
Submitted to:
ACT 2023

© Braithwaite and Román
This work is licensed under the
Creative Commons Attribution License.

Collages of String Diagrams

Dylan Braithwaite
University of Strathclyde

dylan.braithwaite@strath.ac.uk

Mario Román
Tallinn University of Technology

mroman@ttu.ee

We introduce collages of string diagrams as a diagrammatic syntax for glueing multiple monoidal
categories. Collages of string diagrams are interpreted as pointed bimodular profunctors. As the main
examples of this technique, we introduce string diagrams for bimodular categories, string diagrams
for functor boxes, and string diagrams for internal diagrams.

1 Introduction

String diagrams are a convenient and intuitive, sound and complete syntax for monoidal categories [29].
Monoidal categories are algebras of processes composing in parallel and sequentially [34]; string dia-
grams formalize the process diagrams of engineering [6, 8]. Formalization is not only of conceptual
interest: it means we can sharpen our reasoning, scale our diagrams, or explain them to a computer [42].

However, the formal syntax of monoidal categories is not enough for all applications and, sometimes,
we need to extend it. Functor boxes allow us to reason about translations between theories of processes
[15, 37], ownership [39], higher-order processes [1], or programming effects [43]. Quantum combs
not only model some classes of supermaps [12, 16, 23], but they coincide with the monoidal lenses of
functional programming [5, 13, 50] and compositional game theory [22, 7]. Premonoidal categories,
which appear in Moggi’s semantics of programming effects [38, 30, 51], are now within the realm of
string diagrammatic reasoning [46]. Internal diagrams extend the syntax of monoidal categories allowing
us to draw diagrams inside tubular cobordisms and reason about topological quantum field theories [3],
but also coends [47] and traces [26].

Figure 1: Examples from the literature. From left to right: functor boxes [37], premonoidal categories
[46], internal diagrams [3], and combs or optics [12, 13, 23].

The extensions showcase the expressive power of string diagrams on surprisingly diverse application
domains. At the same time, these different ideas could be regarded as separate ad-hoc extensions: they
belong to different fields; they use different categorical formalisms. The overhead of learning and com-
bining each one of them prevents the exchange of ideas between the different domains of application:
e.g. an idea about topological quantum field diagrams does not transfer to premonoidal diagrams.

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

2 Collages of String Diagrams

Collages. This manuscript claims that this division is only apparent and that all these extensions are
particular instances of the same encompassing idea: that of glueing multiple string diagrams into what
we call a collage of string diagrams. We introduce a formal notion of collage (Section 4.4) and employ
string diagrammatic syntaxes for them, based on the calculus of bicategories (Sections 2.1, 3.1 and 5).

Even when collages of string diagrams are our novel contribution, collages are not yet another new
concept to category theory. “Collage” was Bob Walters’ term for a lax colimit in a module-like category
[52]. This can be considered as a glueing of objects together along the action of a scalar. For example,
given two sets A and B, with an action of a monoid M, we can construct their tensor product A⊗M B,
where (a ·m)⊗b = a⊗ (m ·b) for any scalar m ∈M. Categorifying this idea in a possible direction we
obtain monoidal categories acting on bimodular categories. The following is the takeaway of this work.

Collages of string diagrams consist of multiple string diagrams of different monoidal categories glued
together. Collages can be interpreted as pointed bimodular profunctors between bimodular categories.

A bimodular category, sometimes referred to as a biactegory [10], is to a bimodule what a monoidal
category is to a monoid. This is, a plain category A endowed with a left action of a monoidal category
(.) : M×A→ A and a right action of another, possibly different, monoidal category (/) : A×N→ A. We
can collage two bimodular categories along a common monoidal category that acts on both. Later on
the paper, exploiting a second axis of categorification, we pass from bimodular categories to bimodular
profunctors, which are a kind of 2-dimensional bimodule, and we define their collage. This structure
facilitates glueing categories together in 2-dimensions: we can represent complexes of morphisms from
different categories and glue them together. Collages of string diagrams are the syntactic representations
of this glueing, in the same sense that ordinary string diagrams represent tensors in monoidal categories.

We observe that collages of bimodular categories embed into a tricategory of pointed bimodules.
This provides a versatile setting where we can interpret many syntaxes already present in the literature.

Contributions. We introduce string diagrams of bimodular categories and we prove they construct the
free bimodular category on a signature (Theorem 2.7). We introduce novel string diagrammatic syntax
for functor boxes and we prove it constructs the free lax monoidal functor on a suitable signature (Theo-
rem 3.4). We describe the tricategory of pointed bimodular profunctors (Definition 4.6) and, in terms of
it, we explain the semantics of functor boxes (Proposition 4.9) and internal diagrams (Theorem 5.3), for
which we also provide a novel explicit formal syntax (Definition 5.2).

2 String Diagrams of Bimodular Categories

In algebra, a bimodule is a structure that has both a left and a right action such that they are compatible.
Bimodular categories are to bimodules what monoidal categories are to monoids. This means that a
bimodular category is a category, C, acted on by two monoidal categories, M and N [53]. Bimodular
categories are also known as “biactegories” [10, 36], while the name “bimodule category” has been
reserved for actions of vector enriched categories with extra properties [19]. For our purposes, bimodular
categories, C, glue the string diagrams of their two monoidal categories, M and N.

Definition 2.1. A bimodular category (C,M,N) is a category C endowed with a left monoidal action
(.) : M×C→ C, and a right monoidal action (/) : C×N→ C. These two actions must be compatible,
meaning that there exists a natural isomorphism, γM,N,X : M.(X /N)−→ (M.X)/N, such that all formal
equations between these isomorphisms and the coherence isomorphisms of both monoidal categories and
monoidal actions hold.

Braithwaite and Román 3

A bimodular category is a strict bimodular category whenever the two monoidal categories are strict,
their two actions are strict and, moreover, the compatibility isomorphism is an identity. Every monoidal
category (C,⊗, I) is a (C,C)-bimodular category with its own tensor product defining the two actions.

Proposition 2.2. Strict bimodular categories over arbitrary strict monoidal categories form a category,
sBimod. Morphisms (F,H,K) : (C,M,N)→ (D,P,Q) consist of two strict monoidal functors H : M→ P
and K : N→ Q and a functor F : C→ D that strictly preserves monoidal actions according to H and K.

2.1 Signature of a Bimodular Category

The next sections prove that a variant of string diagrams is a sound and complete syntax for bimodular
categories. String diagrams for bimodular categories consist of two monoidal regions glued by a bi-
modular wire. We first introduce a notion of bimodular signature (Definition 2.3) and then construct an
adjunction (Theorem 2.8) using the notion of collages.

Definition 2.3. A bimodular graph (A ,M ,N) (the bimodular analogue of a multigraph [48]) is given
by three sets of objects (Aob j,Mob j,Nob j) and three different types of edges:

• the left-acting edges, a set M (M0, . . . ,Mm;P0, . . . ,Pp) for each M0, . . . ,Mm,P0, . . . ,Pp ∈Mob j; and

• the right-acting edges, a set N (N0, . . . ,Nn;Q0, . . . ,Qq) for each N0, . . . ,Nn,Q0, . . . ,Qq ∈Nob j;

• the central edges, a set of edges A (M0, . . . ,Mm,A,N0, . . . ,Nn;O0, . . . ,Pp,B,Q0, . . . ,Qq), for each
M0, . . . ,Mm,P0, . . . ,Pp ∈Mob j; each N0, . . . ,Nn,Q0, . . . ,Qq ∈Nob j and each A,B ∈Aob j.

Figure 2: Left, right, and central edges of a bimodular graph.

Proposition 2.4. Bimodular graphs form a category bmGraph. We define a morphism of bimodular
graphs (l, f ,g) : (A ,M ,N)→ (A ′,M ′,N ′) to be a triple of functions on objects, (lob j, fob j,gob j),
that extend to the morphism sets. There exists a forgetful functor U : sBimod→ bmGraph.

Proof. See Appendix, Proposition B.3.

So far we have described a syntactic presentation of strict bimodular categories. We would like to,
additionally, go the other way and construct a free model from a syntactic presentation. Our approach
is to note that the central edges in a bimodular graph can be considered as dividing the graph into two
regions: one containing the left-acting vertices and edges and one containing the right-acting vertices
and edges. Diagrams of this sort with multiple labelled regions can naturally be considered as string
diagrams for bicategories: explicitly, the diagrams of the collage of the bimodular category.

2.2 The Collage of a Bimodular Category

Each profunctor induces a collage category; in an analogous fashion, a bimodular category induces a
collage bicategory. This section proves that constructing the collage of a bimodular category is left
adjoint to considering the bimodular hom-category between any two cells of a 2-category.

4 Collages of String Diagrams

Definition 2.5. The collage of an (M,N)-bimodular category C is a bicategory, CollC. This bicategory
has two 0-cells, M and N, and it is defined by the following hom-categories. Endocells on M are given by
the monoidal category CollC(M,M) = M; likewise, endocells on N are given by the monoidal category,
CollC(N,N) = N. The 1-cells from M to N are given by the category CollC(M,N) = C; and composition
of 1-cells is given by the monoidal actions. Finally, CollC(N,M) is the empty category.

Definition 2.6. The category of strict bipointed 2-categories, 2Cat2, has objects, (A,M,N), given by a
strict 2-category A and two chosen 0-cells on it, M ∈ A and N ∈ A. A morphism of bipointed 2-categories
is a strict 2-functor preserving the two chosen 0-cells.

Theorem 2.7. There exists an adjunction between strict bimodular categories and bipointed 2-categories
given by the collage, CollC : sBimod→ 2Cat2, and picking the hom-category between the chosen 0-cells,
Chosen : 2Cat2→ sBimod. Moreover, the unit of this adjunction is a natural isomorphism.

Proof. See Appendix, Theorem B.7.

