
SOLVING PUZZLES IN DECISION THEORY

ELENA DI LAVORE, MARIO ROMÁN

Abstract. We solve a sample of puzzles from probabilistic decision theory
using the operational semantics of the subdistribution monad to interpret do-
notation statements as mathematical objects.

Contents

1. Introduction 1
2. Do-notation and its semantics 3
3. Problem – Three Covid tests 4
4. Problem – Monty Fall 5
5. Problem – Newcomb’s Paradox 5
6. Problem – Death in Damascus 6
7. Problem – The Three Prisoners 7
8. Problem – Sailor’s Child 8
References 9

1. Introduction

Decision theory problems are famously controversial: the Monty Hall controversy
[Sel75, vS], Newcomb’s paradox [Noz69], or the sleeping beauty paradox [Elg20] all
have been much debated both in philosophy and mathematics.

At the same time, even formalizing the statement of simple problems in statistical
inference causes a reasonable amount of confusion. Recently, Jacobs conducted a
small survey among a hundred academic colleagues in AI and medical statistics: the
answers were inconsistent even inside the same field; the approach and notation were
not systematic [Jac24]. It is fair to say that a procedure for solving probabilistic
decision theory problems is not common knolwedge. We could blame the implicit
assumptions hidden in problem statements: a good formal language that makes
these assumptions explicit could help us settle down these controversies.

We propose a simple syntax and semantics for inference and decision problems.
The semantics is simple enough to be followed easily with pen and paper, and we
provide explicit examples.

1.1. Example: the Monty-Hall problem. The Monty Hall problem first ap-
peared in a letter by Steve Selvin to the editor of the American Statistician in 1975
[Sel75]. However, it was vos Savant’s discussion in Parade magazine, prompted by
a reader, that brought controversy and fame to the problem [vS].

Key words and phrases. Category theory, categorical semantics.
1

2 ELENA DI LAVORE, MARIO ROMÁN

Suppose you’re on a game show, and you’re given the choice of three
doors. Behind one door is a car, behind the others, goats. You pick
a door, say #1, and the host, who knows what’s behind the doors,
opens another door, say #3, which has a goat. He says to you, ”Do
you want to pick door #2?” Is it to your advantage to switch your
choice of doors? — Craig F. Whitaker, at “Ask Marylin” [vS].

Let us formalize and solve the Monty-Hall problem. Without loss of generality,
we simplify the problem assuming that we choose the Middle door and that the host
opened the Left door. The problem states that: (1) the car is uniformly distributed
along the three doors (Left, Middle, and Right); (2) the host, knowing where the
car is, opens a door where the car is not; (3) we observe that the host opened the
left door; (4) we want to know where the car is. In Figure 1, we write and solve
the problem.

The important bit here is that, once we agree on the four statements describing
the problem, the rest is calculational: we should all agree on its resolution. In
particular, under this statement, we obtain that the posterior, 1

3M + 2
3R, gives

double probability to the car being on the Right door: if we want to win the car,
we should switch doors.

(1) car ← uniform{L,M,R} 1
3L+ 1

3M + 1
3R

(2) open ← host(car) ���1
3LR+ 1

3M(12L+
�
�12R) + 1

3RL
(3) observe(open = L) 1

6ML+ 1
3RL

(4) return(car) 1
6M + 1

3R

Validity: 1
6 + 1

3 = 1
2

Posterior: 1
3M + 2

3R

Figure 1. Solution of the Monty Hall problem.

1.2. Synopsis. The rest of this paper is divided in two sections. The first explains
the notation we employ in Figure 1; the second solves multiple problems of decision
theory: Newcomb’s paradox, the “Sleeping beauty problem”, the “Sailor’s child”
problem, or the “Death in Damascus” problem.

1.3. Related work. We employ the do-notation syntax of discrete partial Markov
categories [DLR23]. We present this structure without explicitly mentioning its
categorical inspiration, restricting ourselves to the semantics of finitary subdistri-
butions: Gibbons and Hinze had already mentioned that Haskell’s do-notation
[Hug00, Pat01, HJ06] was amenable to decision problems such as Monty Hall
[GH11].

Probabilistic programming has a long tradition of categorical and monadic se-
mantics [Has97, SV13, SWY+16, HKSY17, EPT17, DK19, VKS19]; it usually em-
ploys more complex languages, not suitable for pen-and-paper computation. Our
work tries to constitute a minimal setup that, while less expressive, may be easier
to employ when discussing decision theory.

