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Abstract. We introduce partial Markov categories as a synthetic framework for synthetic
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Elena Di Lavore, Mario Román, and Pawe l Sobociński were supported by the Safeguarded AI programme

of the Advanced Research and Invention Agency. Mario Román was additionally supported by the Air
Force Office of Scientific Research under award number FA9550-21-1-0038. This article is based upon work
from COST Action EuroProofNet, CA20111 supported by COST (European Cooperation in Science and
Technology).

Preprint submitted to
Logical Methods in Computer Science

© E. Di Lavore, M. Román, and Pawel Sobocinski
CC⃝ Creative Commons

https://orcid.org/0000-0002-7783-5079
https://orcid.org/0000-0003-3158-1226
https://orcid.org/0000-0003-3158-1226
http://creativecommons.org/about/licenses


2 E. DI LAVORE, M. ROMÁN, AND PAWEL SOBOCINSKI

1. Introduction

A good calculus for modelling decision problems needs to (i) express probabilistic processes,
to model a stochastic environment in which the agent needs to act, (ii) express constraints,
to restrict the model to satisfy the specifications of the decision problem, and (iii) explicitly
capture the implicit assumptions of decision theory. We introduce partial Markov categories:
both a syntax for modelling decision problems and a calculus for solving them.

Markov categories [Fri20] are an algebra for probabilistic processes where it is natural to
express conditioning, independence and Bayesian networks [Fon13, CJ19, Fri20, JKZ21, JZ20].
However, this language does not allow the encoding of constraints, e.g., we cannot impose a
posteriori that a certain sampling from a channel must coincide with some observation.

This limitation is due to the structure of Markov categories, which allows resources
and processes to be discarded but only resources to be copied: throwing a coin twice is
not the same as throwing it once and copying the result. String diagrams [Bén67] and
do-notation [Pat01, HJW+92, LJR24] are two internal languages for morphisms in symmetric
monoidal categories [Jef97], and for Markov categories in particular. Figure 1 shows the
string diagrams that discard and copy a generic morphism, f : X → Y , in a Markov category.

=f ; = ;
f f

g

X X X X

Y Y Y Y

Figure 1: Stochastic processes can be discarded but not copied.

Most copy-discard categories commonly used to encode stochastic processes exhibit
the additional property of having conditionals (Figure 2). Conditionals ensure that every
joint distribution can be split into a marginal and a conditional distribution. While not
necessary to encode stochastic processes, this property is essential for reasoning about
them. In this manuscript, we always consider Markov categories to have conditionals;
in standard terminology, our Markov categories are “copy and natural-discard categories
with conditionals” and our partial Markov categories are “copy-discard categories with
conditionals”.

=f ◁ g
f

X

X

A B g

A B

Figure 2: Conditionals require that a stochastic process (f ◁ g) be split into a marginal f
and a conditional g.

On the other hand, cartesian restriction categories [CL07, CO89], and discrete cartesian
restriction categories in particular [CGH12, DLNS21], are a calculus of partial processes with
constraints. Cartesian restriction categories allow the copying and discarding of resources,
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as in Markov categories. However, processes are now allowed to be copied but not to be
discarded (Figure 1).

Discrete cartesian restriction categories additionally possess an equality constraint
morphism, µX : X ⊗X → X, for each object X. Its axioms say that copying resources and
then checking that they are equal should be the same as the identity process (Figure 3).

X X X

=

X X

= =

X X X

XX X XXX

X X X X

=

X X X X X X

XX

=

XX

X X

Figure 3: Equality constraint structure and its axioms in a discrete cartesian restriction
category.

We introduce partial Markov categories and discrete partial Markov categories, which
extend Markov categories and (discrete) cartesian restriction categories to encode both
probabilistic reasoning and constraints. Discrete partial Markov categories allow the modelling
of inference problems: they can express the constraints that we observe via the comparator
map.

We claim that the algebra of partial Markov categories is a good theoretical framework
for synthetic probabilistic inference: it provides both a convenient syntax in terms of string
diagrams that translates to the computations that solve the given inference problem, and a
calculus for reasoning about them.

1.1. Contributions. Our main contribution is the algebra of partial Markov categories
(Definition 3.1) and discrete partial Markov categories (Definition 4.2). Our main result
is the construction of a partial Markov category on top of any Markov category such that
exact observations are expressed via conditionals of the base Markov category (Theorems 5.3
and 5.4).

We introduce a synthetic description of normalisation (Definition 3.8), and we prove its
compositional properties in the abstract setting of partial Markov categories: for instance,
n(f #g) = n(n(f) #g) (Proposition 3.12) and, almost surely, n(n(f)) = n(f) (Proposition 3.11).

We introduce partial Markov categories and discrete partial Markov categories in
Sections 3 and 4, where we prove a synthetic version of Bayes’ theorem that holds in any
discrete partial Markov category (Theorem 4.6). We apply this framework to compare
Pearl’sand Jeffrey’s update rules (Definitions 4.7 and 4.8 and Proposition 4.9). We prove
that the Kleisli category of the Maybe monad over a Markov category is a partial Markov
category (Section 3.5).

Finally, in Section 5, we provide a calculus for reasoning with exact observations (Defi-
nition 5.1). The construction from Theorems 5.3 and 5.4 allows us to express deterministic
observations even in non-discrete cases like that of continuous probabilistic processes.

1.2. Related work.
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Markov categories. The categorical approach to probability theory based on Markov
categories [Fri20] has led to the abstraction of various results [FR20, FPR21, FP19, FGP21].
Markov categories have also been applied in the formalisation of Bayes networks and other
kinds of probabilistic reasoning in categorical terms [Fon13, JZ20, JKZ21]. The breadth
of results and applications of Markov categories suggest that there can be an equally rich
landscape for their partial counterpart.

Categories of partial maps. Partiality has long been studied in Computer Science, and
even categorical approaches to it date back to the works of Carboni [Car87], Di Paola
and Heller [DPH87], Robinson and Rosolini [RR88], and Curien and Obtu lowicz [CO89].
However, our categorical structures are more related to more recent work on restriction
categories by Cockett and Lack [CL02, CL03], and, in particular, cartesian restriction
categories [CL07] and discrete cartesian restriction categories [CGH12, DLNS21].

Copy-discard categories. Categories of partial probabilistic processes—and even the
comparator morphism—have been previously considered [Pan99, Jac18, CJ19, Ste21], but no
comprehensive presentation was given. Bayesian inversion for compact closed copy-discard
categories appears in the work of Coecke and Spekkens [CS12]; the relationship between
that definition and Definition 3.3 might involve normalisation. Copy-discard categories have
been applied to graph rewriting [CG99], where they are called GS-monoidal.

Categorical semantics of probabilistic programming. There exists a vast literature
on categorical semantics for probabilistic programming languages (for some related, see
e.g. [Has97, SV13, SWY+16, HKSY17, EPT17, DK19, VKS19]). However, while the internal
language of Markov categories has been studied [FL22], the notion of partial Markov category
and its diagrammatic syntax have remained unexplored. Stein and Staton [SS21, Ste21] have
recently presented the Cond construction for exact conditioning, which could be related to
our construction of a partial Markov category of exact observations in Definition 5.1 via
normalisation.