2.3 String Diagrams of Bimodular Categories, via Collages

We have the two ingredients for string diagrams of bimodular categories: string diagrams for bicate-
gories, and collages, a way of embedding a bimodular category into a bicategory. This section combines
both results to provide an adjunction from bimodular graphs to bimodular categories.

Figure 3: Summary of adjunctions for the string diagrams of bimodular categories.

Theorem 2.8. There exists an adjunction between bimodular graphs and strict bimodular categories.
The left side of this adjunction is given by finding the bimodular category whose collage is the free 2-
category on the bimodular graph, bmStr : bmGraph→ sBimod. The right side of the adjunction is the
previously mentioned forgetful functor U : sBimod→ bmGraph.

Proof. See Appendix, Theorem 2.8, the proof follows Figure 3.

Remark 2.9. The string diagrams of bimodular categories particularize into the string diagrams of pre-
monoidal and effectful categories. See the Appendix B.2 for details.

We have presented string diagrams for bimodular categories via the string diagrams of bicategories,
and we will now give an example. We take inspiration from this first result to address now other syntaxes
that depend on string diagrams of bicategories: the next section proposes string diagrams for functor
boxes.

Braithwaite and Román 5

2.4 Example: Shared State

In the same way that premonoidal categories are particularly well-suited to describe stateful computa-
tions, bimodular categories are particularly well-suited to describe shared state between two processes.
These two processes can be different and even live on different categories. As an example, consider the
generators in Figure 4. They represent two different process theories (two different monoidal categories,
A and B) that access a common state with get and put operations.

Figure 4: Signature for shared state.

In the same way that monoidal categories are a good setting where to define monoids and comonoids,
bimodular categories are a good setting where to define bimodules. In order to capture interacting shared
state, the generators of Figure 4 are quotiented by the equations of a pair of semifrobenius modules with
compatible comonoid actions and semimonoid actions (see Appendix, Figure 14, for details).

Figure 5: Race condition in bimodular string diagrams.

This setup is enough to exhibit one of the most salient features of shared state: race conditions.
Race conditions were first studied by Huffman in 1954, who used diagrams to show how the behaviour
of shared state is dependent on the relative timing of the actions of the parties [27]. We employ string
diagrams of bimodular categories to show how two different timings of the actions – the leftmost and
rightmost sides of the equation in Figure 5 – result in two different executions: even when the two
get statements are compatible (i), the two put statements interact causing the earlier of the two to be
discarded (ii,iii,iv); this causes the discrepancy with the intended protocol (v).

Figure 6: Binary semaphore in bimodular string diagrams.

Race conditions have a commonly accepted workaround: the binary semaphore [49]. Dijkstra de-
scribed general semaphores with the aid of flow diagrams [18]; we use instead string diagrams of bimod-
ular categories to implement a binary semaphore (Figure 6). We consider two different object generators
for our bimodular category (free and locked): each operation must suitably lock or unlock the semaphore.

6 Collages of String Diagrams

This renders race conditions ill-typed, and renders most of the interaction equations unnecessary (in the
Appendix, Figure 14).

3 String Diagrams of Functor Boxes

Functor boxes are a extension of the string diagrammatic notation that represents plain functors, lax,
oplax and strong monoidal functors. Functor boxes were introduced by Cockett and Seely [15] and later
studied by Melliès [37]. We introduce here a syntactic presentation of (op)lax functor boxes that has
the advantage of treating each piece of the box as a separate entity in a bicategory and apply the string
diagrammatic calculus of bicategories.

3.1 Functor box signatures

Definition 3.1. A functor box signature F = (A ,X ,F•,F •) consists of a pair of sets, Aob j and Xob j,
and four different types of edges:

• the plain edges, A (A0, . . . ,An;B0, . . . ,Bm) for any objects A0, . . . ,An,B0, . . . ,Bm ∈Aob j;

• the functor box edges, X (X0, ...,Xn;Y 0, ...,Ym) for any objects X0, . . . ,Xn,Y0, . . . ,Ym ∈Xob j;

• the in-box edges, F•(A0, ...,An;Y 0, ...,Ym) for any A0, ...,An ∈Aob j and Y 0, ...,Ym ∈Xob j

• the out-box edges, F •(X0, ...,Xn;B0, ...,Bm) for any B0, ...,Bm ∈Aob j and X0, ...,Xn ∈Xob j.

A functor box signature morphism (h,k, l) : (A ,X ,F)→ (B,Y ,G) is a pair of functions between the
object sets, hob j : Aob j→Bob j and kob j : Xob j→ Yob j, that extend to a function between the edge sets;

• h : A (A0, ...,An;B0, ...,Bm)→B(h(A0), ...,h(An);h(B0), ...,h(Bm));

• k : X (X0, ...,Xn;Y 0, ...,Ym)→ Y (k(X0), ...,k(Xn);k(Y 0), ...,k(Ym));

• l• : F•(A0, ...,An;Y 0, ...,Ym)→ G•(h(A0), ...,h(An);k(Y 0), ...,k(Ym));

• l• : F •(X0, ...,Xn;B0, ...,Bm)→ G •(k(X0), ...,k(Xn);h(B0), ...,h(Bm)).

Functor box signatures and homomorphisms form a category, Fbox.

Figure 7: Syntactic bicategory of a lax monoidal functor box signature.

Braithwaite and Román 7

Definition 3.2. The syntactic bicategory of a functor box signature F = (A ,X ,F•,F •) is the bicate-
gory freely presented by Figure 7, which we call SA ,X ,F .

In other words, the bicategory SA ,X ,F contains exactly two 0-cells, labelled A and X ; it contains
a 1-cell A : A → A for each A ∈ Aob j, a 1-cell X : X →X for each X ∈Xob j and, moreover, a pair
of adjoint 1-cells F↑ : A →X and F↓ : X → A . Finally, it contains a pair of 2-cells witnessing the
adjunction F↑ a F↓, given by n : id→ F↑ # F↓ and e : F↓ # F↑→ id which additionally satisfy the snake
equations; and it also contains

• a 2-cell, f ∈ S(A ,A)(A0 # . . . #An; B0 # . . . #Bm), for each plain edge;

• a 2-cell, g ∈ S(X ,X)(X0 # ... #Xn; Y 0 # ... #Ym), for each functor box edge;

• a 2-cell, u ∈ S(A ,A)(A0 # ... #An; F↑ #Y 0 # ... #Ym #F↓) for each in-box edge; and

• a 2-cell, v ∈ S(A ,A)(F↑ #X0 # ... #Xn #F↓; B0 # . . . #Bm) for each out-box edge.

3.2 Lax Monoidal Functor Semantics

Definition 3.3 (Lax functors category). An object of the lax functors category, Lax, is a pair of strict
monoidal categories (A,X) together with a lax monoidal functor between them, (F,ε,µ); that is, a func-
tor F : X→ A endowed with two natural transformations ε : I → FI, and µ : FX ⊗FY → F(X ⊗Y),
satisfying associativity (µ ⊗ id) # µ = (id ⊗ µ) # µ , left unitality (ε ⊗ id) # µ = id and right unitality
(id⊗ ε) # µ = id.

A morphism of the lax functors category, from (A,X,F,εF ,µF) to (B,Y,G,εG,µG) is a pair of strict
monoidal functors H : X→ A and K : A→ B such that F # K = H # G and such that K(εF) = εG and
K(µF) = µG.
Theorem 3.4. There exists an adjunction between the category of functor box signatures, Fbox, and the
category of pairs of strict monoidal categories with a lax monoidal functor between them, Lax. The free
side of this adjunction is given by the syntax of Figure 7.

Proof. See Appendix, Theorem C.3.

Collages, by themselves, explained the 2-region diagrams of bimodular categories; collages will also
explain the two-region diagrams of functor boxes in Section 4.5. However, as currently defined, collages
are only sufficient to encode the vertical boundaries. In order to additionally represent boundaries along
the horizontal axis we can make use of profunctors between bimodular categories and extend our notion
of collage to these structures (described in Appendix F). Following this thread we find that collages
embed into a tricategory of pointed bimodular profunctors, described in the next section, which we
consider a universe of interpretation for all of the graphical theories described.

4 Bimodular Profunctors

Where can we interpret all these string diagrams and provide compositional semantics for them? In this
section, we introduce a single structure where all the previous calculi take semantics.

We will need two different ingredients: coends and bimodularity. Coends and profunctors [32, 33],
far from being a obscure concept from category theory, can be seen as the right tool to glue together
morphisms from different categories [17, 47]; we follow a explicitly pointed version of coend calculus,
which keeps track of the transformation between profunctors we are constructing (Section 4.3). In a
similar sense, bimodular categories tensor together objects from different monoidal categories. Both
ideas combine into the calculus of pointed bimodular profunctors.

8 Collages of String Diagrams

4.1 Bimodular Profunctors

Consider C and D, both (M,N)-bimodular categories. A natural notion of morphism between them is a
functor C→ D which is linear in both actions. However, there is another notion of morphism between
them, which is a generalisation of a profunctor between categories to this bimodular setting. Bimodular
profunctors are a generalized reformulation of the Tambara modules of Pastro and Street [41].

Definition 4.1. Let M and N be two monoidal categories and let C and D be two (M,N)-bimodular
categories. A bimodular profunctor from C to D is a profunctor T : Cop×D→ Set with a natural family
of strengths,

tM : T (X ,Y)→ T (M .X ,M .Y), and tN : T (X ,Y)→ T (X /N,Y /N),

such that the actions are associative tM # tN = tM⊗N , unital tI = id, and compatible, tM # tN = tN # tM, up to
the coherence isomorphisms of the monoidal category. See Appendix B for details.

Proposition 4.2. For any pair of monoidal categories, M and N, there is a bicategory MModN of (M,N)-
bimodular categories, bimodular profunctors, and natural transformations between them.

