed
category with fbkC a feedback operator that takes a morphism S⊗A→ S⊗B to
a morphism A→ B, satisfying the axioms of feedback (in Figure 5) but possibly

6 This is the Int construction from Joyal, Street and Verity [29].

Span(Graph): a Canonical Feedback Algebra of Open Transition Systems 19

∂

∂

Fig. 10: NOR latch with feedback.

failing to satisfy the yanking axiom (Figure 7) of traced monoidal categories.
Then, the feedback operator is necessarily of the form

fbkCS (f) := (η ⊗ id) # (id⊗ f) # (id⊗ ∂S ⊗ id) # (ε⊗ id)

where ∂A : A→ A is a family of endomorphisms satisfying

• ∂A ⊗ ∂B = ∂A⊗B and ∂I = id, and
• ∂A # h = h # ∂B for each isomorphism h : A ∼= B.

In fact, any family of morphisms ∂A satisfying these properties determines uniquely
a feedback operator that has ∂A as its delay endomorphisms.

f
A B

S

∂

Fig. 11: Feedback from delay.

Proof. Given a family ∂S satisfying the two properties, we can define a feedback
structure, shown in Figure 11, to be fbkCS (f) := (η⊗ id) # (id⊗f) # (id⊗∂S ⊗ id) #
(ε ⊗ id) and check that it satisfies all the axioms of feedback (Figure 5). Note
here that, as expected, the yanking equation is satisfied precisely when delay
endomorphisms are identities, ∂A = idA.

Let us now show that any feedback operator in a compact closed category is
of this form (Figure 12). Indeed,

fbkCS (f) = fbkCS ((id⊗ η ⊗ η ⊗ id) # (σ ⊗ σ ⊗ f) # (id⊗ ε⊗ ε⊗ id))

= (id⊗ η ⊗ η ⊗ id) # (fbkCS (σ)⊗ σ ⊗ f) # (id⊗ ε⊗ ε⊗ id)

= (η ⊗ id) # (id⊗ f) # (id⊗ fbkCS (σ)⊗ id) # (ε⊗ id).

Here we have used the fact that the trace is constructed by two separate
pieces: ε and η; and then the fact that the feedback operator, like trace, can be
applied “locally” (see the axioms in Figure 5).

Example 3.8. Consider again the NOR latch of Figure 1. The algebra of the
category Span(Graph) does include a feedback operator that is not a trace –
the difference is an additional stateful delay component. As we shall see, this
notion of feedback is canonical. We shall also see that the delay enables us to
capture the real-world behavior of the NOR latch (Figure 10).

20 Di Lavore, Gianola, Román, Sabadini, Sobociński

f

A B

S

AB

S

A B

f

S

f= =

A B

f

∂

= f
A B

S

∂=

Fig. 12: Feedback in a compact closed category.

The emergence of state from feedback is witnessed by the St(•) construction,
which we recall below.

3.4 St(•), the Free Feedback Category

Here we show how to obtain the free feedback category on a symmetric monoidal
category. The St(•) construction is a general way of endowing a system with
state. It appears multiple times in the literature in slightly different forms: it is
used to arrive at a stateful resource calculus in [7]; a variant is used for geometry
of interaction in [28]; it coincides with the free feedback category presented
in [35]; and yet another, slightly different formulation was given in [31].

Definition 3.9 (Category of stateful processes, [35]). Let (C,⊗, I) be a
symmetric monoidal category. We write St(C) for the category with the objects
of C but where morphisms A→ B are pairs (S | f), consisting of a state space
S ∈ C and a morphism f : S ⊗ A → S ⊗ B. We consider morphisms up to
isomorphism classes of their state space, and thus

(S | f) = (T | (h−1 ⊗ id) # f # (h⊗ id)), for any isomorphism h : S ∼= T.

When depicting a stateful process (Figure 13), we mark the state strings.

f
A

S

B

= f
A

T

B

h−1 h

Fig. 13: Equivalence of stateful processes. We depict stateful processes by mark-
ing the space state.

We define the identity stateful process on A ∈ C as (I | idI⊗A). Sequential
composition of the two stateful processes (S | f) : A→ B and (T | g) : B → C is
defined by (S | f) # (T | g) = (S ⊗ T | (σ ⊗ id) # (id⊗ f) # (σ ⊗ id) # (id⊗ g)), see
Figure 14, left. Parallel composition of the two stateful processes (S | f) : A→ B
and (S′ | f ′) : A′ → B′ is defined by (S | f)⊗ (S′ | f ′) = (S ⊗ S′ | (id⊗ σ ⊗ id) #
(f ⊗ f ′) # (id ⊗ σ ⊗ id)), see Figure 14, right. In both cases, the state spaces of
the components are tensored together.

Span(Graph): a Canonical Feedback Algebra of Open Transition Systems 21

f
A B

g

C

T

S f

A

S

Bf ′

A′ B′

S′

Fig. 14: Sequential and parallel composition of stateful processes.

This defines a symmetric monoidal category. Moreover, the operator

storeT (S | f) := (S ⊗ T | f), for f : S ⊗ T ⊗A→ S ⊗ T ⊗B,

which “stores” some information into the state, makes it a feedback category,
see Figure 15.

storeT

 f

A

S

B

T

 = f

A

S

B

T

Fig. 15: The store(•) operation, diagrammatically.

Proposition 3.10. Sequential composition of stateful processes is associative.
That is, for every f : S ⊗ A → S ⊗ B, every g : T ⊗ B → T ⊗ C and every
h : R⊗ C → R⊗D,

((S | f) # (T | g)) # (R | h) = (S | f) # ((T | g) # (R | h)).

Proof. We can see both morphisms are equal by applying transformations of
string diagrams: i.e. the axioms of symmetric monoidal categories (Figure 16).

f

A B

g

C

R h

D

T

S

f

A B

g

C

R h

D

T

S

Fig. 16: Associativity of sequential composition.

22 Di Lavore, Gianola, Román, Sabadini, Sobociński

The state spaces are isomorphic thanks to the associator α : (S ⊗ T)⊗R→
S ⊗ (T ⊗R).

Unitality and monoidality of stateful processes follow a similar reasoning.
These properties yield the following result.

Theorem 3.11 ([35], Proposition 2.6). The category St(C), endowed with
the store(•) operator, is the free feedback category over a symmetric monoidal
category C.

Remark 3.12. Stateful processes are defined up to isomorphism of the state
space. This is captured by axiom (A5) of feedback categories and, as mentioned
in Section 3.2, relaxing it to allow sliding of arbitrary morphisms, would yield a
notion of equality of stateful processes that would be too strong for our purposes:
it would equate automata with a different number of states and boundary be-
havior (Example 4.14). Considering stronger notions of equivalence of processes
is possible and leads to interesting models of computation [16]. Expanding this
line of research is outside the scope of the present manuscript.

Remark 3.13 (Coherence and sliding). There are cases where we do need to be
careful about the correct use of associators and unitors. For instance, we could be
tempted to conclude that coherence implies that, for any f : ((S⊗T)⊗R)⊗A→
((S⊗T)⊗R)⊗B, the following equation holds ((S⊗T)⊗R | f) = (S⊗(T⊗R) | f)
without needing to invoke the equivalence relation of stateful processes. This
would allow us to construct the category St(•) of stateful processes without
having to quotient them by the equivalence relation. However, this equality is
only enabled by the fact that αS,T,R is an isomorphism: we have

((S ⊗ T)⊗R | f) = (S ⊗ (T ⊗R) | αS,R,T # f # α−1S,R,T),

even if we write the equation omitting the coherence maps. This is also what
will allow us to notate stateful processes diagramatically. We will mark the wires
forming the state space; the order in which they are tensored does not matter
thanks again to the equivalence relation that we are imposing.

3.5 Examples

All traced monoidal categories are feedback categories, since the axioms of feed-
back are a strict weakening of the axioms of trace. A more interesting source of
examples is the St(•) construction we just defined. We present some examples
of state constructions below.

Example 3.14 (Mealy transition systems). A Mealy deterministic transition sys-
tem with boundaries A and B, and state space S was defined [41, §2.1] to be
just a function f : S × A → S × B. It is not difficult to see that, up to isomor-
phism of the state space, they are morphisms of St(Set). They compose following
Definition 3.9, and form a feedback category Mealy := St(Set).

Span(Graph): a Canonical Feedback Algebra of Open Transition Systems 23

Definition 3.15. A Mealy transition system from A to B is a tuple M =
(S, t, o), where S is a set called the state space, t : S × A → S is a function
called the transition function, and o : S×A→ B is a function called the output
function.

Two Mealy transition systems are equal whenever their transition functions
are equal up to isomorphism of the state space. That is, two deterministic tran-
sition systems M = (S, tM , oM) and N = (T, tN , oN) are considered equal when-
ever there exists an isomorphism h : S ∼= T between their state spaces such that

h(tM (s, a)) = tN (h(s), a) and oM (s, a) = oN (s, a).