Evidential Decision Theory. Existing formalisations of decision theories exist mainly in
philosophical terms [Lew81, Joy99, GW06, Ahm14, Gre13, YS17]. We provide a categorical
formalisation of Evidential Decision Theory.
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2. Background on Markov Categories

This section recalls the categorical approach to probability theory using copy-discard cat-
egories. Copy-discard categories are an algebra of processes that compose sequentially
and in parallel, with nodes that “copy and discard” the outputs of the processes. They
possess a convenient sound and complete syntax in terms of string diagrams [JS91, FL22].
In particular, copy-discard categories and the more specialized Markov categories allow us
to reason about probabilistic processes.

2.1. Copy-Discard Categories. Copy-discard categories are categories where every object
X has a “copy” morphism, νX : X → X ⊗X, and a “discard” morphism εX : X → I, forming
a commutative comonoid (Figure 4)1. The comonoid on the tensor of two objects, X ⊗ Y ,
must be the tensor of their comonoid structures: νX⊗Y = (νX ⊗ νY ) # (id ⊗ σ ⊗ id) and
εX⊗Y = εX ⊗ εY . The comonoid on the unit object must be the identity, νI = idI and
εI = idI .

= ; = ; = ;

X X X X X X

XXXXXXXXXX X X

Figure 4: Generators and axioms of a commutative comonoid.

Some morphisms will be copied and discarded by the copy and discard morphisms:
we call these deterministic and total, respectively. However, contrary to what happens in
cartesian categories, copy and discard are not necessarily natural transformations: morphisms
are not always deterministic nor total.

Definition 2.1 (Deterministic and total morphisms). A morphism f : X → Y in a copy-
discard category is called deterministic if f # νY = νX # (f ⊗ f) (Figure 5, left); a morphism
g : X → Y is called total if g # εY = εX (Figure 5, right).

=f ; = ;
f f

g

X X X X

Y Y Y Y

Figure 5: Deterministic morphism (left) and total morphism (right).

The simple algebra of copy-discard categories is already enough to discuss the first basic
concepts from probability theory: marginals, conditionals, and almost sure equality.

1Copy-discard categories have been called GS-monoidal categories when applied to graph rewriting [CG99]
and CD-categories when applied to unnormalised probabilistic processes [CJ19]. In categorical quantum
mechanics, they are copy and delete [HV19]. Fritz and Liang [FL22, Remark 2.2] expand on the history of
this structure.
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2.2. Marginals and conditionals. This section introduces conditionals and their properties
(Definition 2.5); their definition needs an auxiliary operation—marginal composition—that
extends a marginal with a given morphism (Definition 2.3, Figure 6).2

Definition 2.2 (Marginals). The projections from every pair of objects, X and Y , are the
morphisms π1 : X ⊗ Y → X and π2 : X ⊗ Y → Y defined by the equations, π1 = (idX ⊗ εY )
and π2 = (εX ⊗ idY ). The marginals of a two-output morphism, f : X → A ⊗ B, are the
two morphisms resulting from postcomposition with the two projections, f # π1 : X → A and
f # π2 : X → B.

Thus, postcomposition with the (second) projection, (• # π2), computes the (second)
marginal of a morphism in a copy-discard category. This operation has a section that brings
a morphism f : X → Y into a morphism ϕ(f) : X → X⊗Y and is defined by precomposition
with the copy morphism, ϕ(f) = νX # (idX ⊗ f). Indeed, we may check that ϕ(f) # π2 = f ,
while, in general, ϕ(f # π2) ̸= f . Still, this section-retraction pair induces a new operation.

=f ◁ g
f

X

X

A B g

A B

Figure 6: Conditional composition of f and g.

Definition 2.3 (Conditional composition). In a copy-discard category, the conditional
composition of a morphism f : X → Y with a morphism g : X ⊗ Y → Z is the morphism
(f ◁ g) : X → Y⊗ defined by the diagram in Figure 6 or, equivalently, by the formula

(f ◁ g) = ϕ(f) # ϕ(g) # π2.

Conditional composition is unital: because ϕ(εX) = idX , it follows that f ◁ εX⊗Y = f
and εX ◁ f = f . Conditional composition is also associative: note that ϕ(f ◁ g) = ϕ(f) #ϕ(g)
follows by the associativity of the comonoid and, by a general argument,

(f ◁ g) ◁ h = π(ϕ((f ◁ g) ◁ h)) = π(ϕ(f) # ϕ(g) # ϕ(h)) = πϕ(f ◁ (g ◁ h)) = f ◁ (g ◁ h).

In probability theory, we assume that every morphism can be factored through any of its
marginals: for each f : X → Y ⊗ Z, there exists some c : X ⊗ Y → Z—its conditional—such
that f = (f # π1) ◁ c. This assumption defines Markov categories and partial Markov
categories.

2Markov categories [Fri20] appear in the literature without the requirement of having conditionals – they
are defined as copy-discard categories of total maps. In this text, we call Markov categories only to those with
conditionals: the Markov categories better suited for synthetic probability all have conditionals. Our change
of convention makes the parallel with cartesian categories more explicit: Markov categories are cartesian
categories with a weaker splitting condition, instead of any category with copy and uniform discard maps.
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2.3. Markov Categories. Markov categories are a variant of copy-discard categories,
specialized for probability theory. Synthetic probability theory needs—apart from the
axioms of copy-discard categories—two extra principles. The first is that every morphism
is total: a probabilistic choice that does not affect any outcome could as well not have
happened. The second is that every joint morphism can be factored through its marginal:
we assume the existence of a morphism such that, when composed with the marginal of a
morphism, yields the original morphism. Explicitly, synthetic probability theory assumes
the existence of conditionals [CJ19, Fri20].

Definition 2.4 (Markov category). A Markov category is a copy-discard category with
conditionals where all morphisms are total.

Definition 2.5 (Conditionals). A copy-discard category C has conditionals if each morphism
f : X → Y 1 ⊗ Y 2 can be factored through its marginal:

f = (f # π1) ◁ c1
for some c1 : Y 1⊗X → Y 2. In other words, some morphism satisfies the equation in Figure 2.
In this situation, we say that c1 : Y 1 ⊗X → Y 2 is a conditional of f with respect to Y1.

=f

fX

X

Y Z c

Y Z

Figure 7: Definition of conditional.

In general, conditionals are not unique: unique conditionals only exist in posetal
categories ([FP19, Proposition 11.15]). However, conditionals are “almost surely unique”
with respect to the marginal. Indeed, many notions in Markov categories are better behaved
up to synthetic almost sure equality [FP19, Section 13].3

Definition 2.6 (Almost-sure equality). Two morphisms, g1, g2 : A ⊗X → B, are almost
surely equal with respect to f : X → A (or, f -almost surely equal) whenever f ◁ g1 = f ◁ g2.

We denote the conditional of a morphism f : X → Y ⊗Z by ccc(f) : X⊗Y → Z; note that it
is defined merely up to (f #π1)-almost sure equality. In a certain sense, conditionals generalize
how deterministic morphisms split in terms of their projections, h = ν # ((h # π1) ⊗ (h # π2)).

Proposition 2.7 (Conditional of a deterministic morphism). Let h : X → Y ⊗ Z be a
deterministic morphism. Its conditional can be constructed from composing with projections,

ccc(h) = π1 # h # π2, when h is deterministic.