These will form the hom-bicategories of the tricategory we later define. The other significant piece
of data we require is a family of tensors ⊗ : MModN×NModO→ MModO, which we now study.

4.2 Tensor of Bimodular Profunctors

The tensor of bimodular categories is similar to the tensor of modules over a monoid in classical algebra:
we consider pairs of elements and we quotient out the action of a common scalar. In this case, the
quotienting is substituted by an appropiate structural isomorphism: the equilibrator.

Definition 4.3 (Tensor of bimodular categories). Let C be a (M,N)-bimodular category and let D be a
(N,O)-bimodular category. Their tensor product, C⊗N D, is a category with the same objects as C×D:
we write them as X ⊗N Y . The category is presented by the morphisms of C×D and a free family of
natural isomorphisms, called the equilibrators,

τX ,N,Y : (X /N)⊗N Y → X⊗N (N .Y), for each N ∈ N,X ∈ C,Y ∈ D,

which are additionally quotiented by the following equations up to the structure isomorphisms of the
monoidal actions, τX ,M⊗N,Y = τX/M,N,Y # τX ,M,N.Y , and τX ,I,Y = id.

Definition 4.4. Let C and C′ be two (M,N)-bimodular categories and let D and D′ be a (N,O)-bimodular
categories. Given two bimodular profunctors, T : C→ C′ and R : D→ D′, their tensor is a bimodular
profunctor, T ⊗N R : C⊗N D→ C′⊗N D′, defined by

T ⊗N R(X⊗N Y ;X ′⊗N Y ′) = T (X ;X ′)×R(Y,Y ′)/(∼),

where (∼) is the equivalence relation generated by (tN(x),y)∼ (x, tN(y)).

4.3 Pointed Profunctors

Profunctors deal with families of morphisms, and their natural isomorphisms determine correspondences
between these families. However, when we use profunctors for the semantics of string diagrams, we most
often want to single out a particular morphism between a particular pair of objects. A simple technique
to achieve this is to use pointed profunctors instead of simply profunctors: this technique was explicitly
described by this second author [47] although it has implicit appearances in the literature [3, 26].

Braithwaite and Román 9

Definition 4.5. A pointed profunctor (P, p) : (A,X)→ (B,Y) between two pointed categories with a
chosen object X ∈ Aob j and Y ∈ Bob j is a profunctor P : A→ B together with an element p ∈ P(A,B) of
the profunctor evaluated on the chosen object of the categories.

From now on, we work using pointed profunctors instead of plain profunctors, see the Appendix
Appendix D.1 for a short reference on “pointed coend calculus”.

4.4 The Tricategory of Pointed Bimodular Profunctors

We call collages of string diagrams to the diagrams of the tricategory of pointed bimodular profunctors.

Definition 4.6. The tricategory of pointed bimodular profunctors, BmProfpt, has as 0-cells the monoidal
categories, M,N,O, The 1-cells between two monoidal categories M and N are pointed bimodular cat-
egories, (A,.,/,A), consisting of a (M,N)-bimodular category with two actions (A,.,/) and some object
of that category, A ∈ A. Pointed bimodular categories compose by the tensor of bimodular categories,

(A,.,/,A)⊗N (B,.,/,B) = (A⊗N B,.,/,A⊗N B).

The 2-cells between two pointed bimodular categories (A,.,/,A) and (B,.,/,B) are pointed bimodu-
lar profunctors (P, t, p), consisting of a profunctor P : A→ B together with a point p ∈ P(A,B) that
are moreover bimodular with compatible natural transformations tM : P(A;B)→ P(M .A;M .B), and
tN : P(A;B)→ P(A /N;B /N). These 2-cells compose by profunctor composition and by the tensor of
bimodular profunctors.

Finally, the 3-cells between two pointed bimodular profunctors (P, t, p) and (Q,r,q) are bimodular
natural transformations that preserve the point, consisting of a natural transformation α : P→ Q such
that the α(p) = q and moreover tM #α = α # rM and tN #α = α # rN .

Remark 4.7. At the moment of writing, it is unclear to the authors whether a string diagrammatic calculus
for tricategories, described by transformations of the string diagrammatic calculus of bicategories, has
been fully described and proved sound and complete. However, there seems to be consensus in that this
would be the right language for tricategories: much literature assumes it. Let us close this section by
tracking explicitly the assumptions we need to employ a diagrammatic syntax for bimodular profunctors.

Conjecture 4.8. The previous data satisfies all coherence conditions of a tricategory. Moreover, we
can reason with tricategories using the calculus of deformations of string diagrams, extending the string
diagrams for quasistrict monoidal 2-categories of Bartlett [2].

4.5 Functor Boxes via Collages of String Diagrams

The following Figure 8 details how to interpret functor boxes as collages of string diagrams. The colored
region represents the domain of the lax monoidal functor; the white region represents the codomain.
Morphisms of both categories are interpreted as elements of their respective hom-profunctors; and the
laxators are used to merge colored regions. The only element that we will explicitly detail is the bimod-
ular category that appears in the closing and opening wires of a functor box.

Proposition 4.9 (Bimodular categories of a lax monoidal functor). Let X and A be two monoidal cat-
egories and let F : X→ A be a monoidal functor between them, endowed with natural transformations
ψ0 : J→ FI and ψ2 : FX ⊗FY → F(X ⊗Y). The following profunctors, AoF X : A×X→ A×X and

10 Collages of String Diagrams

XnF A : X×A→ X×A determine two promonads, and therefore two Kleisli categories.

AoF X(A,X ;B,Y) =
∫ M∈X

A(A;B⊗FM)×X(M⊗X ;Y);

XnF A(X ,A;Y,B) =
∫ M∈X

A(A;FM⊗B)×X(M⊗A;B);

These two Kleisli categories are (A,X) and (X,A)-bimodular, respectively.

Proof. See Appendix, Proposition D.4. The construction uses the laxity of the monoidal functor.

Figure 8: Semantics for functor boxes in terms of pointed bimodular profunctors.

5 String Diagrams of Internal Diagrams

The tubular 3-dimensional cobordisms of internal diagrams are first described as a Frobenius algebra
by Bartlett, Douglas, Schommer-Pries and Vicary [3]. We are indebted to this first introduction, which
made internal diagrams into a convenient graphical notation in topological quantum field theory [3].
Internal diagrams themselves were later given a expiclit semantics in a monoidal bicategory of pointed
profunctors; this was the subject of this second author’s contribution to Applied Category Theory 2020
[45]. An important aspect of the syntax of internal diagrams is their 3-dimensional nature: the syntax
not only contains string diagrams, but also reductions between them.

We introduce here a novel syntactic presentation of internal diagrams that has the advantage of
treating each piece of an internal diagram (including the closing and opening of tubes) as a separate
entity in a tricategory. As a consequence, we are later able to introduce for the first time a more refined
semantics in terms of a tricategory of pointed bimodular profunctors.

Definition 5.1. A polygraph, G , is the signature for the string diagrams of a monoidal category. It
consists of a set of objects, Gob j, and a set of morphisms G (A0, ...,An;B0, ...,Bm) between any two lists
of objects, A0, ...,An,B0, ...,Bm ∈ Gob j.

Definition 5.2. The syntactic tricategory of internal diagrams over a polygraph G is the tricategory G
presented by the cells in Figure 9. In other words, it contains two 0-cells, I and G , in white and blue
in the figure, respectively. It contains a 1-cell A : G → G for each object A ∈ Gob j and two 1-cells,

Braithwaite and Román 11

Figure 9: Syntax for open internal diagrams.

L• : I → G and R• : G → I forming two 2-adjunctions (L•) a (R•) and (R•) a (L•) up to a 3-cell. It
contains the following 2-cells,

• two 2-cells n1 : id→ L• #R• and e1 : R• #L•→ id witnessing the 2-adjunction (L•) a (R•) and two
2-cells n2 : 1→ R• # L• and e2 : L• # R•→ id witnessing the 2-adjunction (R•) a (L•) – see Vicary
and Heunen [24] for a reference on 2-adjunctions and the swallowtail equations;

• two 2-cells, Aよ : L• #A #R•→ id and Aよ : id→ L• #A #R•, forming an adjunction Aよ a Aよ for each
object A∈Gob j; and a 2-cell, f : A0 # ...#An→B0 # ...#Bm, for each edge f ∈G (A0, ...,An;B0, ...,Bm).

Finally, it contains the following 3-cells,
• two invertible 3-cells, α1 : (1⊗ n1) # (e1⊗ 1)→ 1 and β 1 : (n1⊗ 1) # (1⊗ e1)→ 1, witnessing

the 2-adjunction (L•) a (R•) and satisfying the swallowtail equations; and two invertible 3-cells,
α ′2 : (1⊗n2)#(e2⊗1)→ 1 and β 2 : (n1⊗1)#(1⊗e1)→ 1, witnessing the 2-adjunction (R•)a (L•)
and and satisfying the swallowtail equations;

• two 3-cells, c : Aよ #Aよ→ 1 and i : 1→Aよ #Aよ, witnessing the adjunction Aよ aAよ and satisfying
the snake equations;

• two 3-cells, ui : n1 # e2→ 1 and vi : 1→ e2 #n1 witnessing an adjunction e2 a n1 and satisfying the
snake equations; two 3-cells u j : 1→ n2 # e1 and vi : e1 # n2→ 1 witnessing an adjunction n2 a e1
and satisfying the snake equations.

Theorem 5.3. There is a 3-functor from the syntactic tricategory of internal diagrams into pointed
bimodular profunctors for any interpretation of the polygraph into a monoidal category.

Proof. See Appendix, Theorem E.1.

Remark 5.4. This syntax can be exemplified by evaluating a quantum comb [12], or a monoidal lens
[44] with a morphism, in terms of internal string diagrams [26], see Figure 10. It has been used more
generally to reason about coends in monoidal categories [47] and topological quantum field theory [3].

