
Profunctor optics: a categorical update

Mario Román
June 14, 2019

Supervisor: Jeremy Gibbons

Motivation

Part 1: Motivation

Lenses

De�nition (Lens)

Lens

((
s

t

)
,

(
a

b

))
= Sets(s, a)× Sets(s× b, t).

-- Example: A postal address contains a ZIP code.
viewZip : PostalAddr -> ZipCode
updateZip : PostalAddr * ZipCode -> PostalAddr

Prisms (alternatives!)

De�nition (Prism)

Prism

((
s

t

)
,

(
a

b

))
= Sets(s, s+ a)× Sets(b, t).

-- An addess can be both a postal address or an email.
matchPostal : Address -> Address + PostalAddr
buildEmail : EmailAddr -> Address

Traversals (multiple foci!)

De�nition (Traversal)

Traversal

((
s

t

)
,

(
a

b

))
= Sets(s,

∑
n

an × (bn → t)).

-- A sorted listing of addresses.
extract : MailingList -> Vect n EmailAddress * (Vect n PostalAddress -> PostalList)

This is not modular

How to compose a Prism with a Lens? How to get/set a Zip from an Address?

getPostal : Address -> Address + PostalAddr
setPostal : PostalAddr -> Address
getZip : PostalAddr -> ZipCode
setZip : PostalAddr * ZipCode -> PostalAddr

The naive solution is not modular. Every case (Prism+Lens, Lens+Prism,
Traversal+Prism+Other, . . .) needs special attention.

-- This is boilerplate code we would rather not write.
getZipFromAddr :: Address -> Address + ZipCode
getZipFromAddr = (\ a -> case getPostal a of

Right postal -> Right (getZip postal)
Left add -> Left add)

setZipAddr :: Address * ZipCode -> Address
setZipAddr = (\ a z -> case getPostal a of

Right postal -> setPostal (setZip (postal , z))
Left add -> add)

This is not modular

How to compose a Prism with a Lens? How to get/set a Zip from an Address?

getPostal : Address -> Address + PostalAddr
setPostal : PostalAddr -> Address
getZip : PostalAddr -> ZipCode
setZip : PostalAddr * ZipCode -> PostalAddr

The naive solution is not modular. Every case (Prism+Lens, Lens+Prism,
Traversal+Prism+Other, . . .) needs special attention.

-- This is boilerplate code we would rather not write.
getZipFromAddr :: Address -> Address + ZipCode
getZipFromAddr = (\ a -> case getPostal a of

Right postal -> Right (getZip postal)
Left add -> Left add)

setZipAddr :: Address * ZipCode -> Address
setZipAddr = (\ a z -> case getPostal a of

Right postal -> setPostal (setZip (postal , z))
Left add -> add)

Profunctor optics

Some optics are equivalent to parametric functions over profunctors!

A lens Sets(s, a)× Sets(s× b, t) is also p(a, b)→ p(s, t), ∀p ∈Mod(×)

A prism Sets(s, s+ a)× Sets(b, t) is also p(a, b)→ p(s, t), ∀p ∈Mod(+)

Where p ∈ Tamb(⊗) means we have a transformation p(a, b)→ p(c⊗ a, c⊗ b).

This solves composition
Now composition of optics is just function composition. From p(a, b)→ p(s, t) and
p(x, y)→ p(a, b) we can get p(x, y)→ p(s, t).

Profunctor optics

Some optics are equivalent to parametric functions over profunctors!

A lens Sets(s, a)× Sets(s× b, t) is also p(a, b)→ p(s, t), ∀p ∈Mod(×)

A prism Sets(s, s+ a)× Sets(b, t) is also p(a, b)→ p(s, t), ∀p ∈Mod(+)

Where p ∈ Tamb(⊗) means we have a transformation p(a, b)→ p(c⊗ a, c⊗ b).

This solves composition
Now composition of optics is just function composition. From p(a, b)→ p(s, t) and
p(x, y)→ p(a, b) we can get p(x, y)→ p(s, t).

Goals of this dissertation

• Gathering the literature on this topic.
• What is a general de�nition of optic?
• How does the profunctor representation work in general?
• Try to provide new proofs, as general as possible (actions of monoidal categories as in
[Riley, 2018]).

• Description of the traversal from �rst principles.
• Problem proposed by [Milewski, 2017]: get a description of the traversal and the
concrete representation from a single application of Yoneda.

• Uni�cation of optics, including the traversal.

Outline

• A de�nition of optics: the (co)end representation.
• Uni�cation with the traversal: derivation of the traversal and new optics.
• How to compose optics: the profunctor representation theorem.
• Further work: formal veri�cation and new directions.