3There exists a more general notion of almost sure equality [FGL+23, Definition 2.1.1] and conditional
composition [DdFR22, Remark A.14]; for simplicity, we restrict it to the case that concerns us in this work.
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2.4. Some Markov categories. This section gives examples of Markov categories. The
canonical example of Markov category is the monoidal Kleisli category of the finitary
distribution monad [Fri20], Stoch (Proposition 2.9). Standard Borel spaces and kernels
between them form a Markov category that models continuous probability, BorelStoch
(Definition 2.11).

Definition 2.8. A finitely supported distribution on a set X is a function σ : X → [0, 1]
such that the set {x ∈ X : σ(x) ̸= 0} is finite and

∑
x∈X σ(x) = 1. We indicate the set of

finitely supported distributions on a set X as D(X).

This mapping, D, can be extended to a functor D : Set → Set and to a monad, called the
finitary distribution monad. For any function, f : X → Y , the corresponding D(f) : D(X) →
D(Y ) associates to a distribution σ ∈ D(X) a new distribution, D(f)(σ) ∈ D(Y ), defined
by

D(f)(σ)(y) =
∑

x∈X,f(x)=y

σ(x).

The monad multiplication, µX ∈ D(D(X)) → D(X), associates to a distribution σ ∈
D(D(X)) the new distribution µX(σ) ∈ D(X) defined by µX(σ)(x) =

∑
τ∈D(X) τ(x) · σ(τ).

The monad unit, δ : X → D(X), associates to each element, x ∈ X, its Dirac delta, δx. The
finitary distribution monad is monoidal with structural transformation tX,Y : D(X)⊗D(Y ) →
D(X ⊗ Y ) given by tX,Y (σ, τ)(x, y) = σ(x) · τ(y).

Proposition 2.9. The Kleisli category of the finitary distribution monad, D, is a copy-
discard category with conditionals, called Stoch. Its copy and discard morphisms are lifted
from Set, by post-composing with the unit of the monad. A morphism f : X → Y in Stoch
represents a stochastic channel: we interpret the value of f(x) in y ∈ Y as the probability of
y given x according to the channel f , and we indicate it as f(y | x).

Remark 2.10 (Reading string diagrams in Stoch). The copy-discard category structure of
Stoch allows an intuitive reading of a string diagram in terms of its components. The value
of a morphism is the multiplication of the values of all the components summed over all
wires that are not inputs nor outputs. For example, the morphism in Figure 8 evaluates to
the formula

f(z1, z2 | x) =
∑
y∈Y

g(y | x) · h1(z1 | y) · h2(z2 | y).

=f ;

X

Z1 Z2

g

X

Z1

h1 h2

Z2

Y

Figure 8: String diagrammatic equation for the formula in Remark 2.10.
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Standard Borel spaces. Measurable maps between measurable spaces form a copy-discard
category. However, this category does not have conditionals. Instead, we consider its sub-
category on standard Borel spaces, which has conditionals and is a Markov category [Fri20].
Definition 2.11 (Category of standard Borel spaces). The category BorelStoch has standard
Borel spaces (X,ΣX) as objects, where X is a set and ΣX is a σ-algebra on X.

A morphism of Borel spaces, f : (X,ΣX) → (Y,ΣY ), is a function f : ΣY ×X → [0, 1]
such that, for each subset of the codomain σ-algebra, T ∈ ΣY , its probability given an input,
f(T | −) : X → [0, 1] defines a measurable function, and such that, for each input x ∈ X,
the function f(− | x) : ΣY → [0, 1] is a probability measure.

The composition of morphisms of Borel spaces is given by the following Lebesgue integral
[Pan09]; the identity morphism, idX : (X,ΣX) → (X,ΣX), is given by the Dirac measure,

(f # g)(T | x) =
∫
y∈Y

g(T |y) · f(dy|x); idX(T | x) =
{

1 if x ∈ T,

0 otherwise.
for any two morphisms f : (X,ΣX) → (Y,ΣY ) and g : (Y,ΣY ) → (Z,ΣZ). The category
BorelStoch is moreover monoidal. The monoidal product is defined on objects using the
σ-algebra generated by the cartesian product of elements of its factors, (X,ΣX)⊗ (Y,ΣY ) =
(X ⊗ Y,ΣX ⊗ ΣY ), where

ΣX ⊗ ΣY = ⟨S1 × S2 | S1 ∈ ΣX , S2 ∈ ΣY ⟩.
The monoidal tensor is defined on morphisms by

(f ⊗ f ′)(T | x, x′) =
∫
(y,y′)∈T

f(dy | x) · f ′(dy′ | x′).

The monoidal unit is the one-element set.
Definition 2.12 (Giry monad). The Giry functor, G : Meas → Meas, assigns to a set X
the set of probability measures on it. Given a morphism f : (X,ΣX) → (Y,ΣY ), it is defined
by G(f)(T | σ) = σ(f−1(T )).

This functor is a monad [Gir82]: its unit associates to each x ∈ X its Dirac measure,
η(X,ΣX)(x) = δx; its multiplication is defined as

µ(X,σX)(T |p) =
∫
τ∈G(X,σX)

τ(T ) · p(dτ).

The Giry monad is monoidal with a structural transformation analogous to that of the
finitary distribution monad: tX,Y (σ, τ)(S, T ) = σ(S) · τ(T ).
Remark 2.13. The category BorelStoch can also be seen as the Kleisli category of the Giry
monad G : Meas → Meas restricted to standard Borel spaces [Gir82, Fri20].

2.5. Subdistributions. Let us now develop two non-examples of Markov category. A
subdistribution over X is a distribution whose total probability is allowed to be less than 1
[Jac18, CJ19]. In other words, it is a distribution over X + 1. This means that a morphism
f : X → Y in subStoch represents a substochastic channel: a stochastic channel that has
some probability of failure.

The symmetric monoidal Kleisli category of the finitary subdistribution monoidal monad,
D≤1, is the main example for (discrete) partial Markov categories. It is the semantic universe
where we compute solutions to discrete inference problems.
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Definition 2.14. A finitely supported subdistribution on a set X is a function σ : X → [0, 1]
such that the set {x ∈ X : σ(x) ̸= 0} is finite and

∑
x∈X σ(x) ≤ 1. We indicate the set of

subdistributions on a set X as D≤1(X).

Proposition 2.15. The mapping D≤1 can be extended to a functor D≤1 : Set → Set and to
a monad, called the finitary subdistribution monad. For a function f : X → Y , D≤1(f) is
defined by

D≤1(f)(y|σ) =
∑

f(x)=y

σ(x),

for any subdistribution σ ∈ D≤1(X) and any element y ∈ Y .
The monad multiplication µX : D≤1(D≤1(X)) → D≤1(X) and unit ηX : X → D≤1(X)

are defined analogously to those of the finitary distribution monad D (Definition 2.8).
Explicitly, the monad multiplication is defined by

µX(x|p) =
∑

σ∈D≤1(X)
p(σ) · σ(x);

and the monad unit is defined by ηX(x|x′) = δx′(x), where δx ∈ D(X) is the Dirac distribution
that assigns probability 1 to x and 0 to everything else.