This paper intends to be a practical counterpoint to “Evidential Decision Theory
via Partial Markov Categories” [DLR23]. We purposely avoid explicit references to
category theory in this work.

SOLVING PUZZLES IN DECISION THEORY 3

2. Do-notation and its semantics

Do-notation for copy-discard categories is a variant of the do-notation employed
for Haskell’s arrows [HJ06, Hug00, Jef97]. It consists of a series of statements
declaring the input and output variables of every function, ended by a return state-
ment.

Definition 2.1. A do-notation description, over a set of context variables Γ, is
inductively defined to be either

(1) a return statement, representing that the description has ended and that
the value of some variables is consulted: the return statement consists of
some of the variables of Γ, appearing in any order; e.g., return(x1, ..., xn)
for x1, ..., xn ∈ Γ;

(2) a function statement, representing the application of a substochastic chan-
nel: the function statement consists of a list of input variables, e.g. x1, ..., xn ∈
Γ; a substochastic channel, e.g. f; and a list of fresh output variables, e.g.
y1, ..., yn, together with a do-notation description over the context extended
with these fresh variables, Γ, y1, . . . , ym.

Γ ⊢ return(x1, ..., xn)
Γ, y1, . . . , ym ⊢ prog : ∆

Γ ⊢ y1, . . . , ym ← f(x1, ..., xn) # prog : ∆

Figure 2. Rules for do-notation.

In summary, a do-notation description is generated by the type theory of Figure 2;
there, we take the x-indexed variables to appear in the context, x1, ..., xn ∈ Γ.

Remark 2.2. In particular, in our setting we will always consider observe to be a
generator with a single input of boolean type and no outputs.

observe(p) = case p of True 7→ [(∗, 1)]; False 7→ [];

2.1. The Operational Semantics of Subdistributions. To put it concisely,
we use as operational semantics the monadic semantics of do-notation over the
subdistribution monad, D≤1 : Set→ Set.

We interpret subdistributions as formal sums whose coefficients add up to less
or equal than 1. Every term of the formal sum, λX1 . . . Xn, represents a proba-
bility of λ of getting the values X1, . . . , Xn for the variables forming the context
Γ = x1, . . . , xn. The formal sum represents the independent addition of these sub-
distributions; a generic subdistribution is of the form

λ1X
1
1 . . . X

1
n + · · ·+ λkX

k
1 . . . Xk

n, for λ1 + · · ·+ λk ≤ 1.

Each do-notation statement Γ ⊢ ∆ translates to a function Γ → D≤1(∆). Ex-
plicitly,

(1) a return statement, return(x1, ..., xn), corresponds to a projection of the
involved variables; it will map any context Γ = Γ1X1Γ2 . . .ΓnXnΓn+1 to
the context X1 . . . Xn;

(2) a function statement, y1, . . . , ym ← f(x1, ..., xn), corresponds to the ap-
plication of the substochastic channel to a copy of the involved variables;
that is, it will map any context Γ = Γ1X1Γ2 . . .ΓnXnΓn+1 to ΓX1 . . . Xn,

4 ELENA DI LAVORE, MARIO ROMÁN

then, if the output of the function is f(X1, . . . , Xn) = λ1Y
1
1 . . . Y 1

n + · · ·+
λkY

k
1 . . . Y k

n , return a new sum of contexts with these new variables,

λ1ΓY 1
1 . . . Y 1

n + · · ·+ λkΓY k
1 . . . Y k

n .

After each statement, we can distribute the multiplications over the sums and re-
group monomials. Applications of an observe statement result in a multiplication
by zero, and we simply cancel that term.

3. Problem – Three Covid tests

Consider a disease, like Covid, say with a prevalence of 5%. This
means that the chance that an arbitrary person in the population
has the disease is 1

20 = 0.05. This is the prior disease probability.
There is a test for the disease that is not perfect, as usual.

The sensitivity of the test is 90%; this means that if a person has
the disease, the probability that the test is positive (for this person)
is 9

10 = 0.9. The specificity is 60%; this means that if a person does
not have the disease, then the probability that the test is negative is
3
5 = 0.6. In this situation the predicted positive test probability is
17
40 = 0.425. — Bart Jacobs, “Getting Wiser from Multiple Data”
[Jac24].

