
Profunctor optics, a categorical update
(Extended abstract)

Mario Román, Bryce Clarke, Fosco Loregian, Emily Pillmore,
Derek Elkins, Bartosz Milewski and Jeremy Gibbons
September 5, 2019

NWPT’19, Taltech

Motivation

Part 1: Motivation

Optics

Optics are composable data accessors. They allow us to access and modify nested data
structures.

• Each family of optics encodes a data accessing pattern.
• Lenses access subfields.
• Prisms pattern match.
• Traversals transform lists.

• Two optics (of any two families!) can be directly composed.

Lenses

Definition (Oles, 1982)

Lens (A,S) := (S → A)× (S ×A→ S).

Lenses

Definition (Oles, 1982)

Lens

((
A

B

)
,

(
S

T

))
:= (S → A)× (S ×B → T).

Lenses

Prisms

Definition

Prism

((
A

B

)
,

(
S

T

))
= (S → T + A)× (B → T).

Prisms

Adapted from Penner’s @opticsbyexample

Traversals

Definition

Traversal

((
A

B

)
,

(
S

T

))
=
(
S →

∑
n
An × (Bn → T)

)
.

The problem of modularity

• How to compose any two optics?
• Even from di�erent families of optics (lens+prism+traversal).
• Simple but tedious code.
• Every pair of families needs special attention.

Profunctor optics

Profunctor optics

A Tambara module is a profunctor endowed with a natural transformation
p(A,B)→ p(C ⊗A,C ⊗B) subject to some conditions. Every optic can be written as
a function polymorphic on these Tambara modules. Why is this?

Outline

• Existential optics: a definition of optic.
• Profunctor optics: on optics as parametric functions.
• Composing optics: on how composition works.
• Case study: on how to invent an optic.
• Further work: and implementations.

Preliminaries

Part 2: Existential optics

Parametricity as ends

• We write ∀ to denote polymorphism (actually, ends).
• We write ∃ to denote existential types (coends).

Parametricity (Yoneda lemma) implies the following rules.

• ∀X.((A→ X)→ GX) ∼= GA

• ∃X.((X → A)× FX) ∼= FA

Continuity implies the following.

• ((∃C.FC)→ D) ∼= (∀C.FC → D)

• (D → (∀C.PC)) ∼= (∀C.D → PC)

These are rules from (co)end calculus. See Loregian’s "Coend calculus".

Parametricity as ends

• We write ∀ to denote polymorphism (actually, ends).
• We write ∃ to denote existential types (coends).

Parametricity (Yoneda lemma) implies the following rules.

• ∀X.((A→ X)
X = A

→ GX) ∼= GA

• ∃X.((X → A)
X = A

× FX) ∼= FA

Continuity implies the following.

• ((∃C.FC)→ D) ∼= (∀C.FC → D)

• (D → (∀C.PC)) ∼= (∀C.D → PC)

These are rules from (co)end calculus. See Loregian’s "Coend calculus".

A definition of "optic"

Definition (Milewski, Boisseau/Gibbons, Riley, simplified)
Fix a monoidal class of endofunctors M (that is, a constraint satisfied by the identity
and closed under composition, such as Applicative or Traversable).

An optic from (S, T) with focus on (A,B) is an element of the following type.

Optic

((
A

B

)
,

(
S

T

))
:= ∃M ∈M. (S →MA)× (MB → T).

Intuition: The optic splits into some focus A and some contextM . We cannot access
that context, but we can use it to update.

Lenses are optics

Proposition (from Milewski, 2017)
Lenses are optics for the product.

Proof.
∃C. (S → C ×A)× (C ×B → T) ∼= (Product)

∃C. (S → C)× (S → A)× (C ×B → T) ∼= (Yoneda)
(S → A)× (S ×B → T)

Lenses are optics

Proposition (from Milewski, 2017)
Lenses are optics for the product.

Proof.
∃C. (S → C ×A)× (C ×B → T) ∼= (Product)

∃C. (S → C)
S = C

× (S → A)× (C ×B → T) ∼= (Yoneda)
(S → A)× (S ×B → T)

Prisms are optics

Proposition (Milewski, 2017)
Prisms are optics for the coproduct.

Proof.
∃M. (S →M + A)× (M + B → T) ∼= (Coproduct)

∃M. (S →M + A)× (M → T)× (B → T) ∼= (Yoneda)
(S → T + A)× (B → T)

Prisms are optics

Proposition (Milewski, 2017)
Prisms are optics for the coproduct.