Remark 2.16. The fact that D≤1 is a functor and a monad can be proved from a distributive
law between the Maybe monad (−+ 1) with the finitary distribution monad D: the category
Set of sets and functions is distributive. This implies that (− + 1) can be lifted to the
Kleisli category kl(D) and that there is a distributive law between D and (− + 1). Their
composition is the finitary subdistribution monad D≤1 = D(− + 1). The distributive law
d : D(−) + 1 → D(− + 1) is defined by dX(σ) = σ∗ and dX(⊥) = δ⊥, where σ ∈ D(X) and
σ∗ is σ extended to X + 1 by σ∗(⊥) = 0. See the work of Jacobs for details [Jac18, Section
4].

Call subStoch the Kleisli category of the subdistribution monad, D≤1. Even when this
category has conditionals, not every map is total, which prevents it from being a Markov
category.

Proposition 2.17. SubStoch is a copy-discard category with conditionals.

Standard Borel spaces. The analogue of subStoch for Borel spaces is BorelStoch≤1. A mor-
phism f : X → Y in BorelStoch≤1 represents a stochastic channel that has some probability
of failure, i.e. f(x) is a subprobability measure.

Definition 2.18 (Subprobability measure). A subprobability measure p on a measurable
space (X,σX) is a measurable function such that p(X) ≤ 1.

Definition 2.19 (Category subdistributions between standard Borel spaces). The objects
of BorelStoch≤1 are standard Borel spaces, (X,ΣX), where X is a set and ΣX is a σ-algebra
on X.

A morphism f : (X,σX) → (Y, σY ) in BorelStoch≤1 is a function f : ΣY ×X → [0, 1]
such that, for each measurable set T ∈ σY , the conditional f(T | −) : X → [0, 1] is a mea-
surable function, and, for each element x ∈ X, the function f(−|x) : ΣY → [0, 1] forms a
subprobability measure.

Identities and composition are defined as in BorelStoch.
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Remark 2.20 (Panangaden’s monad [Pan99]). The category BorelStoch≤1 arises as the
Kleisli category of Panangaden’s monad, G≤1. Its underlying functor is the composition of
the Giry functor and the Maybe functor: G≤1 = G(−+ 1). There is a candidate distributive
law d : G(−) + 1 → G(− + 1) defined by dX(σ) = σ∗ and dX(⊥) = δ⊥, where σ∗ is the
extension of σ to X + 1 by σ∗({⊥}) = 0. Proposition 2.21 shows that this is indeed a
distributive law between the Giry monad and the Maybe monad.
Proposition 2.21. There is a distributive law between the Giry monad and the Maybe
monad: d : G(−) + 1 → G(− + 1).
Proof. We will deduce the existence of the distributive law from the fact that the composite
functor is a monad with the multiplication and units given by the potential distributive law.

The composite functor G(− + 1) = G≤1 is a monad [Pan99], with multiplication and
unit given by compositions of the multiplications and units of G and (− + 1). For the units,
this is easy to see as the unit of G(− + 1) is just the inclusion of the unit of G, and the
inclusion G → G(− + 1) is given by the unit of (− + 1). For the multiplications, we can
check that µ = (id ⊗ d⊗ id) # (µ1 ⊗ µ2). In fact, let p ∈ G(G(X + 1) + 1). Then,

((id ⊗ dX ⊗ id) # (µ1 ⊗ µ2))(p) =
∫
τ∈G(X+1)

τ(−) · p(dτ),

which corresponds with the definition of the multiplication of G(− + 1). The components
defined in Remark 2.20 form a natural transformation. These conditions already imply that
there is in fact a distributive law between G and (− + 1).
Remark 2.22 (Domain of definition). In subStoch, the composition of a morphism f : X →
Y with the discard map yields the probability of “success”: the probability that it does not
fail,

(f # ε)(∗ | x) =
∑
y∈Y

f(y | x) = 1 − f(⊥ | x).

In restriction categories, Cockett and Lack [CL02] call (f #ε) : X → I the domain of definition
of f ; we extend this nomenclature to all copy-discard categories.

For instance, in subStoch, each morphism has a fuzzy domain of definition where the
degree of membership of the element x ∈ X is 1 − f(⊥ | x). This fuzzy set is crisp exactly
when (f # ε) is itself deterministic (Figure 9): in this case, f factors through the inclusion
D(Y ) + 1 ↪→ D≤1.

= ff f

XX

Figure 9: Deterministic domain of definition.

Remark 2.23 (Towards partial Markov categories). These last two categories, subStoch
and BorelStoch≤1, are still copy-discard categories with conditionals; but not all of their
morphisms are total. This means that they are not Markov categories. We claim that
totality is not essential for modelling stochastic processes and that dropping this assumption
allows us to pursue a synthetic theory of inferential update and observations. This is the
main idea behind partial Markov categories.
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3. Partial Markov Categories

3.1. Partial Markov categories. Cartesian restriction categories extend cartesian cate-
gories encoding partiality: a map may not be defined on all its inputs and fail when evaluated
on inputs outside its domain of definition. We introduce partial Markov categories as a
similar extension of Markov categories to encode partial stochastic processes, i.e., stochastic
processes that have a probability of failure on each one of their inputs. Partiality is obtained
by dropping naturality of the discard maps, i.e. by allowing morphisms to be non-total.

This extra generality will lead us later to discrete partial Markov categories: partial
Markov categories with the ability of comparing two outputs. These are the analogue of
discrete cartesian restriction categories [CL02, DLNS21].

Cartesian category Markov category
Cartesian restriction category Partial Markov category

Discrete cartesian restriction category Discrete partial Markov category

Definition 3.1 (Partial Markov category). A partial Markov category is a copy-discard
category with conditionals.

In a Markov category, all morphisms—and in particular all conditionals—are total. In
partial Markov categories, we drop the totality assumption while still obtaining marginals
by discarding one of the outputs. Instead of being total, conditionals in partial Markov
categories are almost surely total.

Proposition 3.2 (Conditionals are almost surely total). Conditionals in partial Markov
categories are almost surely total with respect to the marginal.

Proof. Let us show that, given f : X → Y ⊗Z, its conditional, ccc(f) : X ⊗ Y → Z, is (f # π1)-
almost surely total, meaning that (f # π1) ◁ (ccc(f) # ε) = (f # π1) ◁ ε. By (i) the definition of
projection, (ii) the definition of conditional, and (iii) counitality, we have that

(f # π1) ◁ (ccc(f) # ε) (i)= ((f # π1) ◁ ccc(f)) # π2
(ii)= f # π2

(iii)= (f # π2) ◁ ε.

f

c

ff

X

B B B

X X

(i)= (ii)=

Figure 10: Conditionals are almost surely total.

Equivalently, the string diagram reasoning in Figure 10 shows that the conditional is (f #
π2)-almost surely total. We employ (i) the definition of conditional, and (ii) counitality.
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3.2. Bayesian inversions. The Bayesian inversion of a stochastic channel g : X → Y with
respect to a distribution p over X is the stochastic channel g†(p) : Y → X defined by

g†(p)(x | y) = g(y | x) · p(x)∑
x•∈X g(y | x•) · p(x•)

,

for any y ∈ Y with positive probability, meaning that
∑

x•∈X g(y | x•) · p(x•) > 0.
Bayesian inversions can be defined abstractly in partial Markov categories, as they can

be in Markov categories [Fri20, Proposition 11.17]: Bayesian inversions are a particular case
of conditionals. We state this result for partial Markov categories (Proposition 3.4) as a
straightforward generalisation of that for Markov categories [Fri20, Proposition 11.17].