12 Collages of String Diagrams

Figure 10: Evaluating a comb in terms of internal string diagrams.

6 Conclusions

Collages of string diagrams provide an abundant graphical calculus. Functor boxes, tensors of bimodular
categories and internal diagrams all exist in the graphical calculus of collages. Their technical undepin-
ning is complex: we characterized them as diagrams of pointed bimodular profunctors, but these arrange
themselves into a tricategory, which may be difficult to reason about.

Apart from introducing the technique of collages and formalizing multiple extensions to string dia-
grams, we would like to call the attention to the techniques we use: most of our results on soundness and
completeness of diagrams are arranged into adjunctions, which allows us to prove them by reusing the
better known results on soundness and completenss for monoidal categories and bicategories.

Related work. An important line of research revolves around module categories and fusion categories,
some specific enriched categories with actions with applications in topological quantum field theories
[19, 20, 40]. Specially relevant and recent is Hoek’s work, which constructs diagrams for a bimodule
category [25, Theorem 3.5.2]. We follow the more elementary notion of bimodular category, called
“biactegory” in the taxonomy of Capucci and Gavranović [10]. Cockett and Pastro [14] have used instead
linear actions for concurrency, and even when we take inspiration from their work, their approach is more
sophisticated and expressive than our toy example demonstrating bimodular categories (Figure 5).

Most work has been presented for some particular cases of collages: functor boxes have been ex-
tensively employed, but never reduced to string diagrams [15, 37]; internal diagrams have served both
quantum theory and category theory [3, 26, 31], and can be given semantics into pointed profunctors
[45], but again a presentation as string diagrams was missing. A convenient algebra of lenses [44], a
particular type of incomplete diagram, has been recently introduced [21], but this is still independent of
the semantics of arbitrary internal diagrams.

Finally, the first author has published a blog post that accompanies this manuscript [9].

Further work. It should be possible to “destrictify” many of the results of this paper. We have only
presented a 1-adjunction between strict bimodular categories and bipointed 2-categories; but a higher
adjunction would allow us to reuse coherence for bicategories to automatically obtain coherence for
bimodular categories. We have marked along the paper the conjectures where further work is warranted.

We conjecture pointed bimodular profunctors to also form a compact closed tricategory, with the
dual of each monoidal category being the reverse monoidal category, A⊗Rev B = B⊗A. Even when it
may be conceptually clear what a compact tricategory should be, it is technically challenging to come up
with a concrete definition for it in terms of coherence equations.

Braithwaite and Román 13

Acknowledgements

The authors want to thank David A. Dalrymple for discussion on the string diagrammatic interpretation
of functor boxes; and Matteo Capucci for several insightful conversations about notions of 2-dimensional
profunctor, that helped us understand how to tie disparate aspects of this story together.

Dylan Braithwaite was supported by an Industrial CASE studentship from the UK Engineering and
Physical Sciences Research Council (EPSRC) and the National Physical Laboratory. Mario Román
was supported by the European Union through the ESF Estonian IT Academy research measure (2014-
2020.4.05.19-0001).

References

[1] Mario Alvarez-Picallo, Dan R. Ghica, David Sprunger & Fabio Zanasi (2021): Functorial String Diagrams
for Reverse-Mode Automatic Differentiation. arXiv:2107.13433.

[2] Bruce Bartlett (2014): Quasistrict symmetric monoidal 2-categories via wire diagrams. arXiv:1409.2148.

[3] Bruce Bartlett, Christopher L. Douglas, Christopher J. Schommer-Pries & Jamie Vicary (2015): Modular
categories as representations of the 3-dimensional bordism 2-category. arXiv:1509.06811.

[4] Jean Bénabou (1967): Introduction to bicategories. In: Reports of the Midwest Category Seminar, Springer
Berlin Heidelberg, Berlin, Heidelberg, pp. 1–77.

[5] Guillaume Boisseau & Jeremy Gibbons (2018): What you needa know about Yoneda: profunctor op-
tics and the Yoneda lemma (functional pearl). Proc. ACM Program. Lang. 2(ICFP), pp. 84:1–84:27,
doi:10.1145/3236779. Available at https://doi.org/10.1145/3236779.

[6] Guillaume Boisseau & Pawel Sobocinski (2021): String Diagrammatic Electrical Circuit Theory. In Kohei
Kishida, editor: Proceedings of the Fourth International Conference on Applied Category Theory, ACT 2021,
Cambridge, United Kingdom, 12-16th July 2021, EPTCS 372, pp. 178–191, doi:10.4204/EPTCS.372.13.
Available at https://doi.org/10.4204/EPTCS.372.13.

[7] Joe Bolt, Jules Hedges & Philipp Zahn (2019): Bayesian open games. CoRR abs/1910.03656.
arXiv:1910.03656.

[8] Filippo Bonchi, Joshua Holland, Robin Piedeleu, Paweł Sobociński & Fabio Zanasi (2019): Diagram-
matic algebra: from linear to concurrent systems. Proc. ACM Program. Lang. 3(POPL), pp. 25:1–25:28,
doi:10.1145/3290338. Available at https://doi.org/10.1145/3290338.

[9] Dylan Braithwaite (2023): Diagrams for Actegories. Available at {https://dylanbraithwaite.github.
io/2023/01/31/diagrams-for-actegories.html}.

[10] Matteo Capucci & Bruno Gavranović (2022): Actegories for the working amthematician. arXiv preprint
arXiv:2203.16351.

[11] Dimitri Chikhladze (2015): Lax formal theory of monads, monoidal approach to bicategorical structures and
generalized operads. arXiv:1412.4628.

[12] Giulio Chiribella, Giacomo Mauro D’Ariano & Paolo Perinotti (2009): Theoretical framework for quantum
networks. Phys. Rev. A 80, p. 022339, doi:10.1103/PhysRevA.80.022339. Available at https://link.
aps.org/doi/10.1103/PhysRevA.80.022339.

[13] Bryce Clarke, Derek Elkins, Jeremy Gibbons, Fosco Loregian, Bartosz Milewski, Emily Pillmore & Mario
Román (2022): Profunctor Optics, a Categorical Update. arXiv:2001.07488.

[14] J. Robin B. Cockett & Craig A. Pastro (2009): The logic of message-passing. Sci. Comput. Program. 74(8),
pp. 498–533, doi:10.1016/j.scico.2007.11.005. Available at https://doi.org/10.1016/j.scico.2007.
11.005.

https://arxiv.org/abs/2107.13433
https://arxiv.org/abs/1409.2148
https://arxiv.org/abs/1509.06811
https://doi.org/10.1145/3236779
https://doi.org/10.1145/3236779
https://doi.org/10.4204/EPTCS.372.13
https://doi.org/10.4204/EPTCS.372.13
https://arxiv.org/abs/1910.03656
https://doi.org/10.1145/3290338
https://doi.org/10.1145/3290338
{https://dylanbraithwaite.github.io/2023/01/31/diagrams-for-actegories.html}
{https://dylanbraithwaite.github.io/2023/01/31/diagrams-for-actegories.html}
https://arxiv.org/abs/1412.4628
https://doi.org/10.1103/PhysRevA.80.022339
https://link.aps.org/doi/10.1103/PhysRevA.80.022339
https://link.aps.org/doi/10.1103/PhysRevA.80.022339
https://arxiv.org/abs/2001.07488
https://doi.org/10.1016/j.scico.2007.11.005
https://doi.org/10.1016/j.scico.2007.11.005
https://doi.org/10.1016/j.scico.2007.11.005

14 Collages of String Diagrams

[15] Robin B. Cockett & R. A. G. Seely (1999): Linearly distributive functors. Journal of Pure and Applied
Algebra 143(1-3), pp. 155–203.

[16] Bob Coecke, Tobias Fritz & Robert W. Spekkens (2016): A mathematical theory of resources. Inf. Comput.
250, pp. 59–86, doi:10.1016/j.ic.2016.02.008. Available at https://doi.org/10.1016/j.ic.2016.02.
008.

[17] Elena Di Lavore, Giovanni de Felice & Mario Román (2022): Monoidal Streams for Dataflow Programming.
In: Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’22,
Association for Computing Machinery, New York, NY, USA, doi:10.1145/3531130.3533365.

[18] Edsger W. Dijkstra (1962): Over de sequentialiteit van procesbeschrijvingen. Unpublished. Transcribed
by Gerrit Jan Veltink for the E.W. Dijkstra Archive, Center for American History. Available at https:
//www.cs.utexas.edu/users/EWD/ewd00xx/EWD35.PDF.

[19] Christopher L. Douglas, Christopher Schommer-Pries & Noah Snyder (2019): The balanced tensor product
of module categories. Kyoto Journal of Mathematics 59(1), doi:10.1215/21562261-2018-0006. Available at
https://doi.org/10.1215%2F21562261-2018-0006.

[20] Vladimir Drinfeld, Shlomo Gelaki, Dmitri Nikshych & Victor Ostrik (2010): On braided fusion categories I.
Selecta Mathematica 16(1), pp. 1–119, doi:10.1007/s00029-010-0017-z.

[21] Matt Earnshaw, James Hefford & Mario Román (2023): The Produoidal Algebra of Process Decomposition.
arXiv:2301.11867.

[22] Neil Ghani, Jules Hedges, Viktor Winschel & Philipp Zahn (2018): Compositional Game Theory. In: Pro-
ceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’18, Association
for Computing Machinery, New York, NY, USA, p. 472–481, doi:10.1145/3209108.3209165. Available at
https://doi.org/10.1145/3209108.3209165.

[23] James Hefford & Cole Comfort (2022): Coend Optics for Quantum Combs. arXiv:2205.09027.

[24] Chris Heunen & Jamie Vicary (2019): Categories for Quantum Theory: an introduction. Oxford University
Press.