A de�nition of "optic"

Part 2: A de�nition of "optic"

(Co)ends

Ends and Coends are special kinds of (co)limits over a profunctor
p : Cop ×C→ Sets, (co)equalizing its right and left mapping.

∫
x∈C

p(x, x)
∏
x∈C

p(x, x)
∏

f : a→b
p(a, b)

p(f,id)

p(id,f)

⊔
f : b→a

p(a, b)
⊔
x∈C

p(x, x)

∫ x∈C
p(x, x)

p(f,id)

p(id,f)

We can think of them as encoding forall (ends) and exists (coends).

Fosco Loregian. “This is the (co)end, my only (co)friend”. In: arXiv preprint arXiv:1501.02503 (2015).

(Co)end calculus

Natural transformations can be rewritten in terms of ends. For any F,G : C→ D,

Nat(F,G) =

∫
x∈C

D(Fx,Gx).

We can compute (co)ends using Yoneda lemma.

Fa ∼=
∫ x∈C

Fx×C(a, x), Ga ∼=
∫
x∈C

Sets(C(x, a), Gx).

We have a well-behaved formal calculus for (co)ends.

Fosco Loregian. “This is the (co)end, my only (co)friend”. In: arXiv preprint arXiv:1501.02503 (2015).

A de�nition of "optic"

Fix some actionM×C→ C of a monoidal categoryM onC.

De�nition (Riley, 2018)
TheOptic category has pairs onC as objects and morphisms as follows.

OpticM

((
s

t

)
,

(
a

b

))
=

∫ c∈M
C(s, c · a)×C(c · b, t).

Intuition: The optic splits into some focus a and some context c. We cannot access
that context, but we can use it to update.

Lenses are optics

Lens

((
s

t

)
,

(
a

b

))
=

∫ c∈Sets

Sets(s, c× a)× Sets(c× b, t).

Figure 1: A lens is given by (s→ c× a) and (c× b→ t) for some c we cannot access.

Lenses are optics

Theorem (from Milewski, 2017)

∼=

Proof. By Yoneda lemma.∫ c∈Sets

Sets(s, c× a)× Sets(c× b, t) ∼= (Product)∫ c∈Sets

Sets(s, c)× Sets(s, a)× Sets(c× b, t) ∼= (Yoneda)

Sets(s, a)× Sets(s× b, t)

Prisms are optics

Prism

((
s

t

)
,

(
a

b

))
=

∫ c∈Sets

Sets(s, c+ a)× Sets(c+ b, t).

Figure 2: A prism is given by (s→ c + a) and (c + b→ t) for some c we cannot access.

Prisms are optics

Theorem (from Milewski, 2017)

∼=

Proof. By Yoneda lemma.∫ m∈Sets

Sets(s,m+ a)× Sets(m+ b, t) ∼= (Coproduct)∫ m∈Sets

Sets(s,m+ a)× Sets(m, t)× Sets(m× b, t) ∼= (Yoneda)

Sets(s, t+ a)× Sets(b, t)

Traversals are optics (with a new derivation)

Traversal

((
s

t

)
,

(
a

b

))
=

∫ c∈[Nat,Sets]

Sets
(
s,
∑

n
cn × an

)
×Sets

(∑
n
cn × bn, t

)
.

To our knowledge, this is an original formulation of traversals. It should be related to
the description in terms of Traversables [Pickering/Gibbons/Wu, 2016].

Traversals are optics (with a new derivation)

Theorem

∼=

That is,∫ c∈[Nat,Sets]

Sets(s,
∑
n

cn×an)×Sets(
∑
n

cn×bn, t) ∼= Sets(s→
∑
n

an×(bn → t)).

Traversals are optics (with a new derivation)

This is Yoneda, this time for functors c : Nat→ Sets.

∫ c

Sets

s, ∑
n∈N

cn × an
× Sets

∑
n∈N

cn × bn, t

 ∼= (cocontinuity)

∫ c

Sets

s, ∑
n∈N

cn × an
× ∏

n∈N
Sets (cn × bn, t) ∼= (cartesian closedness)

∫ c

Sets

s, ∑
n∈N

cn × an
× ∏

n∈N
Sets (cn, b

n → t) ∼= (natural transf. as an end)

∫ c

Sets

s, ∑
n∈N

cn × an
× [Nat,Sets]

(
c, b(−) → t

)
∼= (Yoneda lemma)

Sets

s, ∑
n∈N

an × (bn → t)

This solves the problem posed by [Milewski, 2017].

Uni�cation of optics

All the usual optics are of this form.