Definition 3.3 (Bayesian inversion). A Bayesian inversion of a morphism g : X → Y with
respect to p : I → X is a morphism g†(p) : Y → X satisfying the equation in Figure 11.

p

g

p

g

g†(p)

=

Figure 11: Bayesian inversion.

Proposition 3.4. In a partial Markov category, all Bayesian inversions exist. The Bayesian
inversion of g with respect to p is (p # g)-almost surely unique.

Proof. The Bayesian inversion of g with respect to p is given by the conditional of the
morphism p # νX # (g ⊗ id). Explicitly,

g†(p) = ccc(p # νX # (g ⊗ id)).

Note that (p # νX # (g ⊗ id) # π1) = (p # g), making the conditional (p # g)-almost surely
unique.

Bayesian inversions can be computed compositionally: results for doing so appear in the
work of Fritz [Fri20, Lemma 11.11], for Markov categories, and Jacobs [Jac19, Section 5.1],
for Stoch. We recast these in the setting of partial Markov categories.

Proposition 3.5 (Bayesian inversion of a composite). A Bayesian inversion of a composite
channel (f # g) : X → Y with respect to a distribution p : I → X can be computed by first
inverting f with respect to p and then inverting g with respect to (p # f):

(f # g)†(p) = g†(p # f) # f†(p).

Proposition 3.6 (Conditional of a composite). Let f : X → Y and g : Y → Z ⊗ W be
two morphisms of a partial Markov category. The conditional of their composition can be
computed from a Bayesian inversion, bbb(f, g) = (g # π1)†(f), and the conditional of the second
morphism, ccc(g) : Y ⊗ Z → W , as in Figure 12.

Proof. We reason by string diagrams. We use (i) the definition of conditional; (ii) the
definition of Bayesian inversion; and (iii) associativity and commutativity.
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ccc(f # g)
bbb(f, g)

ccc(g)
= ;

Figure 12: Conditional of a composition.

= ;
f

g

f

g

ccc(g)

=

f

g

bbb(f, g)

ccc(g)

f

g

bbb(f, g)

ccc(g)

=

Figure 13: Construction of the conditional of a composition.

Example 3.7 (Bayesian inversions via density functions, c.f. [CJ19, Example 3.9]). In
BorelStoch, the Bayesian inversion of a channel f : (X,ΣX) → G(Y,ΣY ) with respect to a
prior, p ∈ G(X,ΣX), is a channel satisfying∫

x∈SX

∫
y∈SY

c(dy|x) · σ(dx) =
∫
x∈SX

∫
y∈SY

c†(σ)(dx|y) ·
∫
x0∈X

c(dy|x0) · σ(dx0),

for each SX ∈ ΣX and SY ∈ ΣY . These inversions need not to exist in the more general
category of arbitrary Borel spaces [FP19] and, even for standard Borel spaces, they could be
difficult to compute. Note how the inversion, c†(p), cannot depend on dy but just on y.

However, distributions and channels are often given by density functions,

p(SX) =
∫
x∈SX

ppdf (x) dx; f(SY |x) =
∫
y∈SY

fpdf (y, x) dy.

In these cases, we can construct a Bayesian inversion as follows: we compute its density
function and integrate it to obtain the following channel,

f†(p)pdf (x, y) = fpdf (y, x) · ppdf (x)∫
x0∈X fpdf (y, x0) · ppdf (x0) dx0

; f†(p)(SX , y) =
∫
x∈SX

f†(p)pdf (x, y) dx,

which does constitute a Bayesian inversion in this case,∫
x∈SX

∫
y∈SY

f†(p)pdf (x, y) ·
(∫

x0∈X
fpdf (y, x0) · ppdf (x0) dx0

)
=∫

x∈SX

∫
y∈SY

fpdf (y, x) · ppdf (x) dx.
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3.3. Normalisation. The normalisation of a partial stochastic channel f : X → Y is, classi-
cally, uniquely defined on each x ∈ X with non-zero probability of sucess, i.e. 1 − f(⊥ | x) > 0;
while, whenever f(⊥ | x) = 1, any output acts as a normalisation.

n(f)(y | x) = f(y | x)
1 − f(⊥ | x) .

Normalisations can be defined in any partial Markov category. In Markov categories, this
notion trivialises: because all morphisms are required to be total, every morphism is its own
normalisation.

Definition 3.8 (Normalisation). Let f : X → Y be a morphism in a partial Markov category.
A normalisation of f is any morphism n(f) : X → Y such that f = (f # ε) ◁ n(f).

Proposition 3.9 (Existence and uniqueness of normalisations). In a partial Markov category,
all normalisations exist. The normalisation of f : X → Y is (f # εY )-almost surely unique.

Remark 3.10. Normalisation induces an operator taking a morphism f : X → Y , to a
morphism n(f) : X → Y defined up to (f # εY )-almost sure equality. Multiple authors depict
this operator as a shaded box: the contents of the box represent the morphism that is being
normalised; the operator must appear conditionally composed with its discarded version in
order for it to be well-defined. The box is not functorial. This shaded box can be explained
in terms of a collage of string diagrams, but we do not go into details here.

=f ;
f f

Figure 14: Normalisation of a morphism.

Normalisations are the particular case of conditionals for the domain of definition: the
normalisation of f is given by the conditional on the monoidal unit of (f # ε). Even when
normalisations are not unique, they are almost surely unique. Even when normalisations are
not idempotent, they are almost surely idempotent.

Proposition 3.11 (Normalisations are almost surely idempotent). The normalisation of
the normalisation of a morphism f : X → Y is (f # εY )-almost surely equal to the original
normalisation,

n(n(f)) =(f #ε) n(f).

Proof. We reason by the string diagrams of Figure 15.

= ;f f
f f

= = f f f=
f

f

f

f

Figure 15: Normalisation is idempotent.
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Normalisation is not functorial (and the shaded box is not a functor box); functoriality,
n(f # g) = n(f) # n(g), already fails in SubStoch. What is instead true is that normalising at
the end of a computation is the same as normalising at any point, n(f # g) = n(n(f) # g).

Proposition 3.12 (Normalisation precomposes). Let f : X → Y and g : Y → Z be two
morphisms in a partial Markov category, then n(f # g) = n(n(f) # g).

Proof. We reason by the string diagrams in Figure 16.

=f

g g

f f

g g

f f f

g g

f f=

g

f f= =
g

f ;

Figure 16: Normalisation precomposes.

Normalisation does not influence conditioning: the conditionals of a normalisation are
still conditionals for the original morphism. Theorem 5.4 relies on this result.

Proposition 3.13. Let f : X → Y ⊗ Z be a morphism in a partial Markov category. Then,
the conditionals of the normalisation of f are conditionals of f .

3.4. Deterministic domains. We could be tempted to impose that conditionals be total
morphisms, but this is not possible even in SubStoch: the “always fail” map ⊥ : A → 0 cannot
have a total conditional. However, we may impose a weaker condition: that conditionals
have a deterministic domain. This is a route we have explored in previous work [DR23]; in
this manuscript, we will study it without assuming that all conditionals have a deterministic
domain.

Definition 3.14 (Deterministic domain). A deterministic-domain morphism f : A → B in
a copy-discard category is a morphism such that its domain of definition, (f # ε) : A → I, is
deterministic (Figure 9).