Proof.
∃M. (S →M + A)× (M + B → T) ∼= (Coproduct)

∃M. (S →M + A)× (M → T)
M = T

× (B → T) ∼= (Yoneda)
(S → T + A)× (B → T)

Traversals are optics

Proposition
Traversals are optics for the action of polynomial functors

∑
n Cn × �n.

That is,

∃C.
(
S →

∑
n
Cn ×An

)
×
((∑

n
Cn ×Bn

)
→ T

)
∼=
(
S →

∑
n
An × (Bn → T)

)
.

Traversals are optics: proof

Again by the Yoneda lemma, this time for functors C : N→ Sets.

∃C.
(
S →

∑
n
Cn ×An

)
×
(∑

n
Cn ×Bn, T

)
∼= (cocontinuity)

∃C.
(
S →

∑
n
Cn ×An

)
×
∏
n

(Cn ×Bn → T) ∼= (prod/exp adjunction)

∃C.
(
S →

∑
n
Cn ×An

)
×
∏
n

(Cn → (Bn → T)) ∼= (natural transformation)

∃C.
(
S,
∑

n
Cn ×An

)
×Nat

(
C�, (B� → T)

)
∼= (Yoneda lemma)

S →
∑

n
An × (Bn → T)

Programming libraries use traversable functors to describe traversals. Polynomials are
related to these traversable functors by the work of Jaskelio� and O’Connor.

Traversals are optics: proof

Again by the Yoneda lemma, this time for functors C : N→ Sets.

∃C.
(
S →

∑
n
Cn ×An

)
×
(∑

n
Cn ×Bn, T

)
∼= (cocontinuity)

∃C.
(
S →

∑
n
Cn ×An

)
×
∏
n

(Cn ×Bn → T) ∼= (prod/exp adjunction)

∃C.
(
S →

∑
n
Cn ×An

)
×
∏
n

(Cn → (Bn → T)) ∼= (natural transformation)

∃C.
(
S,
∑

n
Cn ×An

)
×Nat

(
C�, (B� → T)

) C = B� → T

∼= (Yoneda lemma)

S →
∑

n
An × (Bn → T)

Programming libraries use traversable functors to describe traversals. Polynomials are
related to these traversable functors by the work of Jaskelio� and O’Connor.

Unification of optics

All the usual optics are of this form. Some new ones arise naturally.

Name Concrete Action
Adapter (S → A)× (B → T) Identity
Lens (S → A)× (B × S → T) Product
Prism (S → T + A)× (B → T) Coproduct
Grate ((S → A)→ B)→ T Exponential
A�ine Traversal S → T + A× (B → T) Product and coproduct
Glass ((S → A)→ B)→ S → T Product and exponential
Traversal S → Σn.An × (Bn → T) Polynomials
Setter (A→ B)→ (S → T) Any functor

Unification of optics

Profunctor representation

Part 3: the Profunctor representation theorem

Tambara modules

Definition (from Pastro/Street)
A Tambara module is a profunctor P together with a family of morphisms satisfying
some coherence conditions.

P (A,B)→ P (MA,MB), M ∈M.

Pastro and Street showed they are algebras for a monad.

ΨQ(X,Y) = ∃M,A,B. Q(A,B)× (MA→ X)× (Y →MB)

We call Tmb to the Eilenberg-Moore category for the monad.

Profunctor representation

Theorem (Boisseau/Gibbons)

Optics are functions parametric over Tambara modules.

Optic((A,B), (S, T)) ∼= ∀P ∈ Tmb. P (A,B)→ P (S, T)

Composition of optics

Part 4: Composition of optics

Composing optics via coproducts

When we compose two optics in Haskell, the compiler joins the constraints. Is this an
optic according to the definition? If so, for which action?

• In other words, P has a bialgebra structure.
• This is the same as P having algebra structure for the coproduct monad (Kelly,

Adamek).
• We prove the coproduct monad is the monad for the coproduct action.

Composing optics via coproducts

When we compose two optics in Haskell, the compiler joins the constraints. Is this an
optic according to the definition? If so, for which action?

• In other words, P has a bialgebra structure.
• This is the same as P having algebra structure for the coproduct monad (Kelly,

Adamek).
• We prove the coproduct monad is the monad for the coproduct action.

Composing optics via distributive laws

• The folklore is that lenses and prisms compose into the optic for the action of a
single sum and product.

• Haskell actually composes lenses and prisms into the optic for the action of
multiple sums and products.

In which sense is folklore right?

We show that the fact that (×) distributes over (+)

induces a distributive law between the Pastro-Street monads.