[25] Keeley Hoek (2019): Drinfeld centers for bimodule categories. Ph.D. thesis, MSc. thesis, The Australian
National University.

[26] Nick Hu & Jamie Vicary (2021): Traced Monoidal Categories as Algebraic Structures in Prof. In Ana
Sokolova, editor: Proceedings 37th Conference on Mathematical Foundations of Programming Semantics,
MFPS 2021, Hybrid: Salzburg, Austria and Online, 30th August - 2nd September, 2021, EPTCS 351, pp.
84–97, doi:10.4204/EPTCS.351.6. Available at https://doi.org/10.4204/EPTCS.351.6.

[27] David A Huffman (1954): The Synthesis of Sequential Switching Circuits. Journal of the Franklin Institute
257(3), pp. 161–190.

[28] Niles Johnson & Donald Yau (2020): 2-Dimensional Categories. arXiv:2002.06055.

[29] André Joyal & Ross Street (1991): The geometry of tensor calculus, I. Advances in Mathematics 88(1), pp.
55–112, doi:10.1016/0001-8708(91)90003-P. Available at https://www.sciencedirect.com/science/
article/pii/000187089190003P.

[30] Paul Blain Levy (2022): Call-by-Push-Value. ACM SIGLOG News 9(2), p. 7–29,
doi:10.1145/3537668.3537670.

[31] Leo Lobski & Fabio Zanasi (2022): String Diagrams for Layered Explanations. CoRR abs/2207.03929,
doi:10.48550/arXiv.2207.03929. arXiv:2207.03929.

[32] Fosco Loregian (2021): (Co)end Calculus. London Mathematical Society Lecture Note Series, Cambridge
University Press, doi:10.1017/9781108778657.

[33] Saunders Mac Lane (1971): Categories for the Working Mathematician. Graduate Texts in Mathematics 5,
Springer Verlag, doi:10.1007/978-1-4757-4721-8.

[34] Saunders Mac Lane (1978): Categories for the Working Mathematician. Graduate Texts in Mathematics,
Springer New York, doi:10.1007/978-1-4757-4721-8.

https://doi.org/10.1016/j.ic.2016.02.008
https://doi.org/10.1016/j.ic.2016.02.008
https://doi.org/10.1016/j.ic.2016.02.008
https://doi.org/10.1145/3531130.3533365
https://www.cs.utexas.edu/users/EWD/ewd00xx/EWD35.PDF
https://www.cs.utexas.edu/users/EWD/ewd00xx/EWD35.PDF
https://doi.org/10.1215/21562261-2018-0006
https://doi.org/10.1215%2F21562261-2018-0006
https://doi.org/10.1007/s00029-010-0017-z
https://arxiv.org/abs/2301.11867
https://doi.org/10.1145/3209108.3209165
https://doi.org/10.1145/3209108.3209165
https://arxiv.org/abs/2205.09027
https://doi.org/10.4204/EPTCS.351.6
https://doi.org/10.4204/EPTCS.351.6
https://arxiv.org/abs/2002.06055
https://doi.org/10.1016/0001-8708(91)90003-P
https://www.sciencedirect.com/science/article/pii/000187089190003P
https://www.sciencedirect.com/science/article/pii/000187089190003P
https://doi.org/10.1145/3537668.3537670
https://doi.org/10.48550/arXiv.2207.03929
https://arxiv.org/abs/2207.03929
https://doi.org/10.1017/9781108778657
https://doi.org/10.1007/978-1-4757-4721-8
https://doi.org/10.1007/978-1-4757-4721-8

Braithwaite and Román 15

[35] Daniel Marsden (2014): Category theory using string diagrams. arXiv preprint arXiv:1401.7220.
[36] Paddy McCrudden (2000): Categories of representations of coalgebroids. Advances in Mathematics 154(2),

pp. 299–332.
[37] Paul-André Melliès (2006): Functorial Boxes in String Diagrams. In Zoltán Ésik, editor: Computer Sci-

ence Logic, 20th International Workshop, CSL 2006, 15th Annual Conference of the EACSL, Szeged, Hun-
gary, September 25-29, 2006, Proceedings, Lecture Notes in Computer Science 4207, Springer, pp. 1–30,
doi:10.1007/11874683 1. Available at https://doi.org/10.1007/11874683_1.

[38] Eugenio Moggi (1991): Notions of Computation and Monads. Inf. Comput. 93(1), pp. 55–92,
doi:10.1016/0890-5401(91)90052-4.

[39] Chad Nester (2020): A Foundation for Ledger Structures. In Emmanuelle Anceaume, Christophe
Bisière, Matthieu Bouvard, Quentin Bramas & Catherine Casamatta, editors: 2nd International
Conference on Blockchain Economics, Security and Protocols, Tokenomics 2020, October 26-27,
2020, Toulouse, France, OASIcs 82, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 7:1–
7:13, doi:10.4230/OASIcs.Tokenomics.2020.7. Available at https://doi.org/10.4230/OASIcs.

Tokenomics.2020.7.
[40] Victor Ostrik (2003): Module categories, weak Hopf algebras and modular invariants. Transformation

groups 8, pp. 177–206.
[41] Craig Pastro & Ross Street (2007): Doubles for monoidal categories. arXiv preprint arXiv:0711.1859.
[42] Evan Patterson, David I. Spivak & Dmitry Vagner (2021): Wiring diagrams as normal forms for computing

in symmetric monoidal categories. Electronic Proceedings in Theoretical Computer Science 333, pp. 49–64,
doi:10.4204/eptcs.333.4. Available at https://doi.org/10.4204%2Feptcs.333.4.

[43] Maciej Piróg & Nicolas Wu (2016): String diagrams for free monads (functional pearl). In Jacques Gar-
rigue, Gabriele Keller & Eijiro Sumii, editors: Proceedings of the 21st ACM SIGPLAN International Con-
ference on Functional Programming, ICFP 2016, Nara, Japan, September 18-22, 2016, ACM, pp. 490–501,
doi:10.1145/2951913.2951947. Available at https://doi.org/10.1145/2951913.2951947.

[44] Mitchell Riley (2018): Categories of optics. arXiv preprint arXiv:1809.00738.
[45] Mario Román (2020): Comb Diagrams for Discrete-Time Feedback. CoRR abs/2003.06214.

arXiv:2003.06214.
[46] Mario Román (2022): Promonads and String Diagrams for Effectful Categories. CoRR abs/2205.07664,

doi:10.48550/arXiv.2205.07664. arXiv:2205.07664.
[47] Mario Román (2021): Open Diagrams via Coend Calculus. Electronic Proceedings in Theoretical Computer

Science 333, p. 65–78, doi:10.4204/eptcs.333.5. Available at http://dx.doi.org/10.4204/EPTCS.333.
5.

[48] Michael Shulman (2016): Categorical logic from a categorical point of view. Available on the web. Available
at https://mikeshulman.github.io/catlog/catlog.pdf.

[49] Abraham Silberschatz, Peter Baer Galvin & Greg Gagne (2018): Operating System Concepts, 10th Edition.
Wiley. Available at http://os-book.com/OS10/index.html.

[50] David I. Spivak (2022): Generalized Lens Categories via functors C op→ Cat. arXiv:1908.02202.
[51] Sam Staton & Paul Blain Levy (2013): Universal properties of impure programming languages. In Roberto

Giacobazzi & Radhia Cousot, editors: The 40th Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL ’13, Rome, Italy - January 23 - 25, 2013, ACM, pp. 179–192,
doi:10.1145/2429069.2429091.

[52] Ross Street (1981): Cauchy characterization of enriched categories. Rendiconti del Seminario Matematico
e Fisico di Milano 51(1), pp. 217–233.

[53] Zoran Škoda (2009): Some equivariant constructions in noncommutative algebraic geometry. Georgian
Mathematical Journal 16(1), pp. 183–202. arXiv:0811.4770.

https://doi.org/10.1007/11874683_1
https://doi.org/10.1007/11874683_1
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.4230/OASIcs.Tokenomics.2020.7
https://doi.org/10.4230/OASIcs.Tokenomics.2020.7
https://doi.org/10.4230/OASIcs.Tokenomics.2020.7
https://doi.org/10.4204/eptcs.333.4
https://doi.org/10.4204%2Feptcs.333.4
https://doi.org/10.1145/2951913.2951947
https://doi.org/10.1145/2951913.2951947
https://arxiv.org/abs/2003.06214
https://doi.org/10.48550/arXiv.2205.07664
https://arxiv.org/abs/2205.07664
https://doi.org/10.4204/eptcs.333.5
http://dx.doi.org/10.4204/EPTCS.333.5
http://dx.doi.org/10.4204/EPTCS.333.5
https://mikeshulman.github.io/catlog/catlog.pdf
http://os-book.com/OS10/index.html
https://arxiv.org/abs/1908.02202
https://doi.org/10.1145/2429069.2429091
https://arxiv.org/abs/0811.4770

16 Collages of String Diagrams

A Preliminaries

Proposition A.1 (Reducing an adjunction). Let F : A→ C and H #U : C→ A determine an adjunction
(F,H #U,η ,ε) and let P : B→C determine a second adjunction (P,H,u,c) such that the unit u : I→P#H
is a natural isomorphism (as in Figure 11). Then, F #H is left adjoint to U.

Figure 11: Setting for reducing an adjunction.

Proof. We employ the string diagrammatic calculus of bicategories to the bicategory of categories, func-
tors and natural transformations [35]. We define the morphisms in Figure 12 to be the unit and the counit
of the adjunction. We then prove that they satisfy the snake equations in Figures 12 and 13.

Figure 12: Unit and counit of the reduced adjunction (left). First snake equation (right).

In the first snake equation, in Figure 12, we use (i) that there is a duality (η ,ε), and (ii) that u is
invertible. In the second snake equation, in Figure 13, we use (i) that there is a duality (u,c), (ii) that u is
invertible, (iii) that there is a duality (u,c), again; and (iv) that there is a duality (η ,ε).

