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Optics

Optics are composable bidirectional data accessors. They allow us to access and
modify nested data structures.

Each family of optics encodes a data accessing pattern.

• Lenses access specific parts of a data structure.
• Prisms pattern match.
• Traversals iterate over containers.

Two optics (of any two families!) can be directly composed.
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Lens

Definition

Lens (A,B;S,T) = hom(S,A)× hom(S × B,T).



Lenses form a category

Composing (S,T) → (A,B) → (U,V).

This preformal intuition can be made into a diagram in a monoidal category.
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Example: Lenses

Lenses compose.



Prisms

Definition

Prism (A,B;S,T) = hom(S,T + A)× hom(B,T).



Traversals

Definition

Traversal (A,B;S,T) = hom

S,
∑
n∈N

An × [Bn,T]

 .



The problem of modularity

• How to compose any two optics?
• Even from different families of optics (lens+prism+traversal).
• Simple but tedious code.
• Every pair of families needs special attention.



The problem of modularity

• How to compose any two optics?
• Even from different families of optics (lens+prism+traversal).
• Simple but tedious code.
• Every pair of families needs special attention.

Solution: There is an alternative representation in terms of profunctors, which makes
composition much easier.

(
A(S,A)× A(S × B,T)

)
∼=

∫
P∈Tambara

Set(P(A,B),P(S,T))

Where Tambara modules are an algebraic structure studied for the convolution
centre of monoidal categories.



Example: Lenses

Lenses compose with ordinary function composition.



Overview

• A general unified definition Optic that models all the existing ones and leads to
new ones.

• A general representation theorem for any optic in terms of Tambara modules.

Optic(A,B;S,T) ∼=
∫

P∈Tambara
Set(P(A,B),P(S,T))

• Along the way, a bit of coend calculus.
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(1978) MacLane, ”Categories for the working mathematician” (§IX) (2001) Cáccamo, Winskel, ”A higher-order
calculus for categories”. (2015) Loregian, ”This is the (co)end, my only (co)friend”.
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Ends

Ends are certain kinds of limits for P : Aop × A → Set.

Z

∫
X∈A

P(X,X)

P(A,A) P(B,B)

P(A,B)

zBzA
∃!

πBπA

P(id,f) P(f,id)

Example
The set of natural transformations can be described as an end.

Nat(F,G) :=

∫
A∈A

homB(FA,GA).



Coends

Coends are certain kinds of colimits for P : Aop × A → Set.

P(A,B)

P(A,A) P(B,B)

∫ X∈A
P(X,X)

Z

P(id,f) P(f,id)

jA

iA iB

jB∃!

Example
Elements of ∫ A∈A

P(A,A)

are pairs (A, z ∈ P(A,A)), quotiented by P(f, id)(u) ∼ P(id, f)(u).



Coend calculus: some rules

• Coyoneda reductions.∫ X∈A
homA(X,A)× FX ∼= FA.

∫ X∈A
homA(A,X)× FX ∼= FA.

• Fubini rule for coends.∫ X1∈A ∫ X2∈B
P(X1,X2,X1,X2) ∼=

∫ X2∈B ∫ X1∈A
P(X1,X2,X1,X2)
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∫ X∈A
homA(A,X)

(X = A)

× FX ∼= FA.

• Fubini rule for coends.∫ X1∈A ∫ X2∈B
P(X1,X2,X1,X2) ∼=

∫ X2∈B ∫ X1∈A
P(X1,X2,X1,X2)



Yoneda reduction: proof

Set
(∫ X∈A

hom(A,X)× FX,B
)

∼= {Continuity}∫
X∈A

Set (hom(A,X)× FX,B)

∼= {Closed structure}∫
X∈A

Set (hom(A,X), Set(FX,B))

∼= {Natural transformations are ends}
Nat (hom(A,−), Set(F(−),B))

∼= {Usual Yoneda lemma}
Set(F(A),B)

Following a proof written by Tom Leinster.
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(2017) Milewski. (2017) Boisseau, Gibbons. (2018) Riley.



Optics

Definition (as in Riley, 2018, Definition 2.0.1)
An optic from (S,T) with focus on (A,B) is an element of the following set.

Optic (A,B;S,T) :=

∫ X∈A
hom(S,X ⊗ A)× hom(X ⊗ B,T).

Intuition: The optic splits S into some focus A and some context X. We cannot access
that context, but we can merge it with B to get T.

