Mario RomΓ‘n

Search

Search IconIcon to open search

Normalization of a produoidal

Last updated Feb 3, 2024

Normal produoidal categories are the profunctorial analogue of normal duoidal categories. Produoidal normalization is analogue to duoidal normalization.

See also.

normalization-of-a-produoidal

# Proof

We define the following multiplication and unit for the promonad, $𝓝𝕍$. They are constructed out of laxators of the produoidal category $𝕍$ and Yoneda isomorphisms; thus, they must be associative and unital by coherence. The unit is defined by $$\begin{aligned} & 𝕍(A; B) \ \cong & \quad\mbox{(by unitality of $𝕍$)} \ & 𝕍(A; I \otimes B \otimes I) \ \to & \quad\mbox{(by the laxators of $𝕍$)} \ & 𝕍(A; N \otimes B \otimes N) \ = & \quad\mbox{(by definition)} \ & 𝓝𝕍(A; B). \ \end{aligned}$$

The multiplication is defined by, $$\begin{aligned} & ∫^{B ∈ 𝕍} 𝓝𝕍(A; B) Γ— 𝓝𝕍(B; C) \ = & \quad\mbox{(by definition)} \ & ∫^{B ∈ 𝕍} 𝕍(A; N βŠ— B βŠ— N) Γ— 𝕍(B; N βŠ— C βŠ— N) \ β‰… & \quad\mbox{(by Yoneda lemma)} \ & 𝕍(A; N βŠ— N βŠ— C βŠ— N βŠ— N) \phantom{\int}\ β†’ & \quad\mbox{(by laxators of $𝕍$)} \ & 𝕍(A; N βŠ— C βŠ— N) \phantom{\int}\ = & \quad\mbox{(by definition)} \ & 𝓝𝕍(A;C). \phantom{\int}\ \end{aligned}$$