Individuals may be ill (I) or healthy (H). We have a prior distribution, prior =
1
20I +

19
20H. A test may be positive (P) or negative (N). Testing is a channel

defined by test(I) = 9
10P + 1

10N and test(H) = 2
5P + 3

5N .
Let us state and solve the “three Covid tests” problem. The problem states that:

(1) we pick an individual from the population; (2,3) we take a first test and observe
it positive; (4,5) we take a second test and observe it positive; and (6,7) we take
a final third test and observe it negative. We want to know the probability of the
patient being ill (8). The solution is computed in Figure 3.

(1) individual ← prior 1
20I +

19
20H

(2) result1 ← test(individual) 1
20I(

9
10P +

�
��1

10N) + 19
20H(25P +�

�3
5N)

(3) observe(result1 = P) 9
200IP + 19

50HP
(4) result2 ← test(individual) 9

200IP (9
10P +

�
��1

10N) + 19
50HP (25P +�

�3
5N)

(5) observe(result2 = P) 81
2000IPP + 19

125HPP
(6) result3 ← test(individual) 81

2000IPP (
�
��9

10P + 1
10N) + 19

125HPP (
�
�25P + 3

5N)
(7) observe(result3 = N) 81

20000IPPN + 37
625HPPN

(8) return(individual) 81
20000I +

37
625H

Validity: 81
20000 + 37

625 = 381
4000

Posterior: 27
625I +

608
625H

Figure 3. Calculations for the “three Covid tests” problem.

3.1. Variant: Unordered tests. Assuming that we do not know the order in
which the tests have been taken: we only know that there are two positive tests
and a single negative test. This, of course, does not alter the posterior distribution
— the patient being ill is independent on the order the tests were performed —
but it does alter the validity of the procedure: it is much more likely to observe a

SOLVING PUZZLES IN DECISION THEORY 5

(1) individual ← prior 1
20I +

19
20H

(2) result1 ← test(individual) (9
200IP + 19

200IN) + (1950HP + 27
250HN)

(3) result2 ← test(individual) (81
2000IPP + 9

2000IPN) + (171
2000INP

+ 9
2000INN) + (19

125HPP + 57
250HPN)

+(57
250HNP + 171

500HNN)
(4) result3 ← test(individual) (������729

20000IPPP + 81
20000IPPN)

+(81
20000IPNP +������9

20000IPNN)
+(81

20000INPP +������9
20000INPN)

+(������9
20000INNP +������9

20000INNN)
+(�����38

625HPPP + 57
625HPPN)

+(57
625HPNP +������171

1250HPNN)
+(57

625HNPP +������171
1250HNPN)

+(������171
1250HNNP +������513

2500HNNN)
(5) observe(81

20000IPPN + 81
20000IPNP + 81

20000INPP
{result1, result2, result3} + 57

625HPPN + 57
625HPNP

= {P, P,N}) + 57
625HNPP

(6) return(individual) 243
20000I +

171
625H

Validity: 243
20000 + 171

625 = 1143
4000

Posterior: 27
625I +

608
625H

Figure 4. Calculations for the “three unordered Covid tests”
problem

negative test and two positive tests in any order than it is to observe exactly the
sequence of a positive test, a positive test, and a negative test.

Let us state and solve this variant of the problem. The problem now states that:
(1) we pick an individual from the population; (2,3,4) we perform three tests; (5)
we observe that the multiset induced by these three tests is {P, P,N}; (6) we want
to know the posterior of an illness on the patient.

4. Problem – Monty Fall

In this variant, once you have selected one of the three doors, the
host slips on a banana peel and accidentally pushes open another
door, which just happens not to contain the car. Now what are the
probabilities that you will win the car if you stick with your original
selection, versus if you switch to the remaining door?

Let us solve this version. The problem now states that: (1) the car may be in
any of the doors, following a uniform distribution; (2) we observe it is not on the
left door; and (3) we want to know where it is. Now the assumption of a host
opening doors, that knows where the car is disappears: if some people distrusted
vos Savant’s solution of the problem [vS], their only argument left is that were
solving this easier problem instead.

