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ABSTRACT
We introduce effectful streams, a coinductive semantic universe for

effectful dataflow programming and traces. In monoidal categories

with conditionals and ranges, we show that effectful streams par-

ticularize to families of morphisms satisfying a causality condition.

Effectful streams allow us to develop notions of trace and bisim-

ulation for effectful Mealy machines; we prove that bisimulation

implies effectful trace equivalence.
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1 INTRODUCTION
Traces are sequences that record the outputs of a transition system

or a state machine along an execution. They constitute a successful

and flexible formalism that can be adapted to the different flavours

of transition systems (from non-deterministic to stochastic). Traces
are also a semantic universe of interest for dataflow networks;

in fact, they help extending Kahn’s original model [Kah74] to a

compositional semantics for the non-deterministic case [Jon89].

Traces could be an equally fruitful compositional semantics for

fully-fledged dataflow programming [WA
+
85] (also known as re-

active programming [EH97] or stream programming) – the multi-

ple flavours of traces we developed for machines and networks

may serve just the same for stream programming. Yet, categorical

semantics for reactive programming has been initially restricted

to the pure, cartesian case [UV08, KBH12], the non-deterministic

case [HPW98], and only recently to some other monoidal cases

[CDVP21, DLdFR22] that still lack effects. Realistic dataflow pro-

gramming needs arbitrary effects but, in order to give it semantics,

it may be necessary to develop trace semantics for the multiple

flavours of dataflow programming and then compare each one of

them to their classical counterpart for state machines and networks.

This manuscript develops a common solution to these problems.

We devise a unified compositional stream semantics for effectful

transition systems, effectful Mealy machines, and effectful dataflow

programs. Effectful streams form this semantics, which fulfills the

following desiderata.

• Fully-abstract programming syntax. Do-notation is a fully-

abstract syntax for effectful categories constituting a refined
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fragment of call-by-push-value [Lev22]. Effectful streams are

defined in terms of do-notation and coinduction.

• Coalgebraic characterization. Effectful streams form a final

coalgebra; elements of this final coalgebra can be constructed

coinductively, and we can reason with observational equality.

• Common generalization. Effectful streams can be constructed

over any effectful category [Lev22]. This includes the Kleisli

category of any monad [Mog91], any comonad, or any dis-

tributive law [PW99].

We show that the generalization is particularly fruitful. The

notion of causal function plays a key role in theory of streams since

its dawn: Raney [Ran58] introduces them in 1958, proves that they

compose and that all functions computed by Mealy machines are

causal. When one considers different flavours of Mealy machines,

such as non-deterministic or probabilistic, one would expect to

have analogous results, but it is far from obvious how causality can

be defined in the non deterministic or probabilistic setting.

Recall that a function 𝑓 : 𝑋𝜔 → 𝑌𝜔
, here𝐴𝜔

stands for the set of

streams {(𝑎0, 𝑎1, . . . ) | 𝑎𝑖 ∈ 𝐴}, is causal if the 𝑛-th output 𝑦𝑛 only

depends on the first𝑛 inputs 𝑥1, . . . , 𝑥𝑛 . We show that this definition

of causality can be generalised by means of conditionals, a notion
of probability theory that have been recently generalised [Fri20] to

arbitrary copy-discard categories [CG99, Jac18]. We define causal
processes as N-indexed family of morphisms 𝑓𝑛 : 𝑋0 ⊗ . . . ⊗ 𝑋𝑛 →
𝑌0 ⊗ . . . ⊗𝑌𝑛 such that there exist morphisms 𝑐𝑛 –the conditionals–

satisfying the equation expressed by the diagrams in Figure 1.

𝑓𝑛+1 =

𝑓𝑛

𝑐𝑛

Figure 1: Causality condition for causal processes.

Our main result (Theorem 4.6) provides sufficient conditions

guaranteeing that effectful streams are exactly causal processes.

The relevance of this results is two fold.

First, effectful streams can be neatly implemented and, at the

same time, enjoy a characterisation by means of a universal prop-

erty. However, they come modulo an equivalence, called dinatural-
ity, that is not very helpful in proofs. Instead, the characterisation

by means of causal processes is far handier.