Remark 3.15. All deterministic morphisms are deterministic-domain morphisms; discarding
their outputs (Remark 2.22) defines their domain in the sense of Cockett and Lack [CL02].
Lemma 3.16 precises this relationship.

Lemma 3.16. In a partial Markov category, a morphism f : A → B has a deterministic
domain if and only if it is its own normalisation: f =f #ε n(f), or, in other words, f = (f #ε)◁f
(Figure 17).

=f ;
f f

X X

Y Y

Figure 17: Characterisation of deterministic-domain morphisms.
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Proof. Let us show the first implication: whenever the equation in Figure 17 holds, we can
discard the outputs on both sides of the equation and conclude that the domain must be
deterministic: f = (f # ε) ◁ f implies

(f # ε) = (f # ε) ◁ (f # ε) = ν # ((f # ε) ⊗ (f # ε)).
For the opposite implication, we employ the existence of the normalisation of f .

f = (f # ε) ◁ n(f) = (f # ε) ◁ (f # ε) ◁ n(f) = (f # ε) ◁ f.
We conclude that any deterministic-domain morphism is its own normalisation.

Example 3.17. In the Kleisli category of the distribution monad, subStoch, a morphism
f : X → Y has a deterministic domain if and only if it factors through the inclusion
distributions and failure into subdistributions, D(X) + 1 ↪→ D≤1(X).

Lemma 3.18 (Deterministic morphisms have deterministic domains). Deterministic mor-
phisms in a copy-discard category have a deterministic domain.

Proof. Using that the morphism is deterministic,
(f # ε) = f # ν # (ε⊗ ε) = ν # ((f # ε) ⊗ (f # ε)),

which proves that its domain is deterministic.

Lemma 3.19. Let f : X → A⊗B be a morphism in a partial Markov category that can be
factored as f = (m ◁ c) for any m : X → A and some deterministic-domain c : A⊗X → B;
then f = (f # π1) ◁ c.

Proof. Let us show the existence of conditionals, (f # π1) ◁ c = f . We employ (i) the
decomposition of f , by assumption; (ii) associativity; (iii) that c has a deterministic domain,
characterized in Lemma 3.16; and (iv) again the decomposition of f .

(f # π1) ◁ c
(i)= ((m ◁ c) # π1) ◁ c

(ii)= m ◁ (c # π1) ◁ c
(iii)= m ◁ c = f.

Considering again Proposition 2.17, one can conjecture that a similar procedure may
exist in Kleisli categories of Maybe monads on other Markov categories. We show that this
is indeed the case.
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3.5. Kleisli categories of maybe monads. We prove in this section that the Kleisli
categories of exception monads over Markov categories have conditionals; these conditionals
are inherited from the base category. This is a recipe for constructing partial Markov
categories from Markov categories with coproducts: any exception monad will induce a
partial Markov category.

Definition 3.20 (Distributive Markov category, c.f. [AFK+24, LS24]). A distributive Markov
category is a Markov category with coproducts that have deterministic injections, i1 : X →
X +Y and i2 : Y → X +Y , and such that the distributor, d : X⊗Z +Y ⊗Z → (X +Y )⊗Z,
is a deterministic isomorphism.4

In a distributive Markov category, an idempotent ⊗-monoid E induces a monoidal
monad, (• + E), called its exception monad. The Kleisli category of this exception monad is
again a copy-discard category; we prove that it is also a partial Markov category. For this
proof, we use multiple results that we detail during the rest of the section; we also introduce
the notion of a functor that preserves the copy morphism.

Theorem 3.21 (Partial Markov categories from Maybe monads). The Kleisli category of
the maybe monad, (• + 1), over a distributive Markov category is a partial Markov category.

Proof. From the deterministic inclusions of a distributive Markov category, we build a
deterministic laxator for the maybe monad; the maybe monad is a copy functor (as we will
introduce in Definition 3.22) with this monoidal structure

lX,Y : (X + 1) ⊗ (Y + 1) → X ⊗ Y + 1.

Applying Proposition 3.23, we obtain a section for the laxator, sX,Y # lX,Y = id.
Given any morphism in the Kleisli category of the maybe monad, f : X → T (Y ⊗Z), we

can construct a conditional for (f # sY,Z): there exists some c : X ⊗ T (Y ) → T (Z) such that

f # sY,Z = (f # sY,Z # π1) ◁ c.

Postcomposing with the laxator, we obtain the following equation; by , we know that the
conditional can be replaced by the Kleisli extension of some d : X ⊗ Y → T (Z)

f = ((f # sY,Z # π1) ◁ c) # lY,Z
= ((f # sY,Z # π1) ◁ d∗) # lY,Z .

Finally, by Lemma 3.24, this is the same as saying that f = (f # π∗) ◁∗ d; in other words, we
have constructed a conditional in the Kleisli category.

Definition 3.22 (Copy functor). A copy functor is a lax monoidal functor F between copy-
discard categories, with structure maps lX,Y : F (X) ⊗ F (Y ) → F (X ⊗ Y ) and l0 : I → F (I),
that preserves the copy morphism, F (νX) = νFX # lX,X .

Proposition 3.23. Any copy functor with a deterministic laxator, (F, l), is also an oplax
copy functor, (F, l, s), with the oplaxator constructed from copying and discarding,

s = νF (X⊗Y ) # (F (π1) ⊗ F (π2)).

Moreover, the oplaxator splits the laxator, s # l = id.

4Note that we ask Markov categories to have conditionals: in the literature, distributive Markov categories
can be found as “distributive Markov categories with conditionals” [AFK+24, LS24].
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Proof. We write this proof equationally. Alternatively, one can employ functor boxes for lax
monoidal functors [Mel06]. Let us first show that it splits the laxator. We reason by (i)
naturality of the laxator, (ii) preservation of copy, (iii) functoriality, and (iv) the comonoid
axioms.

νF (X⊗Y ) # (F (π1) ⊗ F (π2)) # lX,Y
(i)=

νF (X⊗Y ) # lX⊗Y,X⊗Y # F (π1 ⊗ π2)
(ii)=

FνX⊗Y # F (π1 ⊗ π2)
(iii)=

F (νX⊗Y # (π1 ⊗ π2))
(iv)=

F (id).
Let us show that the oplaxator preserves copy. We reason by (i) preservation of copy, (ii)
determinism of the laxator, (iii) associativity of the comonoid, (iv) preservation of copy
(twice), and (v) unitality of the comonoid.

FνX # νF (X⊗X) # (F (π1) ⊗ F (π2))
(i)=

νFX # lX,X # νF (X⊗X) # (F (π1) ⊗ F (π2))
(ii)=

νFX # νF (X)⊗F (X) # (lX,X ⊗ lX,X) # (F (π1) ⊗ F (π2))
(iii)=

νFX # (νF (X) ⊗ νF (X)) # (lX,X ⊗ lX,X) # (F (π1) ⊗ F (π2))
(iv)=

νFX # (F (νX) ⊗ F (νX)) # (F (π1) ⊗ F (π2))
(v)=

νFX .

In categories of total maps, we moreover have a unit oplaxator, s0 : F (I) → I.

The next lemma will rewrite the conditionals of the Kleisli category of a lax monoidal
monad in terms of the conditionals of the base category and Kleisli extension. Given any
strong monad, T , its strong Kleisli extension [MU22] is the operation lifting a morphism
f : X ⊗ Y → T (Z) to a morphism f∗ : X ⊗ T (Y ) → T (Z).