5. Problem – Newcomb’s Paradox

Suppose a being in whose power to predict your choices you have
enormous confidence. There are two boxes, (Bl) and (B2). (Bl)
contains $1000. (B2) contains either $1000000 ($M), or nothing.

6 ELENA DI LAVORE, MARIO ROMÁN

(1) car ← uniform{L,M,R} 1
3 (�L+M +R)

(2) observe(car ̸= L) 1
3 (M +R)

(3) return(car) 1
3M + 1

3R

Validity: 2
3

Posterior: 1
2M + 1

2R

You have a choice between two actions: (1) taking what is in both
boxes; or (2) taking only what is in the second box. (1) If the being
predicts you will take what is in both boxes, he does not put the $M
in the second box. (2) If the being predicts you will take only what
is in the second box, he does put the $M in the second box.

The situation is as follows. First the being makes its prediction.
Then it puts the $M in the second box, or does not, depending upon
what it has predicted. Then you make your choice. What do you
do? — Robert Nozick, “Newcomb’s problem and two principles of
choice” [Noz69]

Let us solve Newcomb’s problem in Figure 5. We may take two actions: one-
boxing (O), and two-boxing (T). The problem states that: (1) agents one-box or
two-box, we assume uniformly; (2) predictors may declare one-boxing or two-boxing
uniformly; (3) we observe that the predictor is accurate; (4) and we compute the
outcome according to a payoff matrix. Evidential decision theory prescribes that
the best action is the action that, when observed, maximizes the outcome: (5a,6a)
one-boxing leads to $1000; (5b,6b) two-boxing leads to $1.

(1) action ← uniform{O, T} 1
2O + 1

2T
(2) prediction ← uniform{O, T} 1

2O(12O +
�
�12T) +

1
2T (��

1
2O + 1

2T)
(3) observe(action = prediction) 1

4OO + 1
4TT

(4) outcome ← case (action, prediction) of 1
4OO(1000) + 1

4TT (1)
(O,O) 7→ 1000
(O, T) 7→ 0
(T,O) 7→ 1001
(T, T) 7→ 1

(5a) observe(action = O) 1
4OO(1000)

(6a) return(outcome) 1000

(5b) observe(action = T) 1
4TT (1)

(6b) return(outcome) 1

Figure 5. Solution of the Newcomb’s problem.

6. Problem – Death in Damascus

Consider the story of the man who met death in Damascus. Death
looked surprised, but then recovered his ghastly composure and said,
“I am coming for you tomorrow.” The terrified man that night
bought a camel and rode to Aleppo. The next day, death knocked on
the door of the room where he was hiding and said “I have come for

SOLVING PUZZLES IN DECISION THEORY 7

you.” “But I thought you would be looking for me in Damascus.”
said the man.

“Not at all,” said death “that is why I was surprised to see you
yesterday. I knew that today I was to find you in Aleppo.”

Now suppose the man knows the following. Death works from
an appointment book which states time and place; a person dies if
and only if the book correctly states in what city he will be at the
stated time. The book is made up weeks in advance on the basis
of highly reliable predictions. An appointment on the next day has
been inscribed for him. Suppose, on this basis, the man would take
his being in Damascus the next day as strong evidence that his
appointment with death is in Damascus, and would take his being
in Aleppo the next day as strong evidence that his appointment is
in Aleppo.

Let us solve the problem in Figure 6. The problem assumes that: (1) the mer-
chant could pick any strategy – Fleeing, Staying, or throwing a Random coin – and
we assume the uniform distribution as a prior; (2) Death may go to Aleppo or Dam-
ascus according to its accurate prediction of what the merchant does; in particular,
Death can predict the use of a coin, but not its outcome; (3) the final location of the
merchant is given by its strategy and – when relevant – the output of the coin; (4)
the outcome is computed from the location of the merchant and Death. Evidential
decision theory prescribes the action we would like to observe: (5a) staying and
(5b) fleeing both cause the merchant to find Death; but (5c) throwing a random
coin allows for some probability of surviving.