Composing optics via distributive laws

• The folklore is that lenses and prisms compose into the optic for the action of a
single sum and product.

• Haskell actually composes lenses and prisms into the optic for the action of
multiple sums and products.

In which sense is folklore right? We show that the fact that (×) distributes over (+)

induces a distributive law between the Pastro-Street monads.

Composing optics via distributive laws

Monads can be joined in two ways.

• Taking their coproduct monad S ⊕ T ; and
• using a distributive law ST ⇒ TS to induce a monad structure on the

composition TS.

Families of optics can be joined in two ways.

• Taking their coproduct (as Haskell does),
• using a distributive law between them to induce optic structure on the

composition.

Can we make this analogy precise?

• Families of optics are a class of promonads (monoids in endoprofunctors).
• Coproducts of promonads correspond to their coproduct.
• Distributive laws between promonads are their distributive laws.

Composing optics via distributive laws

Monads can be joined in two ways.

• Taking their coproduct monad S ⊕ T ; and
• using a distributive law ST ⇒ TS to induce a monad structure on the

composition TS.

Families of optics can be joined in two ways.

• Taking their coproduct (as Haskell does),
• using a distributive law between them to induce optic structure on the

composition.

Can we make this analogy precise?

• Families of optics are a class of promonads (monoids in endoprofunctors).
• Coproducts of promonads correspond to their coproduct.
• Distributive laws between promonads are their distributive laws.

Composing optics via distributive laws

Monads can be joined in two ways.

• Taking their coproduct monad S ⊕ T ; and
• using a distributive law ST ⇒ TS to induce a monad structure on the

composition TS.

Families of optics can be joined in two ways.

• Taking their coproduct (as Haskell does),
• using a distributive law between them to induce optic structure on the

composition.

Can we make this analogy precise?

• Families of optics are a class of promonads (monoids in endoprofunctors).
• Coproducts of promonads correspond to their coproduct.
• Distributive laws between promonads are their distributive laws.

Summary and further work

Part 4: Summary and further work

Summary

• Optics: a zoo of accessors used by programmers [Kmett, lens library, 2012].
• General definition: unified definition of optics as a coend.
• Concrete cases: constructing new optics.

• Profunctor optics: for monoidal actions [Pastro/Street, 2008], [Milewski, 2017]
and general actions [Boisseau/Gibbons, 2018].

• Profunctor representation: can be composed easily.
• Going from existential to profunctor and back is done in general.

• Composition of optics: what do we get when composing two optics.
• Haskell considers coproducts of monads.
• Composing with distributive laws is another natural choice.
• What are other applications of promonads in programming?

Related and further work

• Lawful optics. Studied by [Riley, 2018].
• Programmers use lawful optics, optics with certain properties.

• Generalizations: in which other settings do we get useful results?
• Enrichments over a cartesian Benabou cosmos V .
• We have extended the theorems for mixed optics.

• Implementation: developing libraries of optics.
• A concise library in Haskell. https://github.com/mroman42/vitrea/
• Derivations in Agda / Idris allow us to extract translation algorithms for optics.

Everything we have been doing is constructive.

https://github.com/mroman42/vitrea/

Some literature

Oles, 1982. A category theoretic approach to the semantics of programming
languages (PhD thesis). Defines lenses for the first time.

Kmett, 2012. Lens library. Implements optics in Haskell.

Pickerings/Gibbons/Wu, 2016. Profunctor optics: modular data accessors. Derives
lenses, prisms, adapters and traversals in Haskell.

Milewski, 2017. Profunctor optics, the categorical view. Tambara modules for lenses
and prisms.

Boisseau/Gibbons, 2018. What you needa know about Yoneda. General definition of
optics and a general profunctor representation theorem. Traversal as the optic for
traversables.

Riley, 2018. Categories of optics. General framework for obtaining laws for the optics.

https://www.cs.cmu.edu/afs/cs.cmu.edu/project/fox-19/member/jcr/www/FrankOlesThesis.pdf
https://www.cs.cmu.edu/afs/cs.cmu.edu/project/fox-19/member/jcr/www/FrankOlesThesis.pdf
https://hackage.haskell.org/package/lens-0.1
http://www.cs.ox.ac.uk/people/jeremy.gibbons/publications/poptics.pdf
https://bartoszmilewski.com/2017/07/07/profunctor-optics-the-categorical-view/
https://www.cs.ox.ac.uk/jeremy.gibbons/publications/proyo.pdf
https://arxiv.org/abs/1809.00738