Whenever t(s0, a) = s1 and o(s0, a) = b, we write s0
a/b→ s1. We may also

write a transition and output in a single function, f(s0, a) = (t(s0, a), o(s0, a)) =
(s1, b).

The feedback of Mealy transition systems transforms input/output pairs
into states. Figure 17 is an example: a transition system with a single state
becomes a transition system with two states, {s1, s0}. We compute this feedback
by transforming each transition (si, i/so) into a transition (i/) from si to so.

fbk

0, 1/1 1, 0/0

1, 1/1

0, 0/0

 =

0/ 0/ 1/

1/

Fig. 17: Feedback of a Mealy transition system. Every transition has a label i/o
indicating inputs (i) and outputs (o).

Example 3.16 (Elgot automata). Similarly, when we consider Set with the mo-
noidal structure given by the disjoint union, we recover Elgot automata [18],
which are given by a transition function S + A → S + B. These transition
systems motivate the work of Katis, Sabadini and Walters in [31,35].

Definition 3.17. An Elgot transition system with initial states in A and final
states in B is a tuple E = (S, p, d) where S is a set called the state space,
p : A → S + B is a function called initial step and d : S → S + B is a function
called iterative step.

An Elgot transition system is interpreted as follows. We start by providing
an initial state A. We then compute the initial step p(a) which can result either
in an internal state p(a) = s ∈ S or in a final state p(a) = b ∈ B. In the later
case, we are done and we return b ∈ B; in the former case, we repeatedly apply
the iterative step: d(p(a)), d(d(p(a))), . . . until we reach a final state.

Example 3.18 (Linear dynamical systems). A linear dynamical system with in-
puts in Rn, outputs in Rm and state space Rk is given by a number k, represent-

24 Di Lavore, Gianola, Román, Sabadini, Sobociński

ing the dimension of the state space, and a matrix over the real numbers [30](
A B
C D

)
∈Mat(k +m, k + n).

Two linear dynamical systems,(
A B
C D

)
and

(
A′ B′

C ′ D

)
,

are considered equivalent if there is an invertible matrix H ∈ Mat(k, k) such
that A′ = H−1AH, B′ = BH, and C ′ = H−1C.

Linear dynamical systems are morphisms of a feedback category which co-
incides with St(Mat), the free feedback category over the category of matrices
Mat as defined in Example 2.3. The feedback operator is defined by

fbkl

k,
A1 A2 B1

A3 A4 B2

C1 C2 D

 =

k + l,

A1 A2 B1

A3 A4 B2

C1 C2 D

 ,

where

(
A1 A2 B1

A3 A4 B2

C1 C2 D

)
∈Mat(k + l +m, k + l + n).

Span(Graph): a Canonical Feedback Algebra of Open Transition Systems 25

4 Span(Graph): an Algebra of Transition Systems

Span(Graph) [32] is an algebra of “open transition systems”. It has appli-
cations in concurrency theory and verification [31,32,34,36,22], and has been
recently applied to biological systems [20,21]. Just as ordinary Petri nets have
an underlying (firing) semantics in terms of transition systems, Span(Graph)
is used as a semantic universe for a variant of open Petri nets, see [52,9].

An open transition system is a morphism of Span(Graph): a transition
graph endowed with two boundaries or communication ports. Each transition has
an effect on each boundary, and this data is used for synchronization. This con-
ceptual picture actually describes a subcategory, Span(Graph)∗, where bound-
aries are mere sets: the alphabets of synchronization signals. We shall recall the
details of Span(Graph)∗ and prove that it is universal, our main result:

Span(Graph)∗ is the free feedback category over Span(Set).

4.1 The Algebra of Spans

Definition 4.1. A span [4,10] from A to B, both objects of a category C, is a
pair of morphisms with a common domain,

A
f←− E g−→ B.

The object E is the “head” of the span, and the morphisms f : E → A and
g : E → B are the left and right “legs”, respectively.

When the category C has pullbacks, we can sequentially compose two spans
A ← E → B and B ← F → C obtaining A ← E ×B F → C. Here, E ×B F is
the pullback of E and F along B: for instance, in Set, E ×B F is the subset of
E × F given by pairs that have the same image in B.

Remark 4.2 (Notation for spans). We denote a span A
f← X

g→ B in C as

{f(x); g(x)}x∈X ∈ Span(A,B),

where x : U → X, for some object U of C, can be thought of as some generalized
element that we compose with the two legs: e.g. in the category of sets, when
U = 1, elements of a set X can be seen as functions x : 1→ X. Sometimes, these
generalized elements will come with conditions that must be listed with the
morphism set. For instance, in Figure 18, a composition of spans has a pullback
as its head, so any generalized element of its head is now a pair of morphisms
x : U → X and y : U → Y satisfying the extra condition g(x) = h(y):

{f(x); g(x)}x # {h(y); k(y)}y = {f(x); k(y)}g(x)=h(y)
x,y .

26 Di Lavore, Gianola, Román, Sabadini, Sobociński

X ×B Y

X Y

A B C

πYπX

gf kh

Fig. 18: Composition of spans.

In other words, we are saying that the set of generalized elements of the head
of the span is {x, y | g(x) = h(y)}. The advantage of this notation is that we can
reason in any category with finite limits as we do in the category of sets: using
elements. Whenever two sets of generalized elements of the head of a span are
isomorphic, the Yoneda lemma [39] provides an isomorphism between the heads.
That isomorphism makes the two spans equivalent when it commutes with the
two legs.

Definition 4.3. Let C be a category with pullbacks. Span(C) is the category
that has the same objects as C and isomorphism classes of spans between them as
morphisms. That is, two spans are considered equal if there is an isomorphism
between their heads that commutes with both legs. Dually, if C is a category with
pushouts, Cospan(C) is the category Span(Cop).

Span(C) is a symmetric monoidal category when C has products. The par-
allel composition of {f1(x); g1(x)}x∈X ∈ Span(A1, B1) and {f2(y); g2(y)}y∈Y ∈
Span(A2, B2) is given by the componentwise product

{(f1(x), f2(y)); (g1(x), g2(y))}x∈X,y∈Y ∈ Span(A1 ×A2, B1 ×B2).

An example is again Span(Set).

Remark 4.4 (Variable change). We will be considering spans “up to isomorphism
of their head”. This means that, given any isomorphism φ : X → Y , the following
two spans are considered equal

{f(φ(x)); g(φ(x))}x∈X = {f(y); g(y)}y∈Y .

Moreover, if two spans are equal, then such a variable change does necessarily
exist.

Example 4.5. Let us now detail some useful constants of the algebra of Span(C),
which we will use to construct the NOR latch circuit from Figure 10.

The Frobenius algebra [10] (, , ,) is used for the “wiring”. The
following spans are constructed out of diagonals A→ A×A and units A→ 1.

()A = {a; (a, a)}a∈A ∈ Span(A,A×A) ()A = {a; ∗}a ∈ Span(A, 1)

()A = {(a, a); a}a∈A ∈ Span(A×A,A) ()A = {∗; a}a ∈ Span(1, A)

Span(Graph): a Canonical Feedback Algebra of Open Transition Systems 27

These induce a compact closed structure (and thus a trace), as follows:

()A = {∗; (a, a)}a∈A ∈ Span(1, A×A)

()A = {(a, a); ∗}a∈A ∈ Span(A×A, 1).

Finally, we have a braiding making the category symmetric,

() = {(a, b); (b, a)}a∈A,b∈B ∈ Span(A×B,B ×A).

In general, any function f : A → B can be lifted to a span {a; f(a)}a∈A ∈
Span(A,B) covariantly, and to a span {f(a); a}a∈A ∈ Span(B,A), contravari-
antly.

4.2 The Algebra of Open Transition Systems

Definition 4.6. The category Graph has graphs G = (s, t : E ⇒ V) as objects,
i.e. pairs of morphisms from edges to vertices returning the source and target of
each edge. A morphism of graphs (e, v) : G→ G′ is given by functions e : E → E′

and v : V → V ′ such that e # s′ = s # v and e # t′ = t # v (see Figure 19)7.

E E′

V V ′

e

ts t′s′

v

Fig. 19: Morphism of graphs.

We now focus on Span(Graph)∗, those spans of graphs that have single
vertex graphs (A⇒ 1) as the boundaries.

Definition 4.7. An open transition system is a morphism of Span(Graph)∗:
a span of sets {f(e); g(e)}e∈E ∈ Span(A,B) where the head is the set of edges
of a graph s, t : E ⇒ V , i.e. the transitions (see Figure 20). Two open transition
systems are considered equal if there is an isomorphism between their graphs
that commutes with the legs. Open transition systems whose graph E ⇒ 1 has a
single vertex are called stateless.

A E B

1 V 1

ts

f g

Fig. 20: A morphism of Span(Graph)∗.