(1) merchant ← uniform{F, S,R} 1
3F + 1

3S + 1
3R

(2) death ← case merchant of 1
3FA+ 1

3SD + 1
3R(12A+ 1

2D)
F 7→ A; S 7→ D;
R 7→ uniform{A,D};

(3) location ← case merchant, coin of 1
3FAA+ 1

3SDD + 1
6RA(12A+ 1

2D)
F 7→ A; S 7→ D; + 1

6RD(12A+ 1
2D)

R 7→ uniform{A,D};
(4) outcome ← case death, location of 1

3FDeath+ 1
3SDeath

A,A 7→ Death; D,D 7→ Death; + 1
12RLive+ 1

12RDeath
A,D 7→ Live; D,A 7→ Live; + 1

12RLive+ 1
12RDeath

(5a) observe(merchant = S) 1
3SDeath

(5b) observe(merchant = F) 1
3FDeath

(5c) observe(merchant = R) 1
6RDeath+ 1

6RLive

Figure 6. Solving Death in Damascus.

7. Problem – The Three Prisoners

Three prisoners A, B, and C, are on death row. The governor de-
cides to pardon one of the three and chooses at random the prisoner
to pardon. He informs the warden of his choice but requests that
the name be kept secret for a few days. The next day, A tries to get
the warden to tell him who had been pardoned. The warden refuses.

8 ELENA DI LAVORE, MARIO ROMÁN

A then asks which of B or C will be executed. The warden thinks
for a while, then tells A that B is to be executed.

Let us write and solve the “Three Prisoners” problem. The problem states that:
(1) the governor chooses at random the prisoner to pardon; (2) the warden is
informed of the pardoned prisoner, when asked, the warden must not disclose the
secret: if A is to be executed, he cannot say so, but if B or C are to be executed,
then he can say so; (3) we observe that the warden says B; and (4) we want to
know what the governor said.

(1) governor ← uniform{A,B,C} 1
3A+ 1

3B + 1
3C

(2) warden ← case governor of 1
3A(12B +

�
�12C) + 1

3BB +���1
3CC

A 7→ uniform{B,C};
B 7→ uniform{B};
C 7→ uniform{C};

(3) observe(warden = B) 1
6AB + 1

3BB
(4) return(governor) 1

6A+ 1
3B

Validity: 1
6 + 1

3 = 1
2

Posterior: 1
3A+ 2

3B

Figure 7. Calculations for the “Three Prisoners” problem.

8. Problem – Sailor’s Child

A Sailor sails regularly between two ports, in each of which he stays
with a woman, both of whom wish to have a child by him. He
is reluctant, but eventually decides that he will have one or two
children, with the number decided by a coin toss – one if Heads,
two if Tails.

Furthermore, he decides that if the coin lands Heads, he will
have a child with the woman who lives in the city listed first in The
Sailor’s Guide to Ports. (He considers this fair, since although he
owns a copy of this book, he hasn’t previously read it, and so has
no prior knowledge of which city comes first.) Now, suppose that
you are this Sailor’s child, and that neither you nor your mother
know whether he had a child with the other woman. You also do
not have a copy of The Sailor’s Guide to Ports. You do, however,
know that he decided these matters as described above. What should
you consider to be the probability that you are his only child (i.e.,
that the coin he tossed landed Heads)?

— Radford Neal, “Puzzles of anthropic reasoning resolved using
full non-indexical conditioning” [Nea06].

Let us solve the “Sailor’s child problem”. The problem states that: (1) the
Sailor’s Guide to ports may list—say—Siracuse (S) or Heraklion (K) as its first
port, we assume a uniform distribution; (2) we throw a coin that can land heads
(H) or tails (T); (3) we observe that Siracuse is among the cities decided by the
Sailor; and (4) we want to know how the coin landed. The solution is in Figure 8.

SOLVING PUZZLES IN DECISION THEORY 9

(1) guide ← uniform{S,K} 1
2S + 1

2K
(2) coin ← uniform{H,T} 1

2S(
1
2H + 1

2T) +
1
2K(��1

2H + 1
2T)

(3) observe(S ∈ case (guide, coin) of 1
4SH + 1

4ST + 1
4KT

(S, T) 7→ {S,H}; (S,H) 7→ {S};
(K,T) 7→ {S,H}; (K,H) 7→ {K};

(4) return(coin) 1
4H + 1

2T

Validity: 1
4 + 1

2 = 3
4

Posterior: 1
3H + 2

3T

Figure 8. Solution of the Sailor’s Child problem

References
[DK19] Fredrik Dahlqvist and Dexter Kozen. Semantics of higher-order probabilistic programs

with conditioning. Proc. ACM Program. Lang., 4(POPL), dec 2019.
[DLR23] Elena Di Lavore and Mario Román. Evidential decision theory via partial markov cat-

egories. In 2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), pages 1–14. IEEE, 2023.