Second, the sufficient conditions are general enough to include

deterministic, non-deterministic, or stochastic systems. Theorem 4.6

provides a generalization of the results in [Ran58] to these cases

and, at the same time, it allows us to easily prove that the semantics

provided by effectful streams coincide with the existing notions

of trace semantics. We do not need to recast these notions each

time we change the flavour of state machine (stochastic, partial,

non-deterministic, stateful...).
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1.1 Effectful Streams
Effectful streams are a coinductive construction. While induction is

widespread and we employ it without a second thought, coinduc-

tion [Rut00] is not granted the same trust: every time we employ

coinduction, we reassert its validity from basic principles. This can

make coinduction look obscure and akward. Instead, we will be

reasoning coinductively in the practical style promoted by Kozen

and Silva [KS17]: we apply coinductive hypotheses that need a coin-
ductive step but not a base case. This is not to mean our reasoning

is not formal: it can be backed by formal principles the same way

induction does.

Following this coinductive philosophy, we can say that a stream

𝑠 is an element (the head, 𝑠◦) followed by a stream (the tail, 𝑠+);
that constitutes a valid datatype definition. We can then define a

constant stream, declaring 1◦ = 1 and 1+ = 1, or even an alternating
stream, defining 𝒂𝒍𝒕◦ = 0, but 𝒂𝒍𝒕+◦ = 1 and 𝒂𝒍𝒕++ = 𝒂𝒍𝒕 ; we can
define the addition of two streams of natural numbers, declaring

(𝒙 +𝒚)◦ = 𝒙◦ +𝒚◦ and (𝒙 +𝒚)+ = 𝒙+ +𝒚+; or define the stream of

the natural numbers, defining 𝒏𝒂𝒕𝒔◦ = 0 and 𝒏𝒂𝒕𝒔+ = 1 + 𝒏𝒂𝒕𝒔.
Effectful streams follow exactly the same principle, but with two

important differences. The first is that instead of an element of a

set, each piece of the stream will represent an effectful program –

formally, a morphism in an effectful copy-discard category. The

second is that each piece of the stream, each program, will not

occur in isolation, but it will be allowed to communicate with the

next piece via amemory. This second principle will allow for causal

communication: messages can be passed from the past to the future,

but not the other way around.

A first example of an effectful stream is the following counter

program that prints the natural numbers by keeping the counting

on memory (𝑛): this memory is returned as an output at each step,

and received as an input for the next step.

counter()◦ =
print(0){ ()
return(1)

counter(𝑛)+◦ =
print(𝑛){ ()
return(𝑛 + 1)

counter(𝑛)++ =

counter(𝑛)+

There is little that we need to assume about the implementation

of the function print. It can be any effectful process taking a natural
number and producing no output, print : 𝑁 { (), in an arbitrary

category that does not even need to be a monoidal category: this

includesMoggi’s monadic semantics [Mog91], but so are comonadic

[UV08] or arrow semantics [Hug00].

1.2 Example: the stream cipher protocol
Stream cipher protocols encrypt messages of any given length. They

are a repeated version of the one-time pad protocol: a perfectly secure
encryption technique that, however, requires sharing a key ahead

of time through a secure channel. In the one-time pad protocol,

a first party (e.g. Alice) wants to send a private message, 𝒎, to a

second party (e.g. Bob), through a public channel. Alice and Bob

already shared a key – generated randomly by, say, Alice – through

a private channel 𝒌 , and this is the ingredient that will now allow

secure communication: Alice uses the XOR operation to mix the

message and the key, 𝒎 ⊕ 𝒌 , and sends that to Bob; Bob uses now

the XOR operation again to mix the received message with the key,

(𝒎 ⊕ 𝒌) ⊕ 𝒌 . Now, because the XOR operation is a nilpotent algebra,

Bob obtains the decrypted message:

(𝒎 ⊕ 𝒌) ⊕ 𝒌 = 𝒎 ⊕ (𝒌 ⊕ 𝒌) = 𝒎 ⊕ 0 = 𝒎.

An attacker listening to the public channel will only receive the

encrypted message, 𝒎 ⊕ 𝒌 , which is perfectly uninformative if they

do not know the value of the key. That is, the one-time pad protocol

is secure, but it still comes with a problem: as soon as the key is used

once, it cannot be reused safely; in order to send a long encrypted

message, we need an equally long pre-shared key.