Name Concrete Action
Adapter (s→ a)× (b→ t) id : [Set,Set]

Lens (s→ a)× (b× s→ t) (×) : Set→ [Set,Set]

Prism (s→ t+ a)× (b→ t) (+): Set→ [Set,Set]

Grate ((s→ a)→ b)→ t (→) : Setop → [Set,Set]

A�ne Traversal s→ t+ a× (b→ t) (×,+): (Set× Set)→ [Set,Set]

Fixed Traversal Σn.s→ (an × (bn → t)) (×,�n) : (Set× Nat)→ [Set,Set]

Traversal s→ Σn.an × (bn → t) Σn : [Nat,Set]→ [Set,Set]

Glass ((s→ a)→ b)→ s→ t (×,→) : (Set× Set)→ [Set,Set]

Setter (a→ b)→ (s→ t) ev : [Set,Set]→ [Set,Set]

In particular, we have new derivations of traversal, �xed traversal, and glass; this
expands on previous work by Milewski, Boisseau/Gibbons and Riley.

Preorder on optics

Every action gives a submonoid of endofunctors. Join corresponds to the action of
the coproduct (pseudo)monoid. This generalizes the lattice described in
Pickerings-Gibbons-Wu.

Setter(ev)

Traversal(Poly(!))

Glass(!)(→,×) Affine(×,+)

Grate(→) Lens(×) Prism(+)

Adapter(id)

Profunctor representation

Part 3: the Profunctor representation theorem

Promonads and the optics category

A promonad ψ ∈ [Cop ×C,Sets] is a monoid in the 2-category of profunctors.

Lemma (Kleisli construction in Prof, e.g. in Pastro-Street 2008)
The Kleisli object for the promonad, Kl(ψ), is a category with the same objects, but
hom-sets given by the promonad, Kl(ψ)(a, b) = ψ(a, b).

For some �xed kind of optic, we can create a category with the same objects as
Cop ×C, but where morphisms are optics of that kind.

ψ((s, t), (a, b)) =

∫ c∈M
C(s, c · a)×C(c · b, t)

That is,Optic = Kl(ψ).

Craig Pastro and Ross Street. “Doubles for monoidal categories”. In: Theory and applications of categories 21.4
(2008), pp. 61–75.

Kleisli object

h

F

F

µ

Ψ Ψ

Cop ×C

=

α

F

F

µ

Ψ Ψ

Cop ×C

Optic

∃!Gh

Theorem
Functors [Optic,Set] are equivalent to right modules on the terminal object for the
promonad Mod(ψ), which are algebras for an associated monad.

This follows from the universal property of the Kleisli object,
Cat(Optic,Set) ∼= Prof(1,Optic) ∼= Mod(ψ).

Dan Marsden. “Category Theory Using String Diagrams”. In: CoRR abs/1401.7220 (2014). arXiv: 1401.7220. url:
http://arxiv.org/abs/1401.7220.

https://arxiv.org/abs/1401.7220
http://arxiv.org/abs/1401.7220

Profunctor representation theorem

Theorem (Riley 2018, Boisseau/Gibbons 2018, with a di�erent proof)
Optics given by ψ correspond to parametric functions over profunctors that have
module structure over ψ.∫

p∈Mod(ψ)
p(a, b)→ p(a, b) ∼= Opticψ((s, t), (a, b))

Proof. Applying Yoneda lemma again.∫
p∈Mod(ψ)

p(a, b)→ p(a, b) ∼= (lemma)∫
p∈[Optic,Sets]

p(a, b)→ p(a, b) ∼= (by de�nition)

Nat(−(a, b),−(s, t)) ∼= (Yoneda embedding)
Nat(Nat(Optic((a, b),�),−),Nat(Optic((s, t),�),−)) ∼= (Yoneda embedding)

Nat(Optic((a, b),�),Optic((s, t),�)) ∼= (Yoneda embedding)
Optic((s, t), (a, b))

Bartosz Milewski. Profunctor optics: the categorical view.
https://bartoszmilewski.com/2017/07/07/profunctor-optics-the-categorical-view/. 2017.

Profunctor representation: lenses

Theorem (Profunctor representation theorem)∫
p∈Mod(ψ)

p(a, b)→ p(a, b) ∼= Opticψ((s, t), (a, b))

In particular, for lenses, modules associated to the action (×) are profunctors with a
natural transformation ∫

c∈C
p(a, b)→ p(c× a, c× b),

which were called cartesian profunctors.