[Elg20] Adam Elga. Self-locating belief and the sleeping beauty problem. In Arguing About
Knowledge, pages 142–145. Routledge, 2020.

[EPT17] Thomas Ehrhard, Michele Pagani, and Christine Tasson. Measurable cones and stable,
measurable functions: a model for probabilistic higher-order programming. Proceed-
ings of the ACM on Programming Languages, 2(POPL):1–28, 2017.

[GH11] Jeremy Gibbons and Ralf Hinze. Just do it: simple monadic equational reasoning.
ACM SIGPLAN Notices, 46(9):2–14, 2011.

[Has97] Masahito Hasegawa. Models of sharing graphs: a categorical semantics of let and
letrec. PhD thesis, University of Edinburgh, UK, 1997.

[HJ06] Chris Heunen and Bart Jacobs. Arrows, like monads, are monoids. In Stephen D.
Brookes and Michael W. Mislove, editors, Proceedings of the 22nd Annual Confer-
ence on Mathematical Foundations of Programming Semantics, MFPS 2006, Gen-
ova, Italy, May 23-27, 2006, volume 158 of Electronic Notes in Theoretical Computer
Science, pages 219–236. Elsevier, 2006.

[HKSY17] Chris Heunen, Ohad Kammar, Sam Staton, and Hongseok Yang. A convenient cate-
gory for higher-order probability theory. In 2017 32nd Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS), pages 1–12. IEEE, 2017.

[Hug00] John Hughes. Generalising monads to arrows. Science of Computer Programming,
37(1-3):67–111, 2000.

[Jac24] Bart Jacobs. Getting wiser from multiple data: Probabilistic updating according to
jeffrey and pearl. CoRR, abs/2405.12700, 2024.

[Jef97] Alan Jeffrey. Premonoidal categories and a graphical view of programs. Preprint at
ResearchGate, 1997.

[Nea06] Radford M Neal. Puzzles of anthropic reasoning resolved using full non-indexical con-
ditioning. arXiv preprint math/0608592, 2006.

[Noz69] Robert Nozick. Newcomb’s Problem and Two Principles of Choice. In Essays in honor
of Carl G. Hempel, pages 114–146. Springer, 1969.

[Pat01] Ross Paterson. A new notation for arrows. In Benjamin C. Pierce, editor, Proceedings
of the Sixth ACM SIGPLAN International Conference on Functional Programming
(ICFP ’01), Firenze (Florence), Italy, September 3-5, 2001, pages 229–240. ACM,
2001.

[Sel75] Steve Selvin. Letters to the editor. The American Statistician, 29(1):67–71, 1975.
[SV13] Mike Stay and Jamie Vicary. Bicategorical semantics for nondeterministic computa-

tion. Electronic Notes in Theoretical Computer Science, 298:367–382, 2013.
[SWY+16] Sam Staton, Frank Wood, Hongseok Yang, Chris Heunen, and Ohad Kammar. Seman-

tics for probabilistic programming: higher-order functions, continuous distributions,
and soft constraints. In 2016 31st annual ACM/IEEE Symposium on Logic in Com-
puter Science (LiCS), pages 1–10. IEEE, 2016.

10 ELENA DI LAVORE, MARIO ROMÁN

[VKS19] Matthijs Vákár, Ohad Kammar, and Sam Staton. A domain theory for statistical
probabilistic programming. Proceedings of the ACM on Programming Languages,
3(POPL):1–29, 2019.

[vS] Marilyn vos Savant. Parade 16: Ask Marilyn (Archived). https://web.archive.org/
web/20130121183432/http://marilynvossavant.com/game-show-problem/. Accessed:
2013-01-21.

https://web.archive.org/web/20130121183432/http://marilynvossavant.com/game-show-problem/
https://web.archive.org/web/20130121183432/http://marilynvossavant.com/game-show-problem/

	1. Introduction
	2. Do-notation and its semantics
	3. Problem – Three Covid tests
	4. Problem – Monty Fall
	5. Problem – Newcomb's Paradox
	6. Problem – Death in Damascus
	7. Problem – The Three Prisoners
	8. Problem – Sailor's Child
	References