7 Equivalently, Graph is the presheaf category on the diagram (• ⇒ •), i.e. the
category of functors (•⇒ •)→ Set and natural transformations between them.

28 Di Lavore, Gianola, Román, Sabadini, Sobociński

Sequential composition (the communicating-parallel operation of [32]) of two
open transition systems with spans

{f(e); g(e)}e∈E ∈ Span(A,B) and {h(e′); k(e′)}e′∈E′ ∈ Span(B,C)

and graphs s, t : E ⇒ S and s′, t′ : E′ ⇒ S′ yields the open transition system
with the composite span

{f(e); k(e′)}g(e)=h(e′)
(e,e′)∈E×E′ ∈ Span(A,C)

and graph (s× s′, t× t′) : E ×B E
′ ⇒ S × S′. This means that the only allowed

transitions are those that synchronize E and E′ on the common boundary B.

Parallel composition (the non communicating-parallel operation of [32]) of
two open transition systems with spans

{f(e); g(e)}e∈E ∈ Span(A,B) and {f ′(e′); g′(e′)}e′∈E′ ∈ Span(A′, B′)

and graphs s, t : E ⇒ V and s′, t′ : E′ ⇒ V ′ yields the open transition system
with span

{(f(e), f ′(e′)); (g(e), g(e′))}e,e′∈E×E′ ∈ Span(A×A′, B ×B′)

and graph (s× s′, t× t′) : E × E′ ⇒ V × V ′.

Remark 4.8 (Components of Span(Graph)∗). Any span in Span(A,B) can be
lifted to Span(Graph)∗(A,B) by making the head represent the graph E ⇒ 1.
Apart from the components lifted from Span, which we call stateless, we will
need to add a single stateful component to model all of Span(Graph)∗: the
delay in Figure 21.

1,0

0,1

0,0

1,1

B B

Fig. 21: Delay morphism over the set B := {0, 1}.

The delay (∂ A) on a given set A is given by the span {a2; a1}a1,a2∈A×A ∈
Span(A,A) together with the graph π1, π2 : A×A→ A. This is to say that the
delay receives on the left what the target of its transition (its next state) will be,
while signalling on the right what the source of its transition (its current state)
is. This is not an arbitrary choice: it is defined as the canonical delay obtained
from the feedback structure in Span(Graph)∗ (as in Section 3, ∂A = fbk(σA,A)).

(∂)A = fbk({(a1, a2); (a2, a1)}a1,a2).

Span(Graph): a Canonical Feedback Algebra of Open Transition Systems 29

We can use this delay to correctly model a stateful NOR latch from the
function NOR : B× B→ B (as we saw in Figure 2).

∂

∂

Fig. 22: Decomposing the circuit.

The NOR latch circuit of Figure 10 is the composition of two NOR gates
where the outputs of each gate have been copied and fed back as input to the
other gate. The algebraic expression, in Span(Graph)∗, of this circuit is ob-
tained by decomposing it into its components, as in Figure 22.

(id⊗ ⊗ ⊗ id) # (NOR⊗ σ ⊗ NOR) # (⊗ id⊗)

(id⊗ ∂ ⊗ id⊗ ∂ ⊗ id) # (id⊗ ⊗ ⊗ id)

The graph obtained from computing this expression, together with its tran-
sitions, is shown in Figure 23. This time, our model is indeed stateful. It has
four states: two states representing a correctly stored signal, A = (1, 0) and
A = (0, 1); and two states representing transitory configurations T1 = (0, 0) and
T2 = (1, 1).

•

•A

•A

• T2
T1

Idle

Set

Reset

Set

Unspec

Reset

Unspec

Idle

Set

Unspec

Reset

Unspec

Idle

Reset

Idle

Set

Fig. 23: Span of graphs representing the NOR latch

The left boundary can receive a set signal, Set =
(
1
0

)
; a reset signal, Reset =(

0
1

)
; none of the two, Idle =

(
0
0

)
; or both of them at the same time, Unspec =

(
1
1

)
,

which is known to cause unspecified behavior in a NOR latch. The signal on the
right boundary, on the other hand, is always equal to the state the transition goes
to and does not provide any additional information: we omit it from Figure 23.

30 Di Lavore, Gianola, Román, Sabadini, Sobociński

fbkB×B

 6= trB×B

Fig. 24: Applying fbk(•) over the circuit gives the NOR latch.

Activating the signal Set makes the latch reach the state A in (at most) two
transition steps. Activating Reset does the same for A. After any of these two
cases, deactivating all signals, Idle, keeps the last state.

Moreover, the (real-world) NOR latch has some unspecified behavior that
gets also reflected in the graph: activating both Set and Reset at the same time,
what we call Unspec, causes the circuit to enter an unstable state where it
bounces between the states T1 and T2 after an Idle signal. Our modeling has
reflected this “unspecified behavior” as expected.

Feedback and trace. In terms of feedback, the circuit of Figure 23 is equiva-
lently obtained as the result of taking feedback over the stateless morphism in
Figure 24.

But Span(Graph)∗ is also canonically traced: it is actually compact closed.
What changes in the modeling if we would have used the trace instead? As we
argued for Figure 8, we obtain a stateless transition system. The valid transitions
are

{(Unspec,T1), (Idle,A), (Idle,A), (Set,A), (Reset,A)}.
They encode important information: they are the equilibrium states of the cir-
cuit. However, unlike the previous graph, this one would not get us the correct
allowed transitions: under this modeling, our circuit could freely bounce between
(Idle,A) and (Idle,A), which is not the expected behavior of a NOR latch.

The fundamental piece making our modeling succeed the previous time was
feedback with delay. Next we show that this feedback is canonical.

4.3 Span(Graph) as a Feedback Category

This section presents our main theorem. We introduce a mapping that associates
to each stateful span of sets a corresponding span of graphs. This mapping is
well-defined and lifts to a functor St(Span(Set))→ Span(Graph). Finally, we
prove that it is an isomorphism St(Span(Set)) ∼= Span(Graph)∗.

First of all, we need to be able to explicitly compute the composition of
stateful spans, following the composition of stateful morphisms in Definition 3.9.
This is Proposition 4.9. Then, we will characterize isomorphisms in the category
of spans in Proposition 4.10.

Proposition 4.9. Let C be a category with finite limits. Consider two stateful
spans in the category St(Span(C)),

{(σ(x), f(x)); (σ′(x), g(x))}x∈X ∈ Span(S ×A,S ×B),

Span(Graph): a Canonical Feedback Algebra of Open Transition Systems 31

{(τ(y), h(y)); (τ ′(y), k(y))}y∈Y ∈ Span(T ×B, T × C).

their composition is then given by the span

{(σ(x), τ(y), f(x)); (σ′(x), τ ′(y), k(y))}g(x)=h(y)
(x,y)∈X×Y ∈ Span(S×T ×A,S×T ×B),

where the head is X ×B Y , the pullback of g and h.

Proof. Using the notation for spans, we apply the definition of sequential com-
position in a category of stateful processes (Definition 3.9).

({(s, t); (t, s)}s,t ⊗ {a; a}a) # ({t; t}t ⊗ {(σ(x), f(x)); (σ′(x), g(x))}x)

({(t, s); (s, t)}s,t ⊗ {b; b}b) # ({s; s}s ⊗ {(τ(y), h(y)); (τ ′(y), k(y))}y)

= (Computing tensors)

{(s, t, a); (t, s, a)}s,t,a # {(t, σ(x), f(x)); (t, σ′(x), g(x))}t,x
{(t, s, b); (s, t, b)}s,t,b # {(s, τ(y), h(y)); (s, τ ′(y), k(y))}s,y

= (Computing compositions)

{(σ(x), t, f(x)); (t, σ′(x), g(x))}t,x # {(τ(y), s, h(y)); (s, τ ′(y), k(y))}s,y
= (Computing compositions)

{(σ(x), τ(y), f(x)); (σ′(x), τ ′(y), k(y))}g(x)=h(y)
x,y .

This last formula corresponds indeed to the pullback we stated.

Proposition 4.10. Let C be a category with all finite limits. An isomorphism
A ∼= B in its category of spans, Span(C), is always of the form

{a;φ(a)}a∈A ∈ Span(C)(A,B),

where the left leg is an identity and the right leg φ : A → B is an isomorphism
in the base category C.

Proof. Let {f(x); g(x)}x∈X ∈ Span(A,B) and {h(y); k(y)}y∈Y ∈ Span(B,A)
be mutual inverses. This means that

{f(x); g(x)}x∈X # {h(y); k(y)}y∈Y = {f(x); k(y)}g(x)=h(y)
x,y = {a; a}a∈A,

{h(y); k(y)}y∈Y # {f(x); g(x)}x∈X = {h(y); g(x)}k(y)=f(x)
x,y = {b; b}b∈B .

In turn, this implies the existence of variable changes (αX , αY) : A → X ×B Y
and (βY , βX) : B → Y ×A X such that they are the inverses of (f, k) and (g, h)
respectively.