The stream cipher protocol is a solution to this problem. Instead

of using the pre-shared key to encrypt and decrypt, Alice and Bob

now use the pre-shared key generated by Alice as the common

seed of two private identical random number generators: now they

have a inexhaustible source of shared random numbers, and they

can use these to repeatedly execute the one-time pad protocol to

communicate messages of arbitrary length.

The stream cipher is perfectly secure, but it is necessarily an

idealized protocol: it is impossible to create infinite and coupled

sources of true randomness; it is only possible to approximate them

with pseudorandom number generators. The security of this proto-

col relies on assuming that the pseudorandom number generator

cannot be distinguished from an actual random number generator.

Our signature for the stream cipher contains a single type 𝐶 .

It contains three effects: (i) a nullary effect that initializes a com-

mon seed for the coupled generators, seed : () { (); (ii) a single-
output effect that extracts a random symbol from the first generator,

rand𝐴 : () { 𝐶; and (iii) the same effect for the second generator,

rand𝐵 : () { 𝐶 . It contains a single operator, (⊕) : 𝐶 ⊗ 𝐶 → 𝐶 ,

representing the xor operation.

alice(m)◦ =
seed(){
rand𝑎(){ 𝑘𝑎
return(𝑚 ⊕ 𝑘𝑎)

alice(m)+◦ =
rand𝑎(){ 𝑘𝑎
return(𝑚 ⊕ 𝑘𝑎)

alice(m)++= alice(m)+

bob(m)◦ =
rand𝑏(){ 𝑘𝑏
return(𝑚 ⊕ 𝑘𝑏)

bob(m)+ = bob(m)

Figure 2: Components of the stream cipher protocol.
The agents participating in the stream cipher protocol are de-

scribed in Figure 2. Executing alice : 𝐶∗ → 𝐶∗
first, copying its

output and then executing bob : 𝐶∗ → 𝐶∗
over one of the copies

produces the following resulting protocol cipher : 𝐶∗ → 𝐶∗ ⊗ 𝐶∗
.

Under the right assumptions, we will be able to prove correctness

for this protocol (Section 3.2).

cipher(m)◦ =
init(){ ()
rand𝑎(){ 𝑘𝑎
rand𝑏(){ 𝑘𝑏
return(𝑚 ⊕ 𝑘𝑎 ⊕ 𝑘𝑏,𝑚 ⊕ 𝑘𝑎)

cipher(m)+◦ =
rand𝑎(){ 𝑘𝑎
rand𝑏(){ 𝑘𝑏
return(𝑚 ⊕ 𝑘𝑎 ⊕ 𝑘𝑏,𝑚 ⊕ 𝑘𝑎)
cipher(m)++ = cipher(m)+

In Section 3.2, we prove that the stream cipher protocol is secure

relative to a secure pseudorandom number generator. We follow

a recent proof of correctness of the one-time pad protocol for an
arbitrary nilpotent bialgebra in a symmetric monoidal category due

to Broadbent and Karvonen [BK23].
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1.3 Contributions
We introduce effectful streams (Definition 3.1); a common general-

ization of classical streams, stateful morphism sequences [SK19],

monoidal streams [DLdFR22], that uses premonoidal categories

[PT97].

Our notion captures multiple examples that could not be cap-

tured neither by the “stateful morphism sequences” of Katsumata

and Sprunger [SK19] nor by the “monoidal streams” of Di Lavore,

de Felice and Román [DLdFR22]. These include relational streams,

partial streams, and partial stochastic streams.

We generalise the notion of causal functions, originally intro-

duced in [Ran58], to causal processes (Definition 4.1) by exploiting

conditionals in copy-discard categories. Our main result (Theo-

rem 4.6) states that, under the additional assumption of existence

of ranges, effectful streams are indeed causal processes.

We illustrate conditionals and ranges for the categories of rela-

tions, partial functions and partial sthochastic functions and thus,

by means of Theorem 4.6, we obtain characterisations for rela-

tional, partial and partial stochastic streams as causal processes

(Corollaries 4.11, 4.13, 4.15) .

We exploit such characterisations to prove that the effectful

stream semantics of effectful Mealy machines, a generalization of

Mealy machines that we introduce in Definition 5.1, coincide with

existing trace semantics for non-deterministic, partial and proba-

bilistic systems. As a further sanity check, we show two key prop-

erties of our semantics: it is compostional (Proposition 5.6) and it

is entailed by a certain notion of bisimilarity (Theorem 5.10).

