Mario Román

Home

❯

notes

❯

pieces

❯

polycategory

polycategory

May 02, 20251 min read

polycategory

four-compositions-in-a-polycategory

Polycategories are an algebraic structure for transformations that can be linearly connected: that is, composed along a single point.

  • polycategory - star-polycategory
  • polycategory - malleable polycategory
  • polycategory - polycategorical splice

Related.

  • multicategory
  • lax pseudofrobenius algebra
  • transformation of cliques, cliques compose polycategorically
  • adjunction - polycategory of multivariable adjunctions
  • adjunction - the 2-polycategorical structure of multivariable adjoints

References

  • The 2-Chu-Dialectica Construction and the Polycategory of Multivariable Adjunctions (Shulman, 2020)
  • Proof Theory in the Abstract (Hyland) defines symmetric polycategories.
  • Bifibrations of Polycategories and Classical Linear Logic (Blanco, Zeilberger) defines planar polycategories.

Graph View

Backlinks

  • contour of a polycategory
  • Duality in a linearly distributive category
  • Polycategory of multivariable adjunctions
  • The 2-Polycategorical structure of multivariable adjoints
  • category theory
  • Lax pseudofrobenius algebra
  • linearly distributive category
  • Multicategory
  • Malleable polycategory
  • Polycategorical splice
  • Star-polycategory
  • Star-autonomous category
  • The 2-Chu-Dialectica Construction and the Polycategory of Multivariable Adjunctions (Shulman, 2020)

Mario Román, CC-BY-SA. Built with Quartz © 2025.

  • GitHub
  • ArXiv
  • OrcID