We can thus write the spans as having the identity on the left leg.

{f(x); g(x)}x∈X = {f(αX(a)); g(αX(a))}a∈A = {a; g(αX(a))}a∈A.

{h(y); k(y)}y∈Y = {h(βY (b)); k(βY (b))}b∈B = {b; k(βY (b))}b∈B .
Finally, composing them again, we get that (g #αX) and (k #βY) must be mutual
inverses, thus isomorphisms.

32 Di Lavore, Gianola, Román, Sabadini, Sobociński

We are now ready to prove the main result. The following Lemma 4.11 proves
that we can translate stateful spans to spans of graphs. The main Theorem 4.12
follows from it.

Lemma 4.11. Let C be a category with all finite limits. The following assign-
ment of stateful processes over Span(C) to morphisms of Span(Graph(C)) is
well-defined.

K

S
∣∣∣∣∣∣∣∣

E

S ×A S ×B

(s,f) (t,g)

 :=

 A E B

1 S 1

ts

f g

Proof. We first check that two isomorphic spans are sent to isomorphic spans
of graphs. Let

{(s(e), f(e)); (t(e), g(e))}e∈E ∈ Span(S ×A,S ×B) and

{(s′(e′), f ′(e′)); (t′(e′), g′(e′))}e′∈E′ ∈ Span(S ×A,S ×B)

be two spans that are isomorphic with the variable change φ : E ∼= E′. Then,
(φ, id) is an isomorphism of spans of graphs, also making the relevant diagram
commute (Figure 25).

E

S ×A S ×B

E′

(s,f) (t,g)

φ

(s′,f ′) (t′,g′)

A E E′ B

1 S S 1

φf

ts

g

t′

f ′

s′

g′

id

Fig. 25: Isomorphic spans result in isomorphic spans of graphs.

We show now that the assignment preserves the equivalence relation of state-
ful processes. Isomorphisms in a category of spans are precisely spans whose
two legs are isomorphisms (by Proposition 4.10, or the more general result
of [43]). This means that an isomorphism in Span(Set) can be always rewritten
as {s;φ(s)}s∈S ∈ Span(S, T), where the left leg is an identity and the right
leg is φ : S → T , some isomorphism. Its inverse can be written analogously as
T ← S → S. In order to prove that the quotient relation induced by the feed-
back is preserved, we need to check that equivalent spans of sets are sent to
isomorphic spans of graphs. If two spans are equivalent with the variable change
φ : S ∼= T , then the corresponding graphs are isomorphic with the isomorphism
of graphs (id, φ), see Figure 26.

Span(Graph): a Canonical Feedback Algebra of Open Transition Systems 33

· E ·

T ×A S ×A S ×B T ×B

φ×id (s,a) (t,b) φ×id

A E E B

1 S T 1

ida

ts

b

t#φ

a

s#φ

b

h

Fig. 26: Equivalent spans result in isomorphic spans of graphs.

Theorem 4.12. There exists an isomorphism of categories St(Span(Set)) ∼=
Span(Graph)∗. That is, the free feedback category over Span(Set) is isomor-

phic to the full subcategory of Span(Graph) given by single-vertex graphs.

Proof. We prove that there is a fully faithful functor K : St(Span(Set)) →
Span(Graph) defined on objects as K(A) = (A ⇒ 1) and defined on mor-

phisms as in Lemma 4.11.
We now show that K is functorial, preserving composition and identities.

The identity morphism on A in St(Span(Set)) has state space 1, so it is a span
1×A← A→ 1×A and it is sent to the identity span on the graph A⇒ 1.

Composition is also preserved. Let us consider two stateful spans

{(s(e), a(e)); (s′(e), b(e))}e∈E ∈ Span(S ×A,S ×B) and

{(t(f), b′(f)); (t′(f), c(f))}f∈F ∈ Span(S ×B,S × C)

By Proposition 4.9, their composition is given by the span

{(s(e), t(f), a(e)); (s′(e), t′(f), c(f))}b(e)=b′(f)
(e,f)∈E×F ∈ Span(S × T ×A,S × T × C)

where the head E ×B F is the pullback of b and b′.

E ×B F

E S × T F

A S B T C

1 1 1

πE πF

a

b

πS πT
c

b′

Fig. 27: Pullback of graphs.

We have composed two stateful spans and we want to show that the graph
corresponding to their composition is the pullback of the graphs corresponding

34 Di Lavore, Gianola, Román, Sabadini, Sobociński

to them. Computing a pullback of graphs can be done separately on edges and
vertices, as graphs form a presheaf category (see Figure 27). Note how the re-
sulting graph is precisely the graph corresponding, under the assignment K, to
the stateful span computed above.

We have shown that K is a functor. The final step is to show that it is
fully-faithful. We can see that it is full: every span of single-vertex graphs given
by {f(e); g(e)}e∈E ∈ Span(A,B) and s, t : E ⇒ S is the image of some span,
namely

{s(e), f(e); t(e), g(e)}e∈E ∈ Span(S ×A,S ×B).

Let us check it is also faithful. Suppose that two morphisms in St(Span(Set)),
S × A ← E → S × B and S′ × A ← E′ → S′ × B, are sent to equivalent spans
of graphs, i.e. there exist h : E ∼= E′ and k : S′ ∼= S making the diagrams in
Figure 28 commute.

A E E′ B

1 S S′ 1

ts

ha

b

t′s′

a′

b′

k

Fig. 28: Equivalent spans of graphs.

The isomorphism k makes the following spans equivalent as stateful processes.

S ×A←E → S ×B
S′ ×A←E → S′ ×B

Moreover, the isomorphism h makes the following spans equivalent as spans,
showing faithfullness of K.

S′ ×A←E → S′ ×B
S′ ×A←E′ → S′ ×B

We have shown that there exists a fully-faithful functor from the free feedback
category over Span(Set) to the category Span(Graph) of spans of graphs.
The functor restricts to an equivalence between St(Span(Set)) and the full
subcategory of Span(Graph) on single-vertex graphs. It is moreover bijective
on objects, giving an isomorphism of categories.

Example 4.13. The characterization Span(Graph)∗ ∼= St(Span(Set)) that we
prove in Theorem 4.12 lifts the inclusion Set → Span(Set) to a feedback pre-
serving functor Mealy→ Span(Graph)∗. This inclusion embeds a determinis-
tic transition system into the graph that determines it.

Span(Graph): a Canonical Feedback Algebra of Open Transition Systems 35

Example 4.14. Following from Remark 3.12, we present an example of spans of
graphs that would be equated if we assumed the sliding axiom (A5) of feedback
categories for arbitrary morphisms rather than just isomorphisms. Consider the
spans of sets α : W → V and h : V →W ×B as in Figure 29, where V = {v1, v2}
and W = {w}. Depending on where the feedback operation is applied, we obtain
two different spans of graphs, g = fbkV (h#(α⊗id)) and f = fbkW ((α⊗id)#h): the
first one contains an additional transition. If we were to impose that the sliding
axiom holds for non-isomorphisms, we could erase this additional transition, and
obtain that f = g by sliding α through the feedback loop.

g =

v1

v2

1

0

, f = w

0

, h =

v1

v2

e1

e2

(w, 0)

(w, 1) , α =

v1

v2

aw

Fig. 29: Spans of graphs that would be equated by a stronger notion of equiva-
lence: g = fbk(h # (α⊗ id)) ∼ fbk((α⊗ id) # h) = f .

4.4 Cospan(Graph) as a Feedback Category

Theorem 4.12 can be generalized to any category C with finite limits, where we
can define graphs and spans of them.

A graph in a category C is given by two objects, E and V , and two morphisms
in C, the source and the target s, t : E → V . A morphism of graphs α : G→ G′

in C is a pair of morphisms, αE : E → E′ and αV : V → V ′, in C that commute
with the sources and the targets. In categorical terms, these can be reformulated
as functors and natural transformations.

Definition 4.15. Let C be a category with finite limits. A graph in C is a
functor from the diagram (•⇒ •) to C. A morphism of graphs in C is a natural
transformation between the corresponding functors. Graphs in C form a category
Graph(C).

Categories of functors into C have all the limits that C has [39]. We can then
form the category Span(Graph(C)) and take its full subcategory on objects of
the form A⇒ 1, i.e. Span(Graph(C))∗, to obtain:

Theorem 4.16. There exists an isomorphism of categories St(Span(C)) ∼=
Span(Graph(C))∗. That is, the free feedback category over Span(C) is equiv-

alent to the full subcategory on Span(Graph(C)) given by single-vertex graphs.

Cospan(Graph)∗ is the dual algebra to Span(Graph)∗. Its morphisms rep-
resent graphs with discrete boundaries: while, in Span(Graph)∗, each transition
in the graph is assigned a boundary behavior, a morphism in Cospan(Graph)∗

36 Di Lavore, Gianola, Román, Sabadini, Sobociński

is a graph where some vertices are marked as left boundary or right bound-
ary vertices. This allows graphs to be composed by identifying these boundary
vertices.