1.4 Related work
Causal dataflow programming. The theory of streams for causal

dataflow programming comes from the work of Kahn [Kah74]. The

particular coalgebraic approach we employ comes appears briefly

in the work of Uustalu and Vene [UV08], and it was developed in

more detail by Sprunger and Katsumata [SK19]: they first propose

cartesian streams as a categorical modal for dataflow programming.

This model was later refined to the monoidal by Di Lavore, de Felice

and Román [DLdFR22], although we significantly differ from their

design choices: (i) by taking the more general, but also more natural

and comfortable setting of effectful categories, which allows us to

reason with programs in do-notation; (ii) by avoiding a feedback

type-theory and feedback diagrams that, although sound, are not

complete except on the presence of a coinduction rule; and (iii) by
instead obtaining the axioms of feedback and delay as derived rules

arising from the interaction between do-notation and coinduction.

Finally, we are able to capture examples like partial, relational and

partial stochastic streams, which were out of the reach for monoidal

streams. Streams have also been studied in the case of quantum com-

putations [CDVP21] and digital circuits [GKS22]. Causal functions

were introduced by Raney [Ran58] and later studied in different

aspects [SJ19, GKS22, SK19].

Effectful Mealy machines. Our effectful Mealy machines are a nat-

ural extension of the bicategory of “processes” that Katis, Sabadini

and Walters defined as the suspension-loop of a base symmetric

monoidal category of processes [KSW97]. Most of the categorical

literature onMealy machines has been separated frommonoidal cat-

egories [CP20, SBBR13]; restricted to the cartesian case [BLLL23];

or expanded Katis, Sabadini and Walters’ work [DLGR
+
23]. Finally,

note the term “monoidal automata” is used to indicate automata

recognizing monoidal languages [ES22, ES23]. Finite state automata

can be given a finite axiomatisation [PZ23], but we are not con-

cerned with this issue in the present manuscript.

Bisimulation and traces. Bisimulation can be defined in general

for coalgebras [Rut95, Rut00]. When the base category is carte-

sian closed, transition systems can be expressed as coalgebras for

a functor, which gives a notion of bisimulation for them. Our ap-

proach is more general and coincides with the coalgebraic one

under reasonable assumptions. Probabilistic and metric bisimu-

lation, in particular, receive a lot of attention [BDEP97, DDLP06,

BBLM17, BSS21, BSV22]. Different notions of equality for effectful

and monoidal programs have been studied: effectful applicative

bisimilarity [DLGL17], equivalence for programs with effects and

general recursion [Voo20], and monoidal traces [Jac10].

Feedback. Feedback monoidal categories and their free construc-

tion have been defined multiple times in the literature [KSW97,

HMH14, BHP
+
19], but the construction is originally due to Katis,

Sabadini and Walters [KSW02]. It was extended to delayed feed-

back in [DLGR
+
23]. Our running example owes to the description

of the one-time pad protocol in symmetric monoidal categories by

Broadbent and Karvonen [BK23].

2 PRELIMINARIES
2.1 Effectful Copy-Discard Categories
Effectful categories allow us to talk about pure computations, as

morphisms in a monoidal category V, and effectful computations,

as morphisms in a premonoidal category C.
Using a triple of categories for the semantics of values, pure and

effectful processes is a refinment by Jeffrey [Jef97] of the distinction

between values and computations in the work of Levy [Lev22],

Power and Thielecke [PT97].

Definition 2.1. An effectful copy-discard category is a triple of

categories with two identity-on-objects functors, V → P → C,
where

(1) the first category, V, is a cartesian monoidal category repre-

senting “values” that can be copied and discarded;

(2) the second category, P, is a monoidal category representing

“pure computations” or “pure processes” whose execution

can be reordered without altering the result; and

(3) the third category, C, is a premonoidal category representing

“effectful computations” or “effectful processes” with a fixed

order of execution.

The first identity-on-objects functor, V → C, must preserve the

monoidal structure strictly; the second identity-on-objects functor,

P → C, must preserve the premonoidal structure strictly.