Figure 13: Second snake equation.

Braithwaite and Román 17

Proposition A.2. Let L : C→ D and R : D→ C determine an adjunction (L,R,η ,ε). For each object
A ∈ Cob j, this induces an adjunction between the coslice categories C\A and D\LA.

Proof. The functor LA : C\A→D\LA is just an application of the functor L. The functor RA : D\LA→
C\A is defined using the unit of the adjunction as

RA

(
LA

f→ B
)
=
(

A
η→ RLA

R f→ B
)
.

Note that a morphism α : LB→C makes the first diagram in commute if and only if its adjunct, α∗ : B→
RC, makes the second diagram in commute.

LB C B RC

A A RLA

α α∗

L f
g

f

η

Rg

This is because two morphisms are equal if and only if their adjuncts are. We have that (L f # α)∗ =
f # α∗ and g∗ = η # Rg. This induces the hom-set isomorphism of the adjunction, where each morphism
is again adjunct to the same adjunct it was before.

A.1 Bicategories

In the same way that a polygraph represents the signature for a monoidal category, a 2-graph is the
signature that allows us to freely generate a 2-category.

Definition A.3. A 2-graph G is given by a set of vertices, Gob j; a set of edges between any two ver-
tices, G (X ;Y) for X ,Y ∈ Gob j; and a set of 2-edges for each pair of paths of vertices with the same
source and target. That is, there is a set of 2-edges G (X ;Y)(A0, . . . ,An;B0, . . . ,Bm), for each path
A0 ∈ G (X ;U0), . . . ,An ∈ G (Un−1;Y) and each path B0 ∈ G (X ;V 0), . . . ,Bm ∈ G (Vm−1;Y).

A homomorhpism of 2-graphs is a family of functions on vertices, edges, and 2-edges that preserve
their sources and targets; these form a category 2Graph endowed with a forgetful functor U : 2Cat→
2Graph from the category of 2-categories and 2-functors.

Correctness of string diagrams for 2-categories [4, 35] amounts the fact that free 2-category over a
2-graph is given by string diagrams. It is difficult to find a proof for this exact result in the literature, but
the widespread use of string diagrams for bicategories suggests that it is commonly accepted.

Theorem A.4 (String diagrams for bicategories). There exists an adjunction between 2-graphs and 2-
categories given by progressive string diagrams Str : 2Graph→ 2Cat and the previously mentioned
forgetful functor U : 2Cat→ 2Graph.

A.2 Profunctors

Definition A.5. A profunctor (P,<,>) between two categories A and B is a family of sets P(A,B)
indexed by objects A and B, and endowed with jointly functorial left and right actions of the morphisms
of A and B, respectively. Explicitly, types of these actions are (>) : hom(A′,A)×P(A′,B)→ P(A,B),
and (<) : hom(B,B′)×P(A,B)→ P(A,B′). These must satisfy

18 Collages of String Diagrams

• compatibility, (f > p)< g = f > (p < g),
• preserve identities, id > p = p, and p < id = p,
• and preserve composition, (p < f)< g = p < (f #g) and f > (g > p) = (f #g)> p.

More succintly, a profunctor P : A→ B is a functor P : Aop×B→ Set. When presented as a family of
sets with a pair of actions, profunctors have been sometimes called bimodules. We avoid this term, which
we reserve for the classical algebraic notion, and its categorification.

B Bimodular categories

We provide here an alternative spelled-out definition of bimodular profunctors.

Definition B.1. A bimodular profunctor from C to D, a pair of (M,N,.,/)-bimodular categories, is a
profunctor (P,<,>) : C→ D endowed with a pair of natural whiskering operators,

(m) : M(X ;X ′)×P(A;B)→ P(X .A;X ′ .B), and (l) : P(A;B)×N(Y ;Y ′)→ P(A/Y ;B/Y ′),

satisfying the following axioms up to coherence of the monoidal actions.

(mm f)< (m′ .g) = (m #m′)m (f < g), (f ln)< (g/n′) = (f < g)l (n #n′),

(m′ .g)> (mm f) = (m′ #m)m (g > f), (g/n′)> (f ln) = (g > f)l (n′ #n),

idm f = f = f l id, um (f l v) = (um f)l v,

um (vm f) = (u⊗ v)m f , (f lu)l v = f l (u⊗ v).

Remark B.2. Not only is this definition a natural extension of profunctors as category-bimodules to
bimodular categories, but the strengths of bimodular profunctors can be seen as an additional bimodule
structure in the form of an action of the monoidal categories on the profunctor.

C

M T N

D

left strength

monoidal action

functorial action

The vertical composition of bimodular profunctors is given by ordinary profunctor composition while
the strength is obtained as the cartesian product of the two constituent strengths.

M N

C

E

D
P

Q
7→ M N

C

E

P�Q

As with ordinary profunctors, this composition is not strictly associative or unital but indeed there is
additionally a natural notion of morphism between bimodular profunctors with which structure maps
can be defined. Namely these are natural transformations which commute with the strengths. This
makes bimodular categories and the profunctors between them into a bicategory.

Braithwaite and Román 19

As noted in the main text, the strength of a bimodular profunctor could alternatively be considered as
a horizontal action of a monoidal category on the profunctor. In fact such strengths are equivalent to the
data of monoid actions for the lax monoidal functors M(−,−) and N(−,−), viewed as monoid objects in
their respective functor categories. This gives a route for defining the horizontal composite of bimodular
profunctors, just as we do for bimodular categories, by quotienting out the common action.

M N O

C

C′

D

D′

T U 7→ M O

C⊗ND

C′⊗ND′

T⊗NU

As in any category of modules we would like to define the composite by quotienting out the action of the
common scalar, taking a coequaliser of the two action maps.

P(C,C′)×Q(D,D′)

∫M P(C < M,C′ < M)×Q(D,D′)+P(C,C′)×Q(M > D,M > D′)

P⊗Q(C,C′,D,D′)

left strength right strength

The form of this diagram is slightly more complicated than the one we saw for bimodular categories.
In the form we have seen them, the strengths of a Tambara module have different codomains for the
two action maps. So to match the form of a coequaliser we embed both into their coproduct. This is
alternatively the pushout of the two action maps, but we choose to present it as is to reinforce that this is
just another instance of bimodule composition.

B.1 String Diagrams for Bimodular Categories

Proposition B.3 (From Proposition 2.4). There exists a forgetful functor U : SBimod→ Bgraph.

Proof. Given (A,M,.,N,/), we define the following bimodular graph.

A (M0, ...,Mm,A,N0, ...,Nn;P0, ...,Pp,B,Q0, ...,Qq) =

A(M0Mm .An /N0 / ... /Nn;N0Nn .B/Q0 / ... /Qq),

M (M0, ...,Mm;P0, ...,Pp) = M(M0⊗ ...⊗Mm;P0⊗ ...⊗Pp),

N (N0, ...,Nn;Q0, ...,Qq) = N(N0⊗ ...⊗Nn;Q0⊗ ...⊗Qq).

We now check that this assignment is functorial: indeed, the functors (F,H,K) induce three functions
between the edge sets of the bimodular graph.

Lemma B.4. Collages induce a functor Coll : sBimod→ 2Cat2 from strict bimodular categories to
bipointed 2-categories. Picking the hom-category between the chosen 0-cells of a bipointed 2-category
induces a functor from bipointed 2-categories to strict bimodular categories Chosen : 2Cat2→ sBimod.

Proof. See Appendix, Lemmas B.5 and B.6.

20 Collages of String Diagrams

Lemma B.5 (From Lemma B.4). Collages induce a functor Coll : sBimod→ 2Cat2 from strict bimod-
ular categories to bipointed 2-categories.

Proof. On objects, the functor is defined by the collage with its two 0-cells, Coll(C,M,N)= (CollC,M,N).
Given a morphism of bimodular categories, (F,H,K) : (C,M,N)→ (D,P,Q), the functor takes it to the
strict 2-functor defined by: sending CollC(M,M) = M to CollD(P,P) = P with H; sending CollC(N,N) =
N to CollD(Q,Q) = Q with K; sending CollC(M,N) = C to CollD(P,Q) = D with F ; and finally noticing
that both CollC(N,M) and CollD(Q,P) are empty. This assignment defines a 2-functor preserving com-
position: this is thanks to the fact that composition has been defined in CollC and CollD using the strict
monoidal actions, and the functors F , H and K do preserve the monoidal actions.

Lemma B.6 (From Lemma B.4). Picking the hom-category between the chosen 0-cells of a bipointed 2-
category induces a functor from bipointed 2-categories to strict bimodular categories Chosen : 2Cat2→
sBimod.

Proof. On objects, the functor is defined by taking a bipointed bicategory the hom-category between the
selected points, Chosen(A,M,N) = A(M,N). This hom-category is a bimodular category acted on by the
hom-categories A(M,M) and A(N,N); both of these are monoidal categories (bicategories with a single
object) with the tensor defined by composition in the bicategory. The actions are also defined by pre and
post-composition in the bicategory.

Consider now a strict 2-functor S : (A,M,N)→ (B,P,Q) that sends S(M) = P and S(N) = Q. It
must induce strict monoidal functors H = S(M,M) : A(M,M)→ B(P,P) and K = S(N,N) : A(N,N)→
B(Q,Q) and a functor F = S(M,N) : A(M,N)→ B(P,Q). All these functors must preserve composi-
tion in the original bicategory, so the triple Chosen(S) = (F,H,K) is a morphism of strict bimodular
categories.

Theorem B.7 (From Theorem 2.7). There exists an adjunction between strict bimodular categories
and bipointed 2-categories given by the collage, CollC : sBimod→ 2Cat2, and picking the hom-category
between the chosen 0-cells, Chosen : 2Cat2→ sBimod. Moreover, the unit of this adjunction is a natural
isomorphism.