Definition 4.17. A graph with discrete boundaries g : X → Y is given by a
graph G = (s, t : E ⇒ V) and two functions, l : X → V and r : Y → V , marking
the boundary vertices.

Example 4.18. We represent the legs of a cospan as dashed arrows pointing to
some vertices of the apex graph.

The composition of the above cospans of graphs is given by

,

where the vertices in the common boundary have been identified.

Cospan(Graph)∗ can be also characterized as a free feedback category.
We know that Cospan(Set) ∼= Span(Setop), we note that Graph(Setop) ∼=
Graphop(Set) (which has the effect of flipping edges and vertices), and we can
use Theorem 4.16 because Set has all finite colimits. The explicit assignment is
similar to the one shown in Lemma 4.11.

K

S
∣∣∣∣∣∣∣∣

S

E +A E +B

[t|a] [s|b]

 :=

 A S B

0 E 0

a b

st

Corollary 4.19. There is an isomorphism

St(Cospan(Set)) ∼= Cospan(Graph)∗.

Cospan(Graph) is also compact closed and, in particular, traced. As in the
case of Span(Graph), the feedback structure given by the universal property is
different from the trace. In the case of Cospan(Graph), tracing has the effect
of identifying the output and input vertices of the graph; while feedback adds
an additional edge from the output to the input vertices.

Example 4.20. Tracing the cospan of a one-edge graph identifies the two vertices
making it into a self-loop. On the other hand, taking feedback of the same cospan
has the effect of adding another edge from the right boundary to the left one.

tr() = fbk() =

Span(Graph): a Canonical Feedback Algebra of Open Transition Systems 37

4.5 Syntactical Presentation of Cospan(FinGraph)

The observation in Proposition 3.7 has an important consequence in the case of
finite sets. We write FinGraph for Graph(FinSet). Cospan(FinSet) is the
generic special commutative Frobenius algebra [37], meaning that any morphism
written out of the operations of a special commutative Frobenius monoid and
the structure of a symmetric monoidal category is precisely a cospan of finite
sets. Figure 30 represents the generators and the axioms of the generic special
commutative Frobenius monoid.

= = =

= = =

= =

Fig. 30: Generators and axioms of the generic special commutative Frobenius
monoid.

But we also know that Cospan(FinSet), with an added generator to its
PROP structure [7] is St(Cospan(FinSet)), or, equivalently, Cospan(FinGraph).
This means that any morphism written out of the operations of a special com-
mutative Frobenius algebra plus a freely added generator of type (∂) : 1 → 1
is a morphism in Cospan(FinGraph)∗. This way, we recover one of the main
results of [47] as a direct corollary of our characterization.

Proposition 4.21 (Proposition 3.2 of [47]). Cospan(FinGraph)∗ is the
generic special commutative Frobenius monoid with an added generator.

Proof. It is known that the category Cospan(FinSet) is the generic special
commutative Frobenius algebra [37]. Adding a free generator (∂) : 1 → 1 to
its PROP structure corresponds to adding a family (∂)n : n → n with the
conditions on Proposition 3.7. Now, Proposition 3.7 implies that adding such a
generator to Cospan(FinSet) results in St(Cospan(FinSet)). Finally, we use
Theorem 4.12 to conclude that St(Cospan(FinSet)) ∼= Cospan(FinGraph)∗.

Example 4.22. The delay generator ∂ : 1 → 1 in Cospan(FinGraph)∗ can
be interpreted as a single edge. Thus, we draw it as : 1→ 1. The cospans

38 Di Lavore, Gianola, Román, Sabadini, Sobociński

of graphs in Example 4.18 are represented by the string diagrams

and .

Their composition is

.

Span(Graph): a Canonical Feedback Algebra of Open Transition Systems 39

5 Structured state spaces

This section extends the framework of feedback categories from mere transition
systems to automata with initial and final states. In order to achieve this, we
generalize the feedback construction to deal with a richer structure. The key
ingredient in the generalization of feedback categories is a close examination of
the sliding axiom: deciding which processes can be “slid” determines the notion
of equality we want to apply.

5.1 Structured Feedback Categories

In order to capture automata, the state space S needs to be equipped with
“extra structure”. This is achieved by letting the state space live in a different
category S from the base category C and by having a way of “forgetting” the
extra structure it carries through a monoidal functor R : S→ C.

A structured feedback operator on C, then, takes a morphism acting on a
structured state space (Figure 31).

f : RS ⊗A→ RS ⊗B
fbkS(f) : A→ B

Fig. 31: Type of the operator fbkS(•).

Definition 5.1 (Structured feedback category). A structured feedback cat-
egory is a symmetric monoidal category (C,⊗, I, αC, λC, ρC) together with a
symmetric monoidal category, (S,�, J, αS, λS, ρS), representing structured state
spaces, and a symmetric monoidal functor (R, ε, µ) : S→ C endowed with an op-
erator fbkS : C(RS⊗A,RS⊗B)→ C(A,B), which satisfies the following axioms
(B1-B5).

(B1). Tightening. For every S ∈ S, every morphism f : RS ⊗ A → RS ⊗ B
and every pair of morphisms u : A′ → A and v : B → B′,

u # fbkS(f) # v = fbkS((id⊗ u) # f # (id⊗ v)).

(B2). Vanishing. For every f : A→ B,

fbkJ((ε−1⊗ id) # f # (ε⊗ id)) = f.

(B3). Joining. For every S, T ∈ S and every morphism f : RS ⊗ RT ⊗ A →
RS ⊗ RT ⊗B,

fbkT (fbkS(f)) = fbkS⊗T ((µ−1⊗ id) # f # (µ⊗ id)).

(B4). Strength. For every S ∈ S, every morphism f : RS ⊗A→ RS ⊗B and
every morphism g : A′ → B′,

fbkS(f)⊗ g = fbkS(f ⊗ g).

40 Di Lavore, Gianola, Román, Sabadini, Sobociński

(B5). Sliding. For every S, T ∈ S, every f : RT ⊗ A → RS ⊗ B and every
h : S → T in S,

fbkT (f # (Rh⊗ id)) = fbkS((Rh⊗ id) # f).

Remark 5.2. The sliding axiom encodes the fact that applying a transformation
to the state space h : S → T just before computing the next state should be
essentially the same as applying the same transformation to the state space just
before retrieving the current state. In the particular case where all transforma-
tions are asked to be reversible (i.e. isomorphisms)8, this sliding axiom (B5)
particularizes to the sliding axiom of plain feedback categories (A5).

Definition 5.3 (Structured feedback functor). A structured feedback func-
tor (F,G) : C → C′ between two structured feedback categories (C,S,R, fbk)
and (C′,S′,R′, fbk′) is a pair of symmetric monoidal functors, (F, ε, µ) and
(G, εG, µG), with types F : C→ C′ and G : S→ S′ such that R #F = G #R′ and

F (fbkS(f)) = fbk′GS(µ # Ff # µ−1).

We write SFeedback for the category of (small) structured feedback categories
and structured feedback functors. There is a forgetful functor U : SFeedback →
SymMon.

5.2 Structured St(•) Construction

In the same way that the free feedback category was realized by stateful pro-
cesses, the free structured feedback category is realized by stateful processes with
a structured state space S ∈ S. A functor R : S→ C forgets the extra structure
of this space.

Following the analogy, stateful processes with structured state space are pairs
(S | f) consisting of a structured state space S ∈ S and a morphism f : RS⊗A→
RS ⊗ B. We shall consider morphisms up to sliding of their state space, as in
Figure 32.

f

A

RT

B

RS

Rh
RT

= f

A

RS

B

RT

Rh
RS

Fig. 32: Equivalence of structured stateful processes. We depict structured state-
ful processes by marking the state space.

Definition 5.4 (Category of structured stateful processes). Consider a
pair of symmetric monoidal categories (C,⊗, I, αC, λC, ρC) and (S,�, J, αS, λS, ρS)
and a symmetric monoidal functor (R, ε, µ) : S → C. We write St(C,R) for the

8 Here, S is the subcategory of isomorphisms of C and R is the inclusion functor.

Span(Graph): a Canonical Feedback Algebra of Open Transition Systems 41

category with the objects of C but where morphisms A → B are pairs (S | f)
consisting of a state space S ∈ S and a morphism f : RS ⊗ A → RS ⊗ B. We
consider morphisms up to equivalence of their state spaces, where the equivalence
relation is generated by

(S | (Rh⊗ id) # f) ∼S (T | f # (Rh⊗ id)) for any h : S → T.

Identities, composition, monoidal product and the feedback operator store(•) are
defined in analogous ways as for stateful processes (Definition 3.9). When de-
picting a structured stateful process (Figure 32) we mark the state strings.