Remark 2.2. Setting some of the identity-on-object functors to be

identities, we recover multiple notions from the literature. A Freyd
category [PT97] is an effectful copy-discard category with only

values and effectful computations, V → C; an effectful category
[JHH09, Rom22] is an effectful copy-discard category with only

pure end effectful computations, P → C; a copy-discard category
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[FL23] with chosen maps, or a monoidal Freyd category, is an ef-

fectful copy-discard category with values and pure computations,

V → P.

An effectful copy-discard category is strict whenever the three

categories that conform it are strict. A strictification theorem holds

for effectful copy-discard categories, where each effectful copy-

discard category is equivalent to a strict one and the equivalence

preserves the cartesian, monoidal and premonoidal structures. Strict

effectful copy-discard categories and effectful copy-discard functors

between them form a category, Ecd.

Remark 2.3. The Kleisli of anymonad𝑇 : Set → Set, forms an effect-

ful copy-discard category, (V,Kl(Z(𝑇 )),Kl(𝑇 )), whereZ(𝑇 ) is the
centre of the monad [CLZ23]. More generally, any Freyd category

(V,C) induces an effectful copy-discard category, (V,Z(C),C),
whereZ(C) is the centre of the premonoidal category.

2.2 Effectful Copy-Discard Do-Notation
Definition 2.4. An effectful copy-discard graph, (O,V,P, C), con-
sists of a set of objects, O; a set of value generators,V(𝑋 1, ..., 𝑋𝑛 ;𝑌 ),
for each list of objects, 𝑋 1, ..., 𝑋𝑛, 𝑌 ∈ O; a set of pure genera-

tors, P(𝑋 1, ..., 𝑋𝑛 ;𝑌 1, ..., 𝑌𝑚), and a set of computation generators,

C(𝑋 1, ..., 𝑋𝑛 ;𝑌 1, ..., 𝑌𝑚), for each two lists 𝑋 1, ..., 𝑋𝑛, 𝑌 1, ..., 𝑌𝑚 ∈ O.

While computation generators are allowed to have multiple out-

puts, value generators are only allowed a single output. This is

not a real restriction: values form a cartesian category where each

morphism, 𝑓 : 𝑋 → 𝑌 1 × 𝑌 2, can be reconstructed from its two

projections, 𝑓 1 : 𝑋 → 𝑌 1 and 𝑓 2 : 𝑋 → 𝑌 2; instead of using a sin-

gle generator for a multiple-output value, we can use a family of

generators.

Effectful copy-discard graphs form a category, EcdGraph, en-
dowed with a forgetful functor from the category of strict effectful

copy-discard categories, Forget : Ecd → EcdGraph (see Defini-

tion B.1).

Definition 2.5. Do-notation for effectful copy-discard categories,

over a given effectful copy-discard graph (O,V,P, E) is the type
theory generated by the following rules, quotiented by𝛼-equivalence.

It contains two types of derivations, one derives simple values (⊢),
the other derives pure and effectful computations, (⊩).