Let us now construct the unitors and the associators. Again, they are constructed out of laxators of the produoidal category $𝕍$, the associators and unitors of $𝕍$, and Yoneda isomorphisms. We first consider the right unitor. $$\begin{aligned} & ∫^{X ∈ ℕ𝕍} ℕ𝕍(A; B βŠ— X) Γ— ℕ𝕍(X; N) \ = & \quad\mbox{(by definition)} \ & ∫^{X ∈ ℕ𝕍} 𝕍(A; N βŠ— B βŠ— N βŠ— X βŠ— N) Γ— ℕ𝕍(X; N) \ = & \quad\mbox{(by associativity of $𝕍$)} \ & ∫^{X ∈ ℕ𝕍, P ∈ 𝕍} 𝕍(A; N βŠ— B βŠ— P) Γ— 𝕍(P; N βŠ— X βŠ— N) Γ— ℕ𝕍(X; N) \ = & \quad\mbox{(by definition)} \ & ∫^{X ∈ ℕ𝕍, P ∈ 𝕍} 𝕍(A; N βŠ— B βŠ— P) Γ— ℕ𝕍(P;X) Γ— ℕ𝕍(X; N) \ = & \quad\mbox{(by Yoneda)} \ & ∫^{P ∈ 𝕍} 𝕍(A; N βŠ— B βŠ— P) Γ— ℕ𝕍(P; N) \ = & \quad\mbox{(by definition)} \ & ∫^{P ∈ 𝕍} 𝕍(A; N βŠ— B βŠ— P) Γ— 𝕍(P; N) \ = & \quad\mbox{(by unitality)} \ & ∫^{P ∈ 𝕍} 𝕍(A; N βŠ— B βŠ— N). \ \end{aligned}$$ We now consider the left unitor. $$\begin{aligned} & ∫^{X ∈ ℕ𝕍} ℕ𝕍(A; X βŠ— B) Γ— ℕ𝕍(X; N) \ = & \quad\mbox{(by definition)} \ & ∫^{X ∈ ℕ𝕍} 𝕍(A; N βŠ— X βŠ— N βŠ— B βŠ— N) Γ— ℕ𝕍(X; N) \ = & \quad\mbox{(by associativity of $𝕍$)} \ & ∫^{X ∈ ℕ𝕍, P ∈ 𝕍} 𝕍(A; P βŠ— B βŠ— N) Γ— 𝕍(P; N βŠ— X βŠ— N) Γ— ℕ𝕍(X; N) \ = & \quad\mbox{(by definition)} \ & ∫^{X ∈ ℕ𝕍, P ∈ 𝕍} 𝕍(A; P βŠ— B βŠ— N) Γ— ℕ𝕍(P;X) Γ— ℕ𝕍(X; N) \ = & \quad\mbox{(by Yoneda)} \ & ∫^{P ∈ 𝕍} 𝕍(A; P βŠ— B βŠ— N) Γ— ℕ𝕍(P; N) \ = & \quad\mbox{(by definition)} \ & ∫^{P ∈ 𝕍} 𝕍(A; P βŠ— B βŠ— N) Γ— 𝕍(P; N) \ = & \quad\mbox{(by unitality)} \ & ∫^{P ∈ 𝕍} 𝕍(A; N βŠ— B βŠ— N). \ \end{aligned}$$ Finally, we consider the associator. We can do so in two steps, showing that both sides of the equation $$∫^{X ∈ ℕ𝕍} ℕ𝕍(A; B βŠ— X) Γ— ℕ𝕍(X; C βŠ— D) β‰… ∫^{Y ∈ ℕ𝕍} ℕ𝕍(A; Y βŠ— D) Γ— ℕ𝕍(Y; B βŠ— C)$$ are isomorphic to $𝕍(A; N βŠ— B βŠ— N βŠ— C βŠ— N βŠ— D βŠ— N)$. The first side by $$\begin{aligned} & ∫^{X ∈ ℕ𝕍} ℕ𝕍(A; B βŠ— X) Γ— ℕ𝕍(X; C βŠ— D) \\ = & \quad\mbox{(by definition)} \\ & ∫^{X ∈ ℕ𝕍} 𝕍(A; N βŠ— B βŠ— N βŠ— X βŠ— N) Γ— ℕ𝕍(X; C βŠ— D) \\ = & \quad\mbox{(by associativity)} \\ & ∫^{X ∈ ℕ𝕍, P ∈ 𝕍} 𝕍(A; N βŠ— B βŠ— P) Γ— 𝕍(P; N βŠ— X βŠ— N) Γ— ℕ𝕍(X; C βŠ— D) \\ = & \quad\mbox{(by definition)} \\ & ∫^{X ∈ ℕ𝕍, P ∈ 𝕍} 𝕍(A; N βŠ— B βŠ— P) Γ— ℕ𝕍(P; X) Γ— ℕ𝕍(X; C βŠ— D) \\ = & \quad\mbox{(by Yoneda)} \\ & ∫^{P ∈ 𝕍} 𝕍(A; N βŠ— B βŠ— P) Γ— ℕ𝕍(P; C βŠ— D) \\ = & \quad\mbox{(by definition)} \\ & ∫^{P ∈ 𝕍} 𝕍(A; N βŠ— B βŠ— P) Γ— 𝕍(P; N βŠ— C βŠ— N βŠ— D βŠ— N) \\ = & \quad\mbox{(by associativity)} \\ & 𝕍(A; N βŠ— B βŠ— N βŠ— C βŠ— N βŠ— D βŠ— N), \\ \end{aligned}$$ and the second side by $$\begin{aligned} & ∫^{Y ∈ ℕ𝕍} ℕ𝕍(A; Y βŠ— D) Γ— ℕ𝕍(Y; B βŠ— C) \\ = & \quad\mbox{(by definition)} \\ & ∫^{Y ∈ ℕ𝕍} 𝕍(A; N βŠ— Y βŠ— N βŠ— D βŠ— N) Γ— ℕ𝕍(Y; B βŠ— C) \\ = & \quad\mbox{(by associativity)} \\ & ∫^{Y ∈ ℕ𝕍, P ∈ 𝕍} 𝕍(A; P βŠ— D βŠ— N) Γ— 𝕍(P; N βŠ— Y βŠ— N) Γ— ℕ𝕍(Y; B βŠ— C) \\ = & \quad\mbox{(by definition)} \\ & ∫^{Y ∈ ℕ𝕍, P ∈ 𝕍} 𝕍(A; P βŠ— D βŠ— N) Γ— ℕ𝕍(P; X) Γ— ℕ𝕍(X; B βŠ— C) \\ = & \quad\mbox{(by Yoneda)} \\ & ∫^{P ∈ 𝕍} 𝕍(A; P βŠ— D βŠ— N) Γ— ℕ𝕍(P; B βŠ— C) \\ = & \quad\mbox{(by definition)} \\ & ∫^{P ∈ 𝕍} 𝕍(A; P βŠ— D βŠ— N) Γ— 𝕍(P; N βŠ— B βŠ— N βŠ— C βŠ— N) \\ = & \quad\mbox{(by associativity)} \\ & 𝕍(A; N βŠ— B βŠ— N βŠ— C βŠ— N βŠ— D βŠ— N). \\ \end{aligned}$$

normalization-of-a-produoidal-proof

normalization-of-a-produoidal-proof-2

Tags: produoidal category, duoidal normalization, Monoidal contexts, Symmetric normalization of a produoidal.