Remark 5.5. In other words, structured stateful processes are elements of the fol-
lowing coproduct quotiented by the smallest equivalence relation (∼S) satisfying
sliding: ((Rh⊗ id) # f) ∼S (f # (Rh⊗ id)).

St(C,R)(X,Y) :=

(∑
S∈S

C(RS ⊗A,RS ⊗B)

)/
(∼S).

This quotient is a particular form of colimit called a coend [39].

Repeating the proof from Katis, Sabadini and Walters [32] in this generalized
setting, we can show that structured stateful processes form the free structured
feedback category.

Theorem 5.6. The category St(C,R), endowed with the store(•) operator, is
the free structured feedback category over a symmetric monoidal category C with
a symmetric monoidal functor R : S→ C.

5.3 Categories of Automata

Let us present classical automata as an example of the construction of structured
feedback. Automata have a structured state space where a particular state is
considered the “initial state”, and a subset of states are considered “final”. We
can canonically recover a suitable category of automata as the free feedback
category over these structured spaces.

Definition 5.7. An automaton state space (S, iS , fS) is a finite set S together
with an initial state iS ∈ S and a subset of final states fS : S → 2. The product
of two automaton state spaces, (S, iS , fS) and (T, iT , fT), is the state space (S×
T, (iS , iT), fS∧fT), where the final states are pairs of final states, (fS∧fT)(s, t) =
fS(s)∧fT (t). A morphism of automaton state spaces α : (S, iS , fS)→ (T, iT , fT)
is a function α : S → T such that iS # α = iT and fS = α # fT . Automaton state
spaces form a symmetric monoidal category, AutSt.

Remark 5.8. As a consequence, an isomorphism of automata state spaces

α : (S, iS , fS) ∼= (T, iT , fT)

is an isomorphism α : S ∼= T such that iS # α = iT and fS = α # fT . These form
a subcategory Iso(AutSt) with forgetful functors UIso : Iso(AutSt)→ FinSet
and UAut : Iso(AutSt)→ Span(FinSet).

42 Di Lavore, Gianola, Román, Sabadini, Sobociński

Definition 5.9. A Mealy deterministic finite automaton (S,A,B, iS , fS , tS) is
given by a finite set of states S, a finite alphabet of input symbols A and a
finite alphabet of output symbols B, an initial state iS ∈ S, a set of final states
fS : S → 2, and a transition function tS : S × A → S × B. The product of two
deterministic finite automata,

(S,A,B, iS , fS , tS) and (S′, A′, B′, iS′ , fS′ , tS′),

is the automaton (S×T,A,C, (iS , iS′), (fS∧fS′), (tS×tS′)), where the transition
function computes a pair of independent transitions,

(tS × tS′)(s, s′, a, a′) = (tS(s, a), tS′(s
′, a′)).

The sequential synchronization of two deterministic finite automata,

(S,A,B, iS , fS , tS) and (T,B,C, iT , fT , tT),

is the automaton (S×T,A,C, (iS , iT), (fS ∧ fT), (tS ∧ tT)), where the transition
function (tS∧tT) uses the output of the first transition as the input of the second

(tS ∧ tT)(s, t, a) = (s′, t′, c) where tS(s, a) = (s′, b) and tT (t, b) = (t′, c).

We consider Mealy deterministic automata up to isomorphism of their state
space. Mealy deterministic finite automata form a symmetric monoidal category,
MealyAut, with sequential composition and product as defined above.

This construction, together with the results of Section 5.2, leads to the fol-
lowing result.

Proposition 5.10. The category of Mealy deterministic finite automata is the
free structured feedback category over the isomorphisms of automaton state spaces
UAut : Iso(AutSt)→ FinSet, that is,

MealyAut ∼= St(FinSet,UAut).

5.4 Automata in Span(Graph)

Our final construction is the canonical category of automata over the algebra
of predicates given by spans. These automata are analogous to the previous
transition systems in Span(Graph)∗, but their state space contains an initial
state and a set of final states. A similar definition has appeared previously in
the literature for the modeling of Petri nets [45].

Definition 5.11. A span automaton with left labels A and right labels B

X = (EX , SX , A,B, sX , tX , lX , rX , iX , fX)

is given by a finite set of states SX , a finite set of transitions EX with source
and target sX , tX : EX → SX and with left lX : EX → A and right rX : EX → B

Span(Graph): a Canonical Feedback Algebra of Open Transition Systems 43

labels, an initial state iX ∈ SX , and a subset of final states fX : SX → 2. The
product of two span automata

X = (EX , SX , A,B, sX , tX , lX , rX , iX , fX) and

Y = (EY , SY , A
′, B′, sY , tY , lX , rX , iY , fY),

is given by the component-wise product

X⊗Y := (EX × EY , SX × SY , A×A′, B ×B′,
sX × sY , tX × tY , lX × lY , rX × rY , iX × iY , fX ∧ fY).

The composition of two span automata

X = (EX , SX , A,B, sX , tX , lX , rX , iX , fX) and

Y = (EY , SY , B,C, sY , tY , lX , rX , iY , fY),

is given by a pullback

X # Y := (EX ×B EY , SX ×SY , A,C, sX × sY , tX × tY , lX , rY , iX × iY , fX ∧ fY),

where EX×BEY is the pullback of EX
rX→ B

lY← EY . We consider span automata
up to isomorphism of their state space. Span automata form a symmetric mo-
noidal category SpanAut with sequential composition and the monoidal product
defined above.

This construction, together with the results of Section 5.2, leads to the fol-
lowing result.

Proposition 5.12. The category of span automata is the free structured feed-
back category over the category of spans with the inclusion functor from automa-
ton state spaces, UAutSpan : Iso(AutSt)→ Span(FinSet), that is,

SpanAut ∼= St(Span(FinSet),UAutSpan).

Example 5.13. By the universal property of the St(•) construction, each Mealy
automaton in MealyAut functorially induces a span automaton in SpanAut
whose graph is the graph of the Mealy automaton.

Consider the following Mealy automaton X in Figure 33, left. It has a state
space SX = {0, 1, 2}, left labels A = {a, b} and trivial right labels B = 1, with
initial state iX = 0 and a unique final state fX(2) = true, while fX(0) =
fX(1) = false. Its transition function is given by tX(0, a) = 1, tX(0, b) = 2,
tX(1, a) = 2, tX(1, b) = 1, tX(2, a) = 1 and tX(2, b) = 1.

The corresponding span automaton sX (Figure 33, right) is not only the
transition system, but also the markings for initial and final state. Explicitly, its
set of edges – or transitions – is given by tuples

EsX = {(0, a, 1), (0, b, 0), (1, a, 1), (1, b, 2), (2, a, 1), (2, b, 0)},

its state space is again SsX = {0, 1, 2}, its left and right boundaries are again
A = {a, b} and B = 1, with initial state iX = 0 and a unique final state
fX(2) = true, while fX(0) = fX(1) = false.

44 Di Lavore, Gianola, Román, Sabadini, Sobociński

0

1

2

a

b

a

a
b

b
a

a

a

b

b

b

Fig. 33: Mealy automaton and associated span automaton.

6 Conclusions and Further Work

6.1 Discussion

We started this manuscript pointing out the fragmented landscape of models for
concurrent software. We have now formally proven that any theory of predicates
with a notion of feedback that accepts reasonable axioms (A1-A5) must already
contain a simulation of Span(Graph)∗: the algebra of open transition systems
of Katis, Sabadini and Walters.

From an applied point of view, our results inform a minimal software archi-
tecture for a library that constructs and analyzes these modular transition sys-
tems, that are canonical models of concurrency. For instance, an object-oriented
programmer may

• define a specific class for “theory of resources”, providing methods for the
fundamental operations of composing, tensoring, identities and swapping,
and providing subclasses for “resources” and “processes”, if necessary;
• implement an abstract method that computes the St(•) construction: this

method will take a theory of processes and instantiate the free feedback
category as a new theory of processes;
• work uniformly with multiple theories of processes and the theories of au-

tomata they generate, providing auxiliary methods (for reachability, connect-
edness, joining, . . .) that work across different theories of transition systems;
• thus, thanks to our results, obtain at the end of the day a graph – in

Span(Graph) – that can be understood as a transition system and ana-
lyzed with the same library.

A functional programmer may want to follow the architecture of the public
Haskell implementation of the ideas of this paper [46], where our running example
(Figure 1) is showcased.

The problem we solve is one of abstraction. When faced with the task of
implementing models for transition systems, we could be tempted to simply
implement each one of them separately. Our result shows that a much more
succint choice is possible. Reducing the lines of code is important: transition
systems are usually formally analyzed to prove correctness; the less lines there
are to analize in the core implementation, the easiest it will be to be sure of its
correctness.

Span(Graph): a Canonical Feedback Algebra of Open Transition Systems 45

Open transition systems allow us to construct transition systems from a few
building blocks; compositionality eases both implementation and verification.
Specifically, this could open an avenue to study the problem of compositional
verification, where the automatic analysis of a global system must be modularly
reduced to the analysis of its components.