Return

Γ ⊢ 𝑡1 : 𝑋 1 ... Γ ⊢ 𝑡𝑛 : 𝑋𝑛

Γ ⊩ return(𝑡1, ..., 𝑡𝑛) : 𝑋 1, ..., 𝑋𝑛

Variable

(𝑥𝑖 : 𝑋 𝑖 ) ∈ Γ ⊢ 𝑥𝑖 : 𝑋 𝑖

Value Generator

Γ ⊢ 𝑡1 : 𝑋 1 ... Γ ⊢ 𝑡𝑛 : 𝑋𝑛

Γ ⊢ 𝑓 (𝑡1, ..., 𝑡𝑛) : 𝑌

Pure Generator

𝑦1 : 𝑌 1, ..., 𝑦𝑚 : 𝑌𝑚, Γ ⊩ 𝑝 : 𝑍 1, ..., 𝑍𝑚 Γ ⊢ 𝑡1 : 𝑋 1, ..., Γ ⊢ 𝑡𝑛 : 𝑋𝑛

Γ ⊩ 𝑔(𝑡1, ..., 𝑡𝑛) → 𝑦1, ..., 𝑦𝑚 # 𝑝 : 𝑍 1, ..., 𝑍𝑚

Effectful Generator

𝑦1 : 𝑌 1, ..., 𝑦𝑚 : 𝑌𝑚, Γ ⊩ 𝑝 : 𝑍 1, ..., 𝑍𝑚 Γ ⊢ 𝑡1 : 𝑋 1, ..., Γ ⊢ 𝑡𝑛 : 𝑋𝑛

Γ ⊩ ℎ(𝑡1, ..., 𝑡𝑛) { 𝑦1, ..., 𝑦𝑚 # 𝑝 : 𝑍 1, ..., 𝑍𝑚

There exists an instance of the Value rule for each value generator,

𝑓 ∈ V(𝑋 1, ..., 𝑋𝑛 ;𝑌 ); there exists an instance of the Pure rule for

each pure generator, 𝑔 ∈ P(𝑋 1, ..., 𝑋𝑛 ;𝑌 1, ..., 𝑌𝑚); there exists an

instance of the Effectful rule for each effectful generator of the

form ℎ ∈ E(𝑋 1, ..., 𝑋𝑛 ;𝑌 1, ..., 𝑌𝑚).

Remark 2.6. Reading the notation is considerably easier when we

remove the statement separator, (#), and replace it with a line break.

We do so for the rest of the text.

Remark 2.7 (Interchange quotienting). Consider the following two

derivations, whose only difference is the order of execution of a

pure statements over distinct variables (meaning, in the example,

that no 𝑥𝑖 appears in any 𝑐 𝑗 ). Then, we can interchange these two

statements without affecting the meaning of the program.

𝑓 (𝑎1, ..., 𝑎𝑛)→𝑥1, ..., 𝑥𝑚
ℎ(𝑐1, ..., 𝑐𝑝){𝑦1, ..., 𝑦𝑞

}
=
ℎ(𝑐1, ..., 𝑐𝑝){𝑦1, ..., 𝑦𝑞
𝑓 (𝑎1, ..., 𝑎𝑛)→𝑥1, ..., 𝑥𝑚

}
Following the same principle, we also allow two pure statements

to interchange.

𝑓 (𝑎1, ..., 𝑎𝑛)→𝑥1, ..., 𝑥𝑚
𝑔(𝑏1, ..., 𝑏𝑝)→𝑦1, ..., 𝑦𝑞

}
=
𝑔(𝑏1, ..., 𝑏𝑝)→𝑦1, ..., 𝑦𝑞
𝑓 (𝑎1, ..., 𝑎𝑛)→𝑥1, ..., 𝑥𝑚

}
Proposition 2.8. Do-notation derivations over an effectful copy-
discard graph, G = (O,V,P, E), quotiented by interchange, form an
effectful copy-discard category, DoG (V) → Do(P) → Do(E).

Proof. See Appendix, Proposition B.5. □

Proposition 2.9. Do-notation derivations over an effectful copy-
discard graph quotiented by interchange form the free effectful copy-
discard category, over that graph. That is, there exists an adjunction,
Do ⊣ Forget.

Example 2.10. The category Cipher is the syntactic category on

which we wrote our stream cipher protocol (Section 1.2). We define

it to be the free effectful copy-discard category over the effectful

copy-discard graph containing only the following non-empty sets:

the set of objects O = {𝐶}, values𝑉 (𝐶,𝐶 ;𝐶) = {⊕}, pure generators
P(;𝐶) = {unif}, and effectful generators, E(; ) = {seed} and

E(;𝐶) = {rand𝑎, rand𝑏 }. There is a single generator that has not
been yet used, unif; it will appear later, in Section 3.2.

2.3 Copy-discard categories
Copy-discard categories are monoidal categories in which objects

can be copied and discarded, not necessarily in a natural way, and

are also known as gs-monoidal categories [CG99]. All Kleisli cate-

gories of monads on the category Set of sets and functions have a

copy-discard structure inherited from Set. A copy-discard structure

is a copy morphism : 𝐴 → 𝐴 ⊗ 𝐴 and a discard morphism

: 𝐴 → 𝐼 , for all objects 𝐴.

Remark 2.11. Only values can be copied and discarded. In general,

executing 𝑓 once and copying its output is not be the same as

copying its input and then executing 𝑓 twice; similarly, discarding

the output of 𝑓 is not the same as never executing it. Morphisms

that can be copied are called deterministic; morphisms that can be

discarded are called total (Figure 3).
Total morphisms of a copy-discard category (V,C) form a wide

subcategory Tot(C) that we will commonly choose as the pure

morphisms of a full effectful copy-discard category.
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𝑓 (𝑥)→𝑦1

𝑓 (𝑥)→𝑦2

return(𝑦1,𝑦2)

 =
𝑓 (𝑥)→𝑦
return(𝑦,𝑦)

}
; return() =

𝑓 (𝑥)→𝑦
return()

}
;

Figure 3: Deterministic and total morphisms.