Lemma 3.24. Let f : X → T (Y ) and g : X ⊗ Y → T (Z) be morphisms in the Kleisli
category of a copy monad over a total copy-discard category. Their conditional composition
in the Kleisli category, (◁∗), can be rewritten as

(f ◁∗ g) = (f ◁ g∗) # l.

Lemma 3.25. Let g : X ⊗ (Y + 1) → Z + 1 be a morphism in the Kleisli category of the
maybe monad. There exists a morphism h : X ⊗ Y → Z + 1 whose Kleisli extension replaces
g in any conditional composition, by any f : X → Y + 1, followed by the laxator,

(f ◁ g) # l = (f ◁ h∗) # l.

Proof. We may split the morphism into g1 : X ⊗ Y → Z + 1 and g2 : X → Z + 1.
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4. Discrete Partial Markov Categories

We shall now introduce discrete partial Markov categories, a refinement of partial Markov
categories that allows for the encoding of constraints.

Discrete cartesian restriction categories [CGH12] are a refinement of cartesian restriction
categories that allows for the encoding of constraints: a map may fail if some conditions are
not satisfied. Our observation is that a similar refinement can be applied to partial Markov
categories to obtain discrete partial Markov categories. They provide a setting in which it is
possible to (i) constrain the behaviour of a morphism, via Bayesian updates; and (ii) reason
with these constrained stochastic maps.

The encoding of constraints requires the existence of comparator maps that interact
nicely with the copy and discard (Figure 18, see also Remark 4.4). A comparator declares that
some constraint—usually coming from an observation—must be satisfied in a probabilistic
process.

Definition 4.1 (Comparator). A copy-discard category C has comparators if every object
X has a morphism, µX : X ⊗X → X, that is uniform, commutative, associative, satisfies
the Frobenius axiom, and the special axiom. In other words, it is a partial Frobenius monoid
[DLNS21], as in Figure 18.

X X X

=

X X

= =

X X X

XX X XXX

X X X X

=

X X X X X X

XX

=

XX

X X

Figure 18: Axioms of a partial Frobenius monoid.

Definition 4.2 (Discrete partial Markov category). A discrete partial Markov category is a
partial Markov category with comparators. In other words, it is copy-discard category with
conditionals and comparators.

Example 4.3 (SubStoch is a discrete partial Markov category). The Kleisli category of
the finitary subdistribution monad, subStoch, is a discrete partial Markov category. The
comparator µX : X ⊗X → X is given by

µX(x | x1, x2) =
{

1, x = x1 = x2;
0, otherwise.

The comparator, copy, and discard morphisms of subStoch are lifted from the category
of partial functions via the inclusion ι : Par ↪→ subStoch given by post-composition with
the unit of the finitary distribution monad. The comparator in Par satisfies the axioms in
Figure 18 as copying a resource and then checking that the two copies coincide should be the
identity process, and for checking equality of two resources and then copying them should
be the same as copying one resource if it coincides with the other one. By functoriality of
the inclusion ι : Par ↪→ subStoch, the comparator satisfies the same axioms in subStoch.

Remark 4.4. Thanks to the special Frobenius axioms (Figure 18), string diagrams in
subStoch keep the same intuitive reading as in Stoch: the value of a morphism is obtained by
multiplying the values of all its components and summing on the wires that are not inputs
nor outputs. For example, the value of the morphism is the following formula.
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X

=f k

g

h

X

Z

Z

f(z | x) =
∑
y∈Y

g(y | x) · h(z | y) · k(y).

Example 4.5 (Naive comparators in continuous probability). The category BorelStoch≤1
can be endowed with a naive comparator, µX : (X,ΣX) ⊗ (X,ΣX) → (X,ΣX), that satisfies
the special Frobenius axioms:

µX(A, x, y) =
{

1, if x = y ∈ A;
0, otherwise.

This definition gives a measurable function µX(A | −,−) : X ×X → [0, 1] if and only if the
diagonal ∆X = {(x, x) : x ∈ X} belongs to the product σ-algebra, ΣX × ΣX , which holds
for standard Borel spaces. However, this naive comparator does not behave as we would
like it to: the set {x0} has measure 0, so comparing with x0 yields the subdistribution with
measure 0, which cannot be renormalised. We address this problem in the following sections.

4.1. Bayes’ Theorem. Bayes’ theorem prescribes how to update one’s belief in light of
new evidence. Classically, one observes evidence y ∈ Y from a prior distribution σ on X
through a channel c : X → Y . The updated distribution is given by evaluating the Bayesian
inversion of the channel c on the new observation y.
Theorem 4.6 (Bayes’ Theorem). In a discrete partial Markov category, observing a deter-
ministic y : I → Y from a prior distribution p : I → X through a channel f : X → Y is the
same, up to scalar, as evaluating the Bayesian inversion on the observation, f†(p)(y).

p

f
y

f†(p)

=y

p

fy

Figure 19: Bayes’ theorem.

Proof. The equalities follow from: (i) the definition of Bayesian inversion (Definition 3.3),
(ii) the partial Frobenius axioms (Figure 18), and (iii) the fact that y is deterministic.

p

f
y

f†(p)

(i)=y

p

fyf
y

f†(p)

p p

fy

f†(p)

(ii)= (iii)=

Figure 20: Proof of the Bayes’ theorem.
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4.2. Pearl’s and Jeffrey’s updates. The process for updating a belief on new evidence
may depend on the type of evidence given. Pearl’s [Pea88, Pea90] and Jeffrey’s [Jef90, Sha81,
Hal17] updates are two possibilities for performing an update of a belief in light of a new
piece of evidence that is not necessarily a single deterministic observation [Jac19]. Updating
a prior belief according to Pearl’s rule increases validity, i.e. the probability of the new
evidence being true according to our belief [CJWW15]. On the other hand, updating with
Jeffrey’s rule reduces “how far” the new evidence is from our prediction, i.e. it decreases
Kullback-Leibler divergence [Jac19, Jac21].

The difference between these two update rules comes from the fact that they are based
on different types of evidence. Pearl’s evidence comes as a probabilistic predicate, i.e. a
morphism q : Y → I in a discrete partial Markov category. Pearl’s update coincides with
the update prescribed by Bayes’ theorem.

Definition 4.7 (Pearl’s update). Let p : I → X be a prior distribution and q : Y → I be
a predicate in a discrete partial Markov category C, which is observed through a channel
f : X → Y . Pearl’s updated prior is defined to be p ◁ (f # q) or, equivalently, (f # q)†(p), the
Bayesian inversion of f # q with respect to p.

p

f =

q

p

f

q

(f # q)†(p)

Figure 21: Pearl’s update.

Jeffrey’s evidence, on the other hand, is given by a distribution on Y .

Definition 4.8 (Jeffrey’s update). Let t : I → Y be a state in C. Jeffrey’s updated prior is
t # f†(p), the composition of the evidence with a Bayesian inversion of f with respect to p.

When Pearl’s evidence predicate q is deterministic—that is, its probability mass is
concentrated in just one point y ∈ Y —then it becomes a comparison. In this case, there

=q
y

is no difference between the two update rules. This result was shown by Jacobs [Jac19,
Proposition 5.3] in the case of the Kleisli category of finitary distribution monad: let us
prove it in any discrete partial Markov category.