Proof. We have already proven that both sides of the adjunction are indeed functors in Lemma B.4. Let
us show that CollC is the free bipointed 2-category on a bimodular category C. We start by noting that
there exists a homomorphism of bimodular categories

I : (C,M,N)→ (CollC(M,N),CollC(M,M),CollC(N,N)),

by construction of the collage; this determines the natural isomorphism of the unit of the adjunction
we are constructing. Consider now a bipointed 2-category (A,P,Q) and a homomorphism of bimodular
categories

(F,H,K) : (C,M,N)→ (A(P,Q),A(P,P),A(Q,Q));

we will now prove that there exists a unique 2-functor F : CollC → A such that I # F = (F,H,K).
Because the 2-functor is bipointed, we know that F (M) = P and that F (N) = Q, so it is determined on
0-cells. We know that its component on CollC(M,N), CollC(M,M) and CollC(N,N) must be given by F ,
H and K; while its only possible component on the empty category CollC(N,M) is trivial; this determines
it on 1-cells, but also on 2-cells, because F , H, and K are a functor and a pair of monoidal functors.

Braithwaite and Román 21

Theorem B.8 (From Theorem 2.8). There exists an adjunction between bimodular graphs and strict
bimodular categories. The left side of this adjunction is given by finding the bimodular category whose
collage is the free 2-category on the bimodular graph, bmStr : bmGraph→ sBimod. The right side of
the adjunction is the previously mentioned forgetful functor U : sBimod→ bmGraph.

Proof. String diagrams for bicategories are based on an adjunction between 2-graphs and 2-categories in
Theorem A.4, whose left adjoint is Str : 2Graph→ 2Cat. By Proposition A.2, this induces an adjunction
between bipointed 2-graphs and bipointed 2-categories, Str2 : 2Graph2→ 2Cat2. We can compose this
adjunction with the adjunction between bimodular graphs and bipointed 2-graphs; to obtain a left adjoint
bStr2 : bmGraph→ 2Cat2.

Finally, we employ the adjunction given by collages from strict bimodular categories to bipointed
2-categories in Theorem 2.7. This adjunction has an invertible unit, and thus, by a general principle
(Proposition A.1), it induces an adjunction with left adjoint bmStr : bmGraph→ sBimod.

Remark B.9 (Shared state). The equations in Figure 14 present the theory of shared state over the string
diagrams of bimodular categories. Semantics can be given in two different theories of processes shar-
ing the same state. For instance, the first category can allow for probabilistic processes, A = Stoch,
while the second can be deterministic, B = Set. The bimodular category determined by the promonad
StochStateS(A,B) = Set(S× A,Stoch(S× B)) can give semantics to both and has suitable monoidal
actions: the actions to the common wire become the get and put functions of the state promonad.

Figure 14: Theory of shared state.

22 Collages of String Diagrams

B.2 String Diagrams of Premonoidal Categories

Definition B.10. A premonoidal category is a category C endowed with an object I ∈ C and an object
A⊗B ∈ C for each A,B ∈ Cob j; and two functors (A⊗•) : C→ C and (•⊗B) : C→ C that coincide
on (A⊗B), even if (•⊗•) is not itself a functor. Finally, it is endowed with the following cohernece
isomorphisms, αA,B,C : A⊗(B⊗C)→ (A⊗B)⊗C, λA : A⊗ I→ A and ρA : I⊗A→ A, which interchange
with any other morphism, are natural at each given component and satisfy the pentagon and triangle
equations.

Definition B.11. An effectful category is an identity-on-objects functor, V→ C, from a monoidal cat-
egory V to a premonoidal category C that strictly preserves all of the premonoidal structure and whose
image is central.

Figure 15: Syntax for the string diagrams of premonoidal and effectful categories (Román, 2020 [46]).

Proposition B.12. Effectful categories V→ C are equivalent to (V,V)-bimodular categories such that
there exists an identity on objects functor that preserves the monoidal actions [30].

In this sense, the string diagrams of premonoidal categories and effectful categories are particular
cases of the string diagrams for bimodular categories. The extra wire that appears in the string dia-
grams of an effectful category V→ C is precisely the bimodular category C, with its two actions on V.
Morphisms in C need this wire as an input and as an output, while morphisms in V do not. A detailed
discussion of the string diagrams of premonoidal categories was presented to the last Applied Category
Conference by this second author [46].

C Functor Boxes

Proposition C.1. There exists a forgetful functor from the lax functors category to the category of functor
box signatures, Ulax : Lax→ Fbox.

Proof. Any lax monoidal functor induces a functor box signature Ulax(A,X,F,ε,µ) = (A ,X ,F•,F •)
defined by Aob j = Aob j, by Xob j = Xob j and taking edges to be morphisms,

• A (A0, ...,An;B0, ...,Bm) = A(A0⊗ ...⊗An;B0⊗ ...⊗Bm),

• X (X0, ...,Xn;Y 0, ...,Ym) = X(X0⊗ ...⊗Xn;Y 0⊗ ...⊗Ym),

• F•(A0, ...,An;Y 0, ...,Ym) = A(A0⊗ ...⊗An;F(Y 0⊗ ...⊗Ym)),

• F •(X0, ...,Xn;B0, ...,Bm) = A(F(X0⊗ ...⊗Xn);B0⊗ ...⊗Bm).

Braithwaite and Román 23

Consider now a homomorphism of lax monoidal functors (H,K) : (A,X,F)→ (B,Y,G). The pair of
strict monoidal functors H and K extend to all the sets of edges. For instance, because of the condition
F #K = H #G, the functor K induces a map

A(A0⊗ ...⊗An;F(Y 0⊗ ...⊗Ym))→ B(K(A0)⊗ ...⊗K(An);G(H(Y 0)⊗ ...⊗H(Ym))),

and the rest of the maps are analogous. This assignment preserves the composition and identities of the
lax monoidal functors category, which are precisely compositions and identities of functors.

Lemma C.2. The syntactic bicategory of a functor box signature (A ,X ,F) induces a lax monoidal
functor SA ,X : Fmon(X)→ S(A ,A) from the free monoidal category on X to the monoidal category
of the endocells in A . This assignment, S : Fbox→ Lax, is functorial.

Proof. We begin by defining the assignment explicitly. We first consider Fmon(X), the free strict mo-
noidal category on the polygraph X . We then consider S(A ,A), the strict monoidal category formed
by the endocells of the syntactic 2-category on A . A functor F : Fmon(X)→ S(A ,A) is defined on
objects by the composition F(X0) = F↑ #X0 #F↓, and similarly on morphisms. It becomes a lax monoidal
functor with thanks to the unit and counit maps provided by the adjunction F↑ a F↓.

We now prove that this assignment is functorial. Consider a functor box signature map determined
by (h,k) : (A ,X) → (B,Y), inducing lax monoidal functors F : Fmon(X) → SA ,X (A ,A) and
G : Fmon(Y)→ SB,Y (B,B). Because of the adjunction determining free strict monoidal categories,
the map h : X → Y determines a strict monoidal functor H : Fmon(X)→ Fmon(Y). Now, because the
syntactic bicategory of a functor box is also freely generated, we can describe a map of 2-categories
SA ,X → SB,Y induced by the functions h,k and sending the pieces determining the adjunction on one
side to the adjunction on the other side. This 2-categorical functor restricts to a strict monoidal functor
K : SA ,X (A ,A)→ SB,Y (B,B).

Finally, by construction and because the 2-categorical functor sends F↑ a F↓ to G↑ a G↓, we have
that the H and K here defined satisfy F #K = H #G and preserve the structure maps of the lax monoidal
functor.

Theorem C.3 (From Theorem 3.4). There exists an adjunction between the category of functor box
signatures, Fbox, and the category of pairs of strict monoidal categories with a lax monoidal functor
between them, Lax. The free side of this adjunction is given by the syntax of Figure 7.

Proof. Given a functor box signature (A ,X) we will prove that the lax monoidal functor induced by
its syntactic bicategory, F : Fmon(X)→ SA ,X (A ,A), is the free one.

Consider a lax monoidal functor G : B→ Y endowed with a box signature morphism (A ,X)→
(B,Y). Already by the universal property of the free strict monoidal category, we know that there exists
a unique strict monoidal functor H : Fmon(X)→Fmon(Y) that, under the forgetful functor, commutes
with the box signature morphism.

We need to show that there exists a unique strict monoidal functor K : SA ,X (A ,A)→ SB,Y (B,B)
that commutes with H and with the box signature morphism. We first define it on 1-cells. By structural
induction, a 1-cell of SA ,X (A ,A) is: (i) an object of A followed by a 1-cell; or (ii) a functor box
opening F↑, a 1-cell of Fmon(X) and a functor box closing F↓, followed by a 1-cell of SA ,X (A ,A).
In the first case, the object in A must be sent to the object determined by the box signature morphism;
in the second case, because the condition F #K = H #G must be satisfied, we must send the object F(X0)
to G(H(X0)).

24 Collages of String Diagrams

We now define it on 2-cells. The plain edges need to be mapped according to the functor box
signature homomorphism; the functor box edges are already mapped according to H; the in-box and out-
box edges are mapped according to the functor box signature homomorphism. The unit of the adjunction
must be preserved because it is a structure map of the lax monoidal functor. Finally, the unit of the
adjunction must always appear enclosed in between the cells F↑ and F↓, which means it always represents
the µF structure map of the lax monoidal functor and must be mapped accordingly to µG.

D Pointed Bimodular Profunctors

D.1 The Point of Coend Calculus

Coend calculus is the name given to the algebraic manipulations of coends that prove isomorphisms or
construct natural transformations between profunctors. In the same way that regular logic links relations,
a coend calculus expression is a list of profunctors linked by some objects that are bound to a coend.
Usually, the isomorphisms that we construct are never made explicit, and it is difficult for the reader to
compute the precise map we constructed.