6.2 Conclusion

We have characterized Span(Graph)∗, an algebra of open transition systems,
as the free feedback category over the category of spans of functions. To do so,
we have used the St(•) construction, characterized as the free feedback category
in [35]. We have given this characterization more generally, for any category C
with finite limits: the category Span(Graph(C))∗ of spans of graphs in C is the
free feedback category over the category of spans in C. Finally, we have defined
a generalization of feedback categories to capture automata with initial and final
states.

Further work will look at timed [11] and probabilistic [13,14] versions of the
Cospan/Span model to connect it with recent work on modeling probabilistic
programs with feedback categories [16]. We also plan to investigate the relation-
ship between generalized feedback categories (Section 5) to approaches based on
guarded recursion [25] and coalgebras [12,42].

References

1. Samson Abramsky. What are the fundamental structures of concurrency? We still
don’t know! CoRR, abs/1401.4973, 2014. URL: http://arxiv.org/abs/1401.4
973, arXiv:1401.4973.

2. Jiŕı Adámek, Stefan Milius, and Jiri Velebil. Elgot algebras. Log. Methods Comput.
Sci., 2(5), 2006. doi:10.2168/LMCS-2(5:4)2006.

3. John C. Baez and Kenny Courser. Structured cospans. CoRR, abs/1911.04630,
2019.

4. Jean Bénabou. Introduction to bicategories. In Reports of the Midwest Category
Seminar, pages 1–77. Springer, 1967.

5. Nick Benton and Martin Hyland. Traced premonoidal categories. RAIRO Theor.
Informatics Appl., 37(4):273–299, 2003. doi:10.1051/ita:2003020.

6. Stephen L. Bloom and Zoltán Ésik. Iteration Theories - The Equational Logic
of Iterative Processes. EATCS Monographs on Theoretical Computer Science.
Springer, 1993. doi:10.1007/978-3-642-78034-9.

7. Filippo Bonchi, Joshua Holland, Robin Piedeleu, Pawe l Sobociński, and Fabio
Zanasi. Diagrammatic algebra: from linear to concurrent systems. Proc. ACM
Program. Lang., 3(POPL):25:1–25:28, 2019. doi:10.1145/3290338.

8. Filippo Bonchi, Pawe l Sobociński, and Fabio Zanasi. The Calculus of Signal Flow
Diagrams I: Linear Relations on Streams. Information and Computation, 252:2–29,
2017. doi:10.1016/j.ic.2016.03.002.

9. Roberto Bruni, Hernán C. Melgratti, and Ugo Montanari. A connector algebra for
P/T nets interactions. In Concurrency Theory (CONCUR ‘11), volume 6901 of
LNCS, pages 312–326. Springer, 2011. doi:10.1007/978-3-642-23217-6 21.

http://arxiv.org/abs/1401.4973
http://arxiv.org/abs/1401.4973
http://arxiv.org/abs/1401.4973
https://doi.org/10.2168/LMCS-2(5:4)2006
https://doi.org/10.1051/ita:2003020
https://doi.org/10.1007/978-3-642-78034-9
https://doi.org/10.1145/3290338
https://doi.org/10.1016/j.ic.2016.03.002
https://doi.org/10.1007/978-3-642-23217-6_21

46 Di Lavore, Gianola, Román, Sabadini, Sobociński

10. Aurelio Carboni and Robert F. C. Walters. Cartesian Bicategories I. Journal of
pure and applied algebra, 49(1-2):11–32, 1987.

11. Alessandra Cherubini, Nicoletta Sabadini, and Robert F. C. Walters. Timing in the
Cospan/Span model. Electronic Notes in Theoretical Computer Science, 104:81–97,
2004.

12. Ranald Clouston, Ales Bizjak, Hans Bugge Grathwohl, and Lars Birkedal. Pro-
gramming and reasoning with guarded recursion for coinductive types. In An-
drew M. Pitts, editor, Foundations of Software Science and Computation Struc-
tures - 18th International Conference, FoSSaCS 2015, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK,
April 11-18, 2015. Proceedings, volume 9034 of Lecture Notes in Computer Science,
pages 407–421. Springer, 2015. doi:10.1007/978-3-662-46678-0\ 26.

13. Luisa de Francesco Albasini, Nicoletta Sabadini, and Robert F. C. Walters. The
compositional construction of Markov processes. Applied Categorical Structures,
19(1):425–437, 2011.

14. Luisa de Francesco Albasini, Nicoletta Sabadini, and Robert F. C. Walters. The
compositional construction of Markov processes II. RAIRO-Theoretical Informatics
and applications, 45(1):117–142, 2011.

15. Mariangiola Dezani-Ciancaglini and Ugo de’Liguoro. Sessions and session types:
An overview. In Cosimo Laneve and Jianwen Su, editors, Web Services and Formal
Methods, 6th International Workshop, WS-FM 2009, Bologna, Italy, September
4-5, 2009, Revised Selected Papers, volume 6194 of Lecture Notes in Computer
Science, pages 1–28. Springer, 2009. doi:10.1007/978-3-642-14458-5\ 1.

16. Elena Di Lavore, Giovanni de Felice, and Mario Román. Monoidal streams for
dataflow programming. In Proceedings of the 37th Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS ’22, New York, NY, USA, 2022. Association
for Computing Machinery. doi:10.1145/3531130.3533365.

17. William Henry Eccles and Frank Wilfred Jordan. Improvements in ionic relays.
British patent number: GB 148582, 1918.

18. Calvin C. Elgot. Monadic computation and iterative algebraic theories. In Studies
in Logic and the Foundations of Mathematics, volume 80, pages 175–230. Elsevier,
1975.

19. Brendan Fong. Decorated cospans. Theory and Applications of Categories,
30(33):1096–1120, 2015.

20. Alessandro Gianola, Stefano Kasangian, Desiree Manicardi, Nicoletta Sabadini,
Filippo Schiavio, and Simone Tini. CospanSpan(Graph): a compositional descrip-
tion of the heart system. Fundam. Informaticae, 171(1-4):221–237, 2020.

21. Alessandro Gianola, Stefano Kasangian, Desiree Manicardi, Nicoletta Saba-
dini, and Simone Tini. Compositional modeling of biological systems in
CospanSpan(Graph). In Proc. of ICTCS 2020. CEUR-WS, To appear.

22. Alessandro Gianola, Stefano Kasangian, and Nicoletta Sabadini.
Cospan/Span(Graph): an Algebra for Open, Reconfigurable Automata Net-
works. In Filippo Bonchi and Barbara König, editors, 7th Conference on Algebra
and Coalgebra in Computer Science, CALCO 2017, June 12-16, 2017, Ljubljana,
Slovenia, volume 72 of LIPIcs, pages 2:1–2:17. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2017. doi:10.4230/LIPIcs.CALCO.2017.2.

23. Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987. doi:10.101
6/0304-3975(87)90045-4.

24. Jean-Yves Girard. Towards a geometry of interaction. Contemporary Mathematics,
92(69-108):6, 1989.

https://doi.org/10.1007/978-3-662-46678-0_26
https://doi.org/10.1007/978-3-642-14458-5_1
https://doi.org/10.1145/3531130.3533365
https://doi.org/10.4230/LIPIcs.CALCO.2017.2
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4

Span(Graph): a Canonical Feedback Algebra of Open Transition Systems 47

25. Sergey Goncharov and Lutz Schröder. Guarded traced categories. In Christel
Baier and Ugo Dal Lago, editors, Foundations of Software Science and Com-
putation Structures - 21st International Conference, FOSSACS 2018, Held as
Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, volume 10803
of Lecture Notes in Computer Science, pages 313–330. Springer, 2018. doi:

10.1007/978-3-319-89366-2\ 17.
26. Masahito Hasegawa. Recursion from cyclic sharing: Traced monoidal categories

and models of cyclic lambda calculi. In Philippe de Groote, editor, Typed Lambda
Calculi and Applications, Third International Conference on Typed Lambda Calculi
and Applications, TLCA ’97, Nancy, France, April 2-4, 1997, Proceedings, volume
1210 of Lecture Notes in Computer Science, pages 196–213. Springer, 1997. doi:

10.1007/3-540-62688-3\ 37.
27. Masahito Hasegawa. The uniformity principle on traced monoidal categories. In

Richard Blute and Peter Selinger, editors, Category Theory and Computer Science,
CTCS 2002, Ottawa, Canada, August 15-17, 2002, volume 69 of Electronic Notes
in Theoretical Computer Science, pages 137–155. Elsevier, 2002. doi:10.1016/S1

571-0661(04)80563-2.
28. Naohiko Hoshino, Koko Muroya, and Ichiro Hasuo. Memoryful geometry of interac-

tion: from coalgebraic components to algebraic effects. In Thomas A. Henzinger and
Dale Miller, editors, Joint Meeting of the Twenty-Third EACSL Annual Conference
on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Sym-
posium on Logic in Computer Science (LICS), CSL-LICS ’14, Vienna, Austria,
July 14 - 18, 2014, pages 52:1–52:10. ACM, 2014. doi:10.1145/2603088.2603124.

