Mario Román

Home

❯

notes

❯

pieces

❯

probabilistic programming

probabilistic programming

May 11, 20251 min read

Programming and Markov Categories.

  • An Introduction to Probabilistic Programming (van de Meent, Paige, Yang, Wood, 2021)
  • Kleisli Semantics for Conditioning in Probabilistic Programming (Cho, Jacobs, 2022)
  • Probabilistic Programming Semantics for Name Generation (Stein et al)
  • A Synthetic Approach to Markov Kernels (Fritz, 2020)
  • A Presentation of the Category of Stochastic Matrices (Fritz)
  • Dilations and information flow axioms in categorical probability (Fritz, Gonda, Houghton-Larsen, Perrone, Stein, 2022)
  • Markov Categories and Information Theory (Perrone, 2022)

Formalization.

  • Verified Density Compilation for a Probabilistic Programming Language (Tassarotti, Tristan, 2024)
  • Coquelicot, A User-Friendly Library of Real Analysis for Coq (Boldo, Lelay, Melquiond, 2015)

Languages, grants, and projects.

  • Probabilistic Programming for Advancing Machine Learning (PPAML) (DARPA)
  • Facebook Probability and Programming Research Awards (Facebook)
  • Microsoft Infer.NET
  • Pyro, Deep Universal Probabilistic Programming (Uber Labs, Bingham et al)
  • ERC BLAST grant (Staton)
  • Stan, A Probabilistic Programming Language
  • Hakaru
  • Church language
  • Anglican language
  • Unsure calculator, the very naive motivation for probabilistic programming.

Literature

  • Probabilistic Models of Cognition (Goodman, Tenenbaum, 2016)

See also.

  • probabilistic graphical model

Graph View

Backlinks

  • An Introduction to Probabilistic Programming (van de Meent, Paige, Yang, Wood, 2021)
  • internal languages for probabilistic programming

Mario Román, CC-BY-SA. Built with Quartz © 2025.

  • GitHub
  • ArXiv
  • OrcID