-- Haskell definition.
class Cartesian p where

cartesian :: p a b -> p (c , a) (c , b)
Lens s t a b = (forall p . Cartesian p => p a b -> p s t)

Guillaume Boisseau and Jeremy Gibbons. “What you needa know about Yoneda: profunctor optics and the
Yoneda lemma (functional pearl)”. In: PACMPL 2.ICFP (2018), 84:1–84:27. doi: 10.1145/3236779. url:
https://doi.org/10.1145/3236779.

https://doi.org/10.1145/3236779
https://doi.org/10.1145/3236779

Profunctor representation: prisms

Theorem (Profunctor representation theorem)∫
p∈Mod(ψ)

p(a, b)→ p(a, b) ∼= Opticψ((s, t), (a, b))

In particular, for prisms, modules associated to the action (+) are profunctors with a
natural transformation ∫

c∈C
p(a, b)→ p(c+ a, c+ b),

which were called cocartesian profunctors.

-- Haskell definition.
class Cocartesian p where

cocartesian :: p a b -> p (Either c a) (Either c b)
Prism s t a b = (forall p . Cocartesian p => p a b -> p s t)

Guillaume Boisseau and Jeremy Gibbons. “What you needa know about Yoneda: profunctor optics and the
Yoneda lemma (functional pearl)”. In: PACMPL 2.ICFP (2018), 84:1–84:27. doi: 10.1145/3236779. url:
https://doi.org/10.1145/3236779.

https://doi.org/10.1145/3236779
https://doi.org/10.1145/3236779

Profunctor representation: traversals

Theorem (Profunctor representation theorem)∫
p∈Mod(ψ)

p(a, b)→ p(a, b) ∼= Opticψ((s, t), (a, b))

In particular, for traversals, modules associated to the action (
∑
n) are profunctors

with a natural transformation∫
c∈C

p(a, b)→ p
(∑

n
cn × an,

∑
n
cn × bn

)
,

which we can call analytic profunctors.

Guillaume Boisseau and Jeremy Gibbons. “What you needa know about Yoneda: profunctor optics and the
Yoneda lemma (functional pearl)”. In: PACMPL 2.ICFP (2018), 84:1–84:27. doi: 10.1145/3236779. url:
https://doi.org/10.1145/3236779.

https://doi.org/10.1145/3236779
https://doi.org/10.1145/3236779

Further work

Part 4: Further work

Formal veri�cation and constructive proofs

Our proofs are all based in applications of Yoneda lemma and are all constructive.
Taking a perspective of mathematics where proofs have a content (proof relevance),
we can extract algorithms transforming optics from the formal proofs.

Figure 3: Derivation of a lens in Agda.

We are using Agda’s Instance Resolution algorithm to reconstruct the formal proof
from these hints.

Summary of results

• Optics: a zoo of accessors used by programmers [Kmett, lens library, 2012].
• We have a de�nition that captures all of them [Riley, 2018].
• We give a new derivation of Traversal as the optic for analytic functors.
• We give a description of the �xed Traversal.

• Profunctor optics, equivalence: for Tambara [Pastro/Street, 2008], [Milewski,
2017] and endofunctors [Riley], [Boisseau/Gibbons].

• We provide a new proof for [Optic,Set] ∼= Mod from general principles in
2-category theory.

• With this, we can directly extend the proof of [Pastro/Street, 2008] to any arbitrary
action (same result in [Boisseau/Gibbons] with a di�erent proof technique).

• Composition of optics: lattice described in [Pickering/Gibbons/Wu, 2016].
• We construct the optics that arise by composition using coproducts of the actions.
• We get the A�ne traversal as in [Boisseau/Gibbons] as a particular case.
• We get a new optic composing Lenses and Grates.

• Formal veri�cation: development of a library of optics in Agda.
• We formally verify proofs of equivalence.
• We automate reasoning with isomorphisms in Sets.
• We extract the translation algorithms from the formal proofs.

Further work

• Generalizations: in which other settings do this theorems apply?
• Our proof works over any enrichment. Study optics over other enrichments.
• In fact, this seems to work for any pseudomonoid. Can we do a formal theory of optics
for categories other thanCat?

• Consider unidirectional optics, everything that works forCop ×C works also for just
C.

• Simplify the theory with categories: our proofs should be as simple as possible.
• We almost exclusively rely on Yoneda and de�nitions.
• Simpler proofs mean simpler formalizations and simpler implementations.

• Other directions:
• Teleological categories [Hedges, 2019] and their relations to optics.
• Van Laarhoven representations [Van Laarhoven, 2009] and study the connection in
[Riley, 2018].

• Applications: which optics are useful to programmers?
• Once the framework has been established, it should be easier to come up with new
optics.

• Develop a formal library of optics in Agda.