29. André Joyal, Ross Street, and Dominic Verity. Traced monoidal categories. Mathe-
matical Proceedings of the Cambridge Philosophical Society, 119:447 – 468, 04 1996.
doi:10.1017/S0305004100074338.

30. Rudolf Emil Kalman, Peter L. Falb, and Michael A. Arbib. Topics in mathematical
system theory, volume 1. McGraw-Hill New York, 1969.

31. Piergiulio Katis, Nicoletta Sabadini, and Robert F. C. Walters. Bicategories of
processes. Journal of Pure and Applied Algebra, 115(2):141–178, 1997.

32. Piergiulio Katis, Nicoletta Sabadini, and Robert F. C. Walters. Span(Graph):
A Categorial Algebra of Transition Systems. In Michael Johnson, editor, Alge-
braic Methodology and Software Technology, 6th International Conference, AMAST
’97, Sydney, Australia, December 13-17, 1997, Proceedings, volume 1349 of Lecture
Notes in Computer Science, pages 307–321. Springer, 1997. doi:10.1007/BFb000

0479.
33. Piergiulio Katis, Nicoletta Sabadini, and Robert F. C. Walters. On the algebra of

feedback and systems with boundary. In Rendiconti del Seminario Matematico di
Palermo, 1999.

34. Piergiulio Katis, Nicoletta Sabadini, and Robert F. C. Walters. A formaliza-
tion of the IWIM model. In António Porto and Gruia-Catalin Roman, edi-
tors, Coordination Languages and Models, 4th International Conference, COOR-
DINATION 2000, Limassol, Cyprus, September 11-13, 2000, Proceedings, vol-
ume 1906 of Lecture Notes in Computer Science, pages 267–283. Springer, 2000.
doi:10.1007/3-540-45263-X\ 17.

35. Piergiulio Katis, Nicoletta Sabadini, and Robert F. C. Walters. Feedback, trace
and fixed-point semantics. RAIRO-Theor. Informatics Appl., 36(2):181–194, 2002.
doi:10.1051/ita:2002009.

36. Piergiulio Katis, Nicoletta Sabadini, and Robert F. C. Walters. A Process Algebra
for the Span(Graph) Model of Concurrency. arXiv preprint arXiv:0904.3964, 2009.

https://doi.org/10.1007/978-3-319-89366-2_17
https://doi.org/10.1007/978-3-319-89366-2_17
https://doi.org/10.1007/3-540-62688-3_37
https://doi.org/10.1007/3-540-62688-3_37
https://doi.org/10.1016/S1571-0661(04)80563-2
https://doi.org/10.1016/S1571-0661(04)80563-2
https://doi.org/10.1145/2603088.2603124
https://doi.org/10.1017/S0305004100074338
https://doi.org/10.1007/BFb0000479
https://doi.org/10.1007/BFb0000479
https://doi.org/10.1007/3-540-45263-X_17
https://doi.org/10.1051/ita:2002009

48 Di Lavore, Gianola, Román, Sabadini, Sobociński

37. Stephen Lack. Composing PROPs. Theory and Applications of Categories,
13(9):147–163, 2004.

38. Elena Di Lavore, Alessandro Gianola, Mario Román, Nicoletta Sabadini, and Pawe l
Sobociński. A Canonical Algebra of Open Transition Systems. In Gwen Salaün and
Anton Wijs, editors, Formal Aspects of Component Software - 17th International
Conference, FACS 2021, Virtual Event, October 28-29, 2021, Proceedings, volume
13077 of Lecture Notes in Computer Science, pages 63–81. Springer, 2021. doi:

10.1007/978-3-030-90636-8\ 4.
39. Saunders Mac Lane. Categories for the Working Mathematician. Graduate Texts

in Mathematics. Springer New York, 1978. doi:10.1007/978-1-4757-4721-8.
40. S. J. Mason. Feedback Theory - Some properties of signal flow graphs. Proceedings

of the Institute of Radio Engineers, 41(9):1144–1156, 1953. doi:10.1109/JRPROC

.1953.274449.
41. George H. Mealy. A method for synthesizing sequential circuits. The Bell System

Technical Journal, 34(5):1045–1079, 1955.
42. Stefan Milius and Tadeusz Litak. Guard your daggers and traces: Properties of

guarded (co-) recursion. Fundamenta Informaticae, 150(3-4):407–449, 2017.
43. Duško Pavlović. Maps I: relative to a factorisation system. Journal of Pure and

Applied Algebra, 99(1):9–34, 1995.
44. Kate Ponto and Michael Shulman. Traces in symmetric monoidal categories. Ex-

positiones Mathematicae, 32(3):248–273, 2014. URL: http://dx.doi.org/10.10
16/J.EXMATH.2013.12.003, doi:10.1016/j.exmath.2013.12.003.

45. Julian Rathke, Pawel Sobocinski, and Owen Stephens. Compositional Reachability
in Petri Nets. In Joël Ouaknine, Igor Potapov, and James Worrell, editors, Reach-
ability Problems - 8th International Workshop, RP 2014, Oxford, UK, September
22-24, 2014. Proceedings, volume 8762 of Lecture Notes in Computer Science, pages
230–243. Springer, 2014. doi:10.1007/978-3-319-11439-2\ 18.

46. Mario Román. Span graph via the state construction, 2022. URL: https://gith
ub.com/mroman42/feedback-span-graph.

47. Robert Rosebrugh, Nicoletta Sabadini, and Robert F. C. Walters. Generic com-
mutative separable algebras and cospans of graphs. Theory and applications of
categories, 15(6):164–177, 2005.

48. Nicoletta Sabadini, Filippo Schiavio, and Robert F. C. Walters. On the geometry
and algebra of networks with state. Theor. Comput. Sci., 664:144–163, 2017.

49. Peter Selinger. A survey of graphical languages for monoidal categories. In New
structures for physics, pages 289–355. Springer, 2010. doi:10.1007/978-3-642-

12821-9\ 4.
50. Claude E. Shannon. The Theory and Design of Linear Differential Equation Ma-

chines. Bell Telephone Laboratories, 1942.
51. Pawe l Sobociński. A non-interleaving process calculus for multi-party synchroni-

sation. In 2nd Interaction and Concurrency Experience: Structured Interactions,
(ICE 2009), volume 12 of EPTCS, 2009. URL: http://users.ecs.soton.ac.uk/
ps/papers/ice09.pdf, doi:10.4204/eptcs.12.6.

52. Pawe l Sobociński. Representations of Petri net interactions. In Concurrency
Theory, 21th International Conference, (CONCUR 2010), volume 6269 of Lec-
ture Notes in Computer Science, pages 554–568. Springer, 2010. doi:10.1007/97

8-3-642-15375-4 38.

https://doi.org/10.1007/978-3-030-90636-8_4
https://doi.org/10.1007/978-3-030-90636-8_4
https://doi.org/10.1007/978-1-4757-4721-8
https://doi.org/10.1109/JRPROC.1953.274449
https://doi.org/10.1109/JRPROC.1953.274449
http://dx.doi.org/10.1016/J.EXMATH.2013.12.003
http://dx.doi.org/10.1016/J.EXMATH.2013.12.003
https://doi.org/10.1016/j.exmath.2013.12.003
https://doi.org/10.1007/978-3-319-11439-2_18
https://github.com/mroman42/feedback-span-graph
https://github.com/mroman42/feedback-span-graph
https://doi.org/10.1007/978-3-642-12821-9_4
https://doi.org/10.1007/978-3-642-12821-9_4
http://users.ecs.soton.ac.uk/ps/papers/ice09.pdf
http://users.ecs.soton.ac.uk/ps/papers/ice09.pdf
https://doi.org/10.4204/eptcs.12.6
https://doi.org/10.1007/978-3-642-15375-4_38
https://doi.org/10.1007/978-3-642-15375-4_38

	Span(Graph): a Canonical Feedback Algebra of Open Transition Systems
	Introduction
	Related Work
	Synopsis

	Preliminaries: Symmetric Monoidal Categories
	Theories of Processes
	Monoidal Equivalence

	Feedback Categories
	Feedback Categories
	Traced Monoidal Categories
	Delay and Feedback
	St(), the Free Feedback Category
	Examples

	Span(Graph): an Algebra of Transition Systems
	The Algebra of Spans
	The Algebra of Open Transition Systems
	Span(Graph) as a Feedback Category
	Cospan(Graph) as a Feedback Category
	Syntactical Presentation of Cospan(FinGraph)

	Structured state spaces
	Structured Feedback Categories
	Structured St() Construction
	Categories of Automata
	Automata in Span(Graph)

	Conclusions and Further Work
	Discussion
	Conclusion