Conditionals are a way of splitting morphisms 𝑓 : 𝑋 → 𝐴 ⊗ 𝐵

with two outputs in a way that produces the first output,𝐴, first and

then the second output, 𝐵. Quasi-totality ensures that, whenever

the output 𝐴 is produced, so is the output 𝐵. Conditionals were

introduced by Fritz [Fri20] for Markov categories, copy-discard cat-

egories where all morphisms are total. Their extension to generic

copy-discard categories requires the introduction of the quasi-

totality condition to preserve some of the properties of conditionals

in Markov categories [DLR23].

Definition 2.12. A copy-discard category (V, P) has conditionals
if, for every morphism 𝑓 : 𝑋 → 𝐴 ⊗ 𝐵, there exist non-necessarily

unique morphisms𝑚 : 𝑋 → 𝐴 and 𝑐 : 𝐴 ⊗ 𝑋 → 𝐵, called marginal
and conditional, such that the following equation holds.

𝑓 (𝑥)→𝑎, 𝑏

return(𝑎,𝑏)

}
=

𝑚(𝑥)→𝑎

𝑐(𝑥, 𝑎)→𝑏

return(𝑎,𝑏)


We say that 𝑓 has a quasi-total conditional whenever it additionally
satisfies the following equation.

𝑐(𝑎,𝑥)→𝑏1

𝑐(𝑎,𝑥)→𝑏2

return()

 =
𝑐(𝑥, 𝑎)→𝑏
return()

}
String diagrams for these conditions can be found in the Appendix,

Figure 8.

Section 4 makes use of both conditionals and quasi-total condi-

tionals to characterise streams as causal processes. When a con-

ditional is quasi-total, 𝑓 # (id𝐴 ⊗ 𝐵) is always a marginal for

it [DLR23, Proposition 3.14].

Remark 2.13. Conditionals are not unique and they cannot be,

otherwise the category structure collapses to a poset [Fri20, DLR23].

However, all conditionals with respect to the same marginal should

behave in the same way on all the inputs that can be produced by

that marginal. This intuition is captured by the definition of ranges.

Ranges were introduced in [DLdFR22] for similar purposes. Here,

we take a slightly more general definition to take into account that

some maps are not total.

Definition 2.14. A copy-discard category, (V, P), has ranges if,
for every morphism𝑚 : 𝑋 → 𝐴, there exists an object, the range
𝑅 ∈ C𝑜𝑏 𝑗 , a deterministic morphism 𝑟 : 𝐴 ⊗ 𝑋 → 𝐴 ⊗ 𝑋 and a total

morphism 𝑖 : 𝑅 → 𝐴 ⊗ 𝑋 such that (i) the range does not modify

the output of the morphism,

𝑚(𝑥) → 𝑎

return (𝑥, 𝑎)

}
=

𝑚(𝑥) → 𝑎

𝑟 (𝑥, 𝑎) → (𝑥 ′, 𝑎′)
return (𝑥 ′, 𝑎′)

 ;

and (ii) any two morphisms 𝑐, 𝑑 : 𝐴 ⊗ 𝑋 ⊗ 𝑌 → 𝐵 that equalize the

whole range,

𝑚(𝑥) → 𝑎

𝑐 (𝑥, 𝑎,𝑦) → 𝑏

return (𝑎, 𝑏)

 =

𝑚(𝑥) → 𝑎

𝑑 (𝑥, 𝑎,𝑦) → 𝑏

return (𝑎, 𝑏)


do also equalize its total part,

𝜄 (𝑠) → (𝑥, 𝑎)
𝑐 (𝑥, 𝑎,𝑦) → 𝑏

return (𝑎, 𝑏)

 =

𝜄 (𝑠) → (𝑥, 𝑎)
𝑑 (𝑥, 𝑎,𝑦) → 𝑏

return (𝑎, 𝑏)


String diagrams for these conditions are provided in the Appendix,

Figure 9.