Fortunately, this has a straightforward solution. We propose to point the coends: to write an expres-
sion together with the generic element it computes. An expression of pointed coend calculus is a coend
bounding some objects and a series of pointed profunctors. For instance,∫ M,N

f ∈ P(A;M,N)×g ∈Q(M;B)×h ∈ C(N;C), instead of
∫ M,N

P(A;M,N)×Q(M;B)×C(N;C).

The coend quotients expressions by dinaturality, meaning that any action on the left of a coend can be
also written as an action on the right. In terms of pointed profunctors, this means that∫ N

(f < h) ∈ P(A;N)×g ∈ Q(N;B) =
∫ M

f ∈ P(A;M)× (h > g) ∈ Q(M;B).

Proposition D.1. Let C be a category and let F : Cop → Set and G : C→ Set be a presheaf and a
copresheaf, respectively. The following are natural isomorphisms of pointed profunctors,∫ X

f ∈ C(X ;A)×h ∈ F(A) ∼= (f >h) ∈ F(X);
∫ X

f ∈ C(A;X)×h ∈ G(A) ∼= (h< f) ∈ G(X).

We call these isomorphisms the “pointed” Yoneda reductions.

Remark D.2. Using pointed coends, any derivation does also include the computation of the isomorphism
it induces. As an example, compare the following with the usual coend derivation of a cartesian lens [13],

Proposition D.3. In a cartesian monoidal category, the pairs of morphisms f ∈ C(A;M×X) and g ∈
C(M×Y ;B), quotiented by dinaturality, are in bijective correspondence with the pairs of morphisms
C(A;M) and C(M×Y ;B).

∫ M
f ∈ C(A;M×X)×g ∈ C(M×Y ;B) ∼= (by the adjunction ∆ a ×)∫ M
(f #π1) ∈ C(A;M)× (f #π2) ∈ C(A;M)×g ∈ C(M×Y ;B) ∼= (by pointed Yoneda lemma)

(f #π2) ∈ C(A;M)× ((f #π1)⊗ id) #g ∈ C(M×Y ;B).

Braithwaite and Román 25

In the first step, we have used that the adjunction (∆ a ×) is given by postcomposition with projections
and; in the second step, we use that the action on the last profunctor is defined as h > g = (h⊗ id) # g.
The bijection has been explicitly constructed as sending the pair (f ;g) to (f #π2;((f #π1)⊗ id) #g).

D.2 Semantics of Functor Boxes

Proposition D.4 (Bimodular categories of a lax monoidal functor, from Proposition 4.9). Let X and A be
two monoidal categories and let F : X→ A be a monoidal functor between them, endowed with natural
transformations ψ0 : J→ FI and ψ2 : FX ⊗FY → F(X ⊗Y). The following profunctors, AoF X : A×
X→ A×X and XnF A : X×A→ X×A determine two promonads, and therefore two Kleisli categories.

AoF X(A,X ;B,Y) =
∫ M∈X

A(A;B⊗FM)×X(M⊗X ;Y);

XnF A(X ,A;Y,B) =
∫ M∈X

A(A;FM⊗B)×X(M⊗A;B);

These two Kleisli categories are (A,X) and (X,A)-bimodular, respectively.

Proof. We prove that AoF X define a promonad and, in particular, the hom-sets of a category. We write
the elements AoF X(A,X ;B,Y) are given by pairs (f ,α) where f : A→ B⊗FM and α : M⊗X →Y for
some M ∈ Xob j.

The unit of the promonad sends a pair of morphisms u : A→ B and r : X → Y to the morphism
(u⊗ψ0,r), where u⊗ψ0 : A→ B⊗FI and, modulo coherence, r : I⊗X → Y . The multiplication of
the promonad sends (f ,α) : (A,X)→ (Y,B) and (g,β) : (Y,B)→ (Z,C), to the composite formed by
f # (g⊗ id) # (id⊗ψ2) : A→ Z⊗F(M⊗N) and (id⊗α) # β : N⊗M⊗A→ B. Finally, from the axioms
of lax monoidal functors, it follows that this composition is associative and unital.

E Internal Diagrams

Theorem E.1 (From Theorem 5.3). There is a 3-functor from the syntactic tricategory of internal dia-
grams into pointed bimodular profunctors for any interpretation of the polygraph into a monoidal cate-
gory.

Proof. The syntactic tricategory of internal diagrams has been constructed as a free tricategory, so it
suffices to determine where the generators are sent. For this, we follow Figure 16. Let the square
brackets, J•K, denote the interpretation of the polygraph into a monoidal category.

The region G is sent to the monoidal category JG K = (A,⊗, I), while the region I is sent to the
terminal monoidal category. The generator L• is sent to the pointed bimodular category (1AA, I), while
the generator R• is sent to the bimodular category (AA1, I). The generator A is sent to the pointed
bimodular category (AAA,JAK).

Let us consider the 2-cells. The 2-cells n1 and e2 are sent to the profunctors A(•⊗•;•) and A(•;•⊗
•), pointed in the identities of the monoidal unit. The 2-cells n2 and e1 are sent to the profunctors A(I;•)
and A(•; I), pointed in the identities of the monoidal unit.

The 2-cells Aよ and Aよ are sent to the representable and corepresentable profunctors of the object
JAK, which are pointed in idA, the identity on that object. Finally, any 2-cell arising from an edge
f ∈ G (A0, ...,An;B0, ...,Bm) is sent to the hom-profunctor, pointed in the relevant morphism,

J f K ∈ A(JA0K⊗ ...⊗ JAnK;JB0K⊗ ...⊗ JBmK).

26 Collages of String Diagrams

Figure 16: Semantics for open internal diagrams in terms of pointed bimodular profunctors.

It is well-known that every representable profunctor is adjoint to its corepresentable profunctor, which
gives semantics to the syntactic adjunctions. The only adjunctions missing are that between AA1 and
1AA; for these, we must note that there is a Yoneda isomorphism of the following form,∫ M

A(I;M)×A(M⊗X ;Y)∼= A(X ;Y),
∫ M

A(X ;Y ⊗M)×A(M; I)∼= A(X ;Y),

and analogous ones swapping the position of M in the tensor product.

F The Collage of Bimodular Profunctors

To define collages in greater generality we use the notion of a bimodular pasting diagram: a composable
arrangement of bimodular categories and profunctors. For a precise definition of 2-dimensional pasting
diagrams, see the reference book by Johnson and Yau [28, Chapter 3].

Definition F.1 (Collages of Bimodular Profunctors). Let D be a bimodular pasting diagram. We define
a bicategory Coll(D) as follows:

• there is an object M for each vertex in D , labelled by a monoidal category M;

Braithwaite and Román 27

• endomorphism categories Coll(D)(M,M) are given by M with its monoidal structure;
• for each 1-edge labelled by an (M,N)-bimodular category C, and each object C ∈ C, we have a

1-cell (C,C) : M→ N;
• for each 2-edge labelled by an (M,N)-bimodular profunctor P : C→ D, and each p ∈ P(C,D) we

have a 2-cell (p,C,D) : (C,C)→ (D,D);
• compositions are given by monoidal actions, actions of morphisms on profunctors, or quotienting

maps of tensor products, where relevant.

Example F.2. In the case where the pasting diagram D is a single edge labelled by a bimodular category
C, we recover our earlier notion of collage from Definition 2.5.
Example F.3. Each of the profunctors in Figure 8 have a collage whose 2-cells describe string diagrams
for the section of functor box depicted. More complex composable arrangements of these profunctors
can be assembled giving rise to bicategories modelling whole functors boxes or arrangements of them.
Remark F.4. The definition of a bimodular pasting diagram can be seen as that of a trifunctor from the
free 2-category on a 2-graph to a tricategory of monoidal categories, bimodular categories, bimodular
profunctors, and natural transformations. We conjecture that the collage described here realises a lax
colimit of such a diagram, where the target category is enlarged to a tricategory of bicategories and
“2-profunctors” [11, 32].

Conjecture F.5. The collage of a diagram of bimodular profunctors is the lax 3-colimit of this diagram
when viewed as a functor into a tricategory of 2-profunctors between 2-categories

Coll(D) = Colimlax

(
I BmProf 2ProfD

)
Moreover the tricategory of pointed bimodular profunctors is the universal collage, given by the identity
diagram

BmProfpt = Colimlax

(
BmProf BmProf 2Prof

)
.

This perspective unifies our construction with the typical notion of a collage of profunctors [52],
which can be considered as a lax colimit of a functor into the bicategory of profunctors. Additionally,
this elucidates the relationship between the various syntactic bicategories we have constructed, and tri-
category of pointed bimodulars which we pronounced as a universe in which all such diagrams can live.
Indeed, if BmProfpt is a colimit of the terminal diagram, then we should obtain inclusions of all collages
into this tricategory. We leave the development of these notions for further work.

	Introduction
	String Diagrams of Bimodular Categories
	Signature of a Bimodular Category
	The Collage of a Bimodular Category
	String Diagrams of Bimodular Categories, via Collages
	Example: Shared State

	String Diagrams of Functor Boxes
	Functor box signatures
	Lax Monoidal Functor Semantics

	Bimodular Profunctors
	Bimodular Profunctors
	Tensor of Bimodular Profunctors
	Pointed Profunctors
	The Tricategory of Pointed Bimodular Profunctors
	Functor Boxes via Collages of String Diagrams

	String Diagrams of Internal Diagrams
	Conclusions
	Preliminaries
	Bicategories
	Profunctors

	Bimodular categories
	String Diagrams for Bimodular Categories
	String Diagrams of Premonoidal Categories

	Functor Boxes
	Pointed Bimodular Profunctors
	The Point of Coend Calculus
	Semantics of Functor Boxes

	Internal Diagrams
	The Collage of Bimodular Profunctors