⟨f : S → X ⊗ A | g : X ⊗ B → T⟩ ∈ Optic(A,B,S,T)



Optics
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An optic from (S,T) with focus on (A,B) is an element of the following set.

Optic (A,B;S,T) :=

∫ X∈A
hom(S,X ⊗ A)× hom(X ⊗ B,T).

Intuition: The optic splits S into some focus A and some context X. We cannot access
that context, but we can merge it with B to get T.

⟨f; (h ⊗ id) | g⟩ = ⟨f | (h ⊗ id); g⟩



Lenses are optics

Proposition (as in Milewski, 2017)
Lenses are optics in a cartesian monoidal category.

Proof. ∫ X∈A
hom(S,X × A)× hom(X × B,T)

∼= {Adjunction (∆) ⊣ (×)}∫ X∈A
hom(S,X)

(X = S)

× hom(S,A)× hom(X × B,T)

∼= {Yoneda}
hom(S,A)× hom(S × B,T)
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Prisms are optics

Proposition (Milewski, 2017)
Prisms are optics in a cocartesian monoidal category.

Proof. ∫ X∈A
hom(S,X + A)× hom(X + B,T)

∼= {Adjunction (+) ⊣ (∆)}∫ X∈A
hom(S,X + A)× hom(X,T)

(X = T)

× hom(B,T)

∼= {Yoneda}
hom(S,T + A)× hom(B,T)
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Generalizing: actegories, mixed, enriched optics

An optic from (S,T) ∈ A2 with focus on (A,B) ∈ A2 is an element of

Optic (A,B;S,T) :=

∫ X∈A
homA(S,X ⊗ A)× homA(X ⊗ B,T).

1. Basic definition: everything occurs in a monoidal category

(⊗) : A × A → A.

2. Monoidal action: an arbitrary A and a monoidal category M acting on it

(⊘) : M × A → A.

3. Mixed optic: two categories and two actions

( L ) : M × A → A, ( R ) : M × B → B.

4. Enriched optics work exactly the same, getting us an object of optics. In all of
these cases, we get an (enriched) category of optics.



Generalizing: actegories, mixed, enriched optics

An optic from (S,T) ∈ A2 with focus on (A,B) ∈ A2 is an element of

Optic (A,B;S,T) :=

∫ X∈M
homA(S,X ⊘ A)× homA(X ⊘ B,T).

1. Basic definition: everything occurs in a monoidal category

(⊗) : A × A → A.

2. Monoidal action: an arbitrary A and a monoidal category M acting on it

(⊘) : M × A → A.

3. Mixed optic: two categories and two actions

( L ) : M × A → A, ( R ) : M × B → B.

4. Enriched optics work exactly the same, getting us an object of optics. In all of
these cases, we get an (enriched) category of optics.



Generalizing: actegories, mixed, enriched optics

An optic from (S,T) ∈ A2 with focus on (A,B) ∈ A2 is an element of

Optic (A,B;S,T) :=

∫ X∈M
homA(S,X L A)× homB(X R B,T).

1. Basic definition: everything occurs in a monoidal category

(⊗) : A × A → A.

2. Monoidal action: an arbitrary A and a monoidal category M acting on it

(⊘) : M × A → A.

3. Mixed optic: two categories and two actions

( L ) : M × A → A, ( R ) : M × B → B.

4. Enriched optics work exactly the same, getting us an object of optics. In all of
these cases, we get an (enriched) category of optics.



Generalizing: actegories, mixed, enriched optics

An optic from (S,T) ∈ A2 with focus on (A,B) ∈ A2 is an element of

Optic (A,B;S,T) :=

∫ X∈M
homA(S,X L A)⊗ homB(X R B,T).

1. Basic definition: everything occurs in a monoidal category

(⊗) : A × A → A.

2. Monoidal action: an arbitrary A and a monoidal category M acting on it
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Traversals are optics for power series functors

Proposition
Traversals are optics for power series functors.

∫ X∈[N,A]

homA

S,
∑
n∈N

An ⊗ Xn

× homA

∑
n∈N

Bn ⊗ Xn,T


∼=

homA

S,
∑
n∈N

An ⊗ [Bn,T]



Composition monoidal product as defined by Kelly’s ”On the Operads of J. P. May”.