Proposition 4.9. Pearl’s and Jeffrey’s updates coincide for deterministic observations. Let
y : I → Y be deterministic, then Pearl’s update on the predicate q : Y → I, as defined in
Section 4.2, is Jeffrey’s update on y.

Proof. The result follows from exactly the same string diagrammatic reasoning as Bayes’
theorem (Theorem 4.6).
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5. Exact Observations

Bayesian inference, in discrete partial Markov categories, relies on the existence of com-
parators. However, many partial Markov categories may not have this structure or, even
worse, its comparator structure might not behave as expected, providing a poor semantics
of Bayesian inference (see Example 4.5). The solution to this problem comes from noticing
that, in most inference problems, we only care about exact observations.

5.1. Exact observations. We define the category exact(C) of exact observations over a
copy-discard category, C, by syntactically adding observations of deterministic evidence.
A different but similarly behaved construction has appeared in the work of Stein and
Staton [SS21, Ste21]. We show that, when C is a Markov category, processes with exact
observations form a partial Markov category; conditionals and normalisations for them can
be computed with the conditionals from the original Markov category. A normal form
theorem will enable this computation.

Definition 5.1 (Exact observations). The category of processes with exact observations,
exact(C), over a copy-discard category C, is obtained by freely adding a generator x◦ : X → I
for every deterministic morphism without inputs, X : I → Y , and quotienting by com-
patibility with the tensor, (x ⊗ y)◦ = x◦ ⊗ y◦ and id◦

I = idI , and the observation axiom
x◦ ◁ id = x◦ # x (in Figure 22).

x◦ = x

X

x◦

X

XX

Figure 22: Axiom for the category of exact observations.

We interpret the generator x◦ : X → I as the observation of the corresponding deter-
ministic evidence x : I → X. Under this interpretation, the following equivalent formlation
of the axiom explains that observing x and computing some f is the same as observing x
and passing it to the input of that computation,

x◦ ◁ f = x◦ # x # f.

Proposition 5.2. The category of exact observations, exact(C), embeds faithfully in partial(C),
the free discrete copy-discard category over C.

Proof sketch. We define an identity-on-objects functor J : exact(C) → partial(C). Every
morphism f in exact(C) that comes from a morphism in C is left unchanged: J(f) = f . In
other words, the functor J commutes with the inclusions of C into exact(C) and partial(C).

For every deterministic morphism x : 1 → X, the image of its corresponding observation
is defined as J(x◦) = (x⊗ id) #µX #εX (i.e., the right hand side of Figure 22). The fact that J
is well defined—and its faithfulness—follow from string diagrammatic reasoning [DR23].

Exact observations on a Markov category give a syntax for stochastic processes with
some observations of deterministic evidence. In principle, it is not clear how to compute the
semantics of these exact observations and, in particular, how to compute conditionals of



24 E. DI LAVORE, M. ROMÁN, AND PAWEL SOBOCINSKI

them. We show that we can give semantics to exact observations in the original Markov
category by computing their normalisations.

A consequence of this result is that conditionals of processes with exact observations
can be computed by conditionals in the original Markov category.

Theorem 5.3. Any morphism in the category of processes with exact observations, exact(C),
can be written in normal form as f = (h # z◦) ◁ g, where g and h are total, and where z is
total and deterministic. Moreover, g is, almost surely, the normalisation of f .

Proof sketch. The proof proceeds by structural induction on f , we detail the non-trivial
cases. Given two processes with exact observations in normal form, f1 = (h1 # z◦1) ◁ g1 and
f2 = (h2 # z◦2) ◁ g2, its tensor is again in normal form,

f1 ⊗ f2 = ((h1 # z◦1) ◁ g1) ⊗ ((h2 # z◦2) ◁ g2) = ((h1 ⊗ h2) # (z1 ⊗ z2)◦) ◁ (g1 ⊗ g2).

Given two composable processes with exact observations in normal form, f1 = (h1 # z◦1) ◁ g1
and f2 = (h2 # z◦2) ◁ g2, its composition can be written in normal form as follows, using
Bayesian inversions,

f1 # f2 = (h1 ⊗ (g1 # h2) # (z1 ⊗ z2)◦) ◁ ((id ⊗ z2) # h2†(g1) # g2);

we prove this by string diagrammatic reasoning (Figure 23).

h1

z◦1

g1

h2

z◦2

g2

h1

z◦1

g1

z◦2

h2

h†
2(g1)
g1

h1

z◦1

g1

z◦2

h2h†
2(g1)

z2= =

Figure 23: Composition of processes with exact observations in normal form.

Finally, let us show that f = (h # z◦) ◁ g—with g a total morphism—implies that g is,
almost surely, the normalisation of f . We use (i) the assumption, (ii) totality of g, and (iii)
the assumption.

f
(i)= (h # z◦) ◁ g (ii)= (h # z◦) ◁ (g # ε) ◁ g (iii)= (f # ε) ◁ g.

Theorem 5.4. The category of exact observations over a Markov category, exact(C), is a
partial Markov category. Its conditionals can be computed from the conditionals of the base
Markov category.

Proof. By Theorem 5.3, we can compute a normalisation n(f) of a process with exact
observations f in C by taking conditionals in C. By Proposition 3.13, a conditional of n(f)
is a conditional of f and it can be computed by only taking conditionals in C.
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5.2. Example — Inferring the mean of a normal distribution. Assume a normal
distribution, Norm(m, 1), with standard deviation of 1 and with its mean sampled uniformly
from the interval m ∼ unif(0, 1). We sample from this normal distribution, v ∼ Norm(m, 1),
and observe a value of, say, v = 2.1. What is updated posterior distribution on m?

The reasoning from the operational description of the problem to a computational
description is in . It rewrites a diagram containing exact observations into a diagram in the
normal form of Theorem 5.3.

We now use the explicit density functions for the uniform and normal distributions to
construct two morphisms, unif : I → R and norm: R → R, of the category of standard Borel
spaces, BorelStoch.

unifpdf[0,1](x) = δ[0,1](x); normpdf (x,m) = 1√
2π

exp
(
−1

2(x−m)2
)
.

Because these are constructed from density functions, the Bayesian inversion of the normal
distribution has a known density function (Example 3.7).

norm†(unif [0,1])pdf (m|x) =
unifpdf[0,1](x) · normpdf (x,m)∫

x0∈X unifpdf[0,1](x0) · normpdf (x0,m) dx0
.

Now, string diagrammatic reasoning in the category of processes with exact observations
does evaluate the observation on the Bayesian inversion (Figure 24).

=
u

n

n†(u)

u

n

v v

=

n†(u)

u

n

v
v

Figure 24: Bayesian inversion via exact observations.

Let us plot the density function of the posterior distribution, norm†(unif [0,1])pdf (m|x),
for multiple values of v. We do this by numerically evaluating the integral expression we
obtain from the string diagrams.

(a) (b) (c) (d)

Figure 25: Graphs for the posterior density functions after observing (a) v = −1.1, (b)
v = 0.21, (c) v = 0.78, and (d) v = 2.4.

In this way, partial Markov categories of exact observations may seen as providing
further algebraic justification for the compositional approach to exact conditioning [SS21,
Section IV]. Finally, note that computing exact observations is also not restricted to Gaussian
probability theory (Theorem 5.3); we can handle computations with integrals symbolically,
even if we choose to compute them numerically for Figure 25.
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