Traversals are optics for power series functors

∫ X∈[N,A]

homA

S,
∑
n∈N

An ⊗ Xn

× homA

∑
n∈N

Bn ⊗ Xn,T


∼= {Continuity}∫ X∈[N,A]

homA

S,
∑
n∈N

An ⊗ Xn

×
∏
n∈N

homA (Xn ⊗ Bn,T)

∼= {Adjunction (−⊗ Bn) ⊣ [Bn,−]}∫ X∈[N,A]

homA

S,
∑
n∈N

An ⊗ Xn

×
∏
n∈N

homA (Xn, [Bn,T])

∼= {Natural transformation}∫ X∈[N,A]

homA

S,
∑
n∈N

An ⊗ Xn

× [N,A]
(

X(−), [B(−),T]
)

∼= {Coyoneda}

homA

S,
∑
n∈N

An ⊗ [Bn,T]

 .



Lenses in a symmetric monoidal category are mixed optics

Proposition
Lenses in a symmetric monoidal category are mixed optics.∫ X∈A

ComonC(S,X ⊗ A)× C(UX ⊗ B,T) ∼= ComonC(S,A)× C(S ⊗ B,T).

Figure 1: ”Generalized lenses via functors Cop → Cat”, Spivak, (Myers).



Monadic lenses are mixed optics

Proposition
Monadic lenses are mixed optics. For any strong monad Ψ: A → A,∫

X∈A
A(S,X × A)× KlΨ(X ⋊ B,T) ∼= A(S,A)× A(S × B,ΨT).

Figure 2: ”Reflections on Monadic lenses”, Abou-Saleh, Cheney, Gibbons, McKinna, Stevens.



Table of optics

Name Actions From
Adapters A(S,A)× B(B,T) Kmett, 2012
Setters A(S,A) Kmett, 2012
Getters A(B,T) Kmett, 2012
Folds A(S,List(A)) Kmett, 2012
Lenses A(S,A)× B(S • B,T) Oles, 1982
Prisms A(S,A • T)× B(B,T) Kmett, 2012
Grates A(S, [[A,B],T]) Deikun, O’Connor, 2016
Affine traversal A(S,A × [B,T] + T) Grenrus, 2012
Linear lenses A(S,A ⊗ [B,T]) Riley, 2018
Lenses in a symm. mon. Comon(S,A)× A(S ⊗ B,T) Spivak, Myers, 2019
Monadic lenses A(S,A)× A(S × B,ΨT)) Abou-Saleh et al.
Glasses A([[S,A],B], [S,T]) New
Algebraic lenses A(S,A)× B(ΨS • B,T) New
Kaleidoscopes

∏
n∈N A ([An,B], [Sn,T]) New
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(2006) Tambara, (2008) Pastro, Street, (2014) Rivas, Jaskelioff. (2017) Boisseau, Gibbons. (2018) Riley.



Tambara modules

Definition (Pastro and Street, 2008)
Let A be a monoidal category. A Tambara module is an endoprofunctor
T : Aop × A → Set equipped with a family of morphisms natural on both A and B
and dinatural on M.

tA,B,M : T(A,B) → T(M ⊗ A,M ⊗ B)

They come with axioms that make them interplay nicely with the structure
isomorphisms of the monoidal category.

There is an adjoint triple, with Ψ an opmonoidal monad and Θ a monoidal comonad.

ΘP(A,B) :=

∫
M∈M

P(M ⊗ A,M ⊗ B).

ΨP(A,B) :=

∫ X,Y∈A,M∈M
A(A,M ⊗ X)⊗ A(M ⊗ Y,B)⊗ P(X,Y).

Finally, Ψ̌ can be made into a monoid in the bicategory of profunctors. The Kleisli
object for it is the category of optics.



Tambara modules (generalized)

Definition (Pastro and Street, 2008)
Let C and D be categories with two monoidal actions from M. A Tambara module is
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∫
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Lemma
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Representation theorem

Theorem

Optic(A,B,S,T) ∼=
∫

P∈Tambara
Set(P(A,B),P(S,T)).

This is a form of Yoneda. The actual work of the proof is done on characterizing
copresheaves as Tambara modules.

A(X,Y) ∼=
∫

F∈[A,Set]
Set(FX,FY).



In the paper

• More on Tambara theory and the Pastro-Street promonad.
• More examples on how to use optics, both the classical ones and the new ones.
They have accompanying code.

• Full derivations for all the optics.
• General mixed, enriched optics.
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