2.4 Dinaturality and Profunctors
Effectful streams will be constructed by glueing together multiple

processes. Processes can be collected into profuctors: sets, 𝑃 (𝑋 ;𝑌 ),
indexed contravariantly by a category of input types,𝑋 ∈ A, and co-
variantly by a category of output types, 𝑌 ∈ B. The input category
acts contravariantly with an action (≻) : A(𝑋 ′

;𝑋 ) × 𝑃 (𝑋 ;𝑌 ) →
𝑃 (𝑋 ′

;𝑌 ), while the output category acts covariantly with an action

(≺) : 𝑃 (𝑋 ;𝑌 ) ×B(𝑌 ;𝑌 ′) → 𝑃 (𝑋 ;𝑌 ′). Both actions must be compat-

ible and satisfy certain axioms that amount to say that a profunctor

from A to B is the same thing as a functor 𝑃 : A𝑜𝑝 × B → Set.
Glueing two profunctors, 𝑃 : A𝑜𝑝 × B → Set and 𝑄 : B𝑜𝑝 × C →

Set, along a common category (with different variance) starts by

considering the set of pairs of processes, (𝑃 × 𝑄) (𝑋,𝑌 1, 𝑌 2, 𝑍 ) =
𝑃 (𝑋 ;𝑌 1) × 𝑄 (𝑌 2;𝑍 ). We would like to impose that the type of

the first output, 𝑌 1, coincides with the type of the second input

𝑌 2, but doing so naively would introduce redundancy: for each

morphism 𝑟 : 𝑌 1 → 𝑌 2 and any pair of processes 𝑝 ∈ 𝑃 (𝑋 ;𝑌 1) and
𝑞 ∈ 𝑄 (𝑌 2;𝑍 ), we may consider either the tuple where 𝑟 acts into

the first component, (𝑝 ≺ 𝑟, 𝑞) or the tuple where 𝑟 acts into the

second component, (𝑝, 𝑟 ≻ 𝑞). Even when these are two different

types of processes, and except for the instant in which they execute

𝑟 , they represent the same process – they are dinaturally equal.

Definition 2.15. Dinaturality, (∼), is the minimal equivalence

relation that equalizes the contravariant and covariant actions on a

family of sets indexed covariantly and contravariantly by the same

category, 𝑆 : B × B𝑜𝑝 → Set. Explicitly, on the set

∑
𝑌 ∈B 𝑆 (𝑌 ;𝑌 ),

dinaturality is such that (𝑟 ≻ 𝑠) ∼ (𝑠 ≺ 𝑟 ) for each 𝑟 : 𝑌 1 → 𝑌 2 and

each 𝑠 ∈ 𝑆 (𝑌 1, 𝑌 2).

Definition 2.16. Profunctor composition is the operation that

takes two profunctors 𝑃 : 𝐴𝑜𝑝 × B → Set and 𝑄 : B𝑜𝑝 × C → Set,
into the profunctor (𝑃 #𝑄) : 𝐴𝑜𝑝 ×C → Set defined by their pairing
quotiented by dinaturality on the middle variable,

(𝑃 #𝑄) (𝑋 ;𝑍 ) =
∑
𝑌 ∈B

𝑃 (𝑋 ;𝑌 ) ×𝑄 (𝑌 ;𝑍 )
/
(∼𝑌 ).

This type of colimit is better known as a coend, and usually denoted
by a superscripted integral sign,

(𝑃 #𝑄) (𝑋 ;𝑍 ) =
∫ 𝑌 ∈B

𝑃 (𝑋 ;𝑌 ) ×𝑄 (𝑌 ;𝑍 ) .
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3 EFFECTFUL STREAMS
The classical semantics for dataflow programs is given by a stream

of visible outputs for every stream of inputs. In the same way,

the semantics of effectful dataflow programs is given by effectful

streams. The theory of monoidal streams [DLdFR22] is an analogue

of the coinductive construction of streams using morphisms in a

symmetric monoidal category. We adapt it to the effectful setting

and employ it to give trace semantics to effectful dataflow programs.

A classical stream, 𝑿 = (𝑋 0, 𝑋 1, ...), is coinductively defined

to be (i) an element 𝑿◦ = 𝑋0, (ii) together with a stream, repre-

senting its tail, 𝑿+ = (𝑋 1, 𝑋 2, ...). When the stream is formed by

objects of an effectful category, we can act on the first element of

the stream (𝑀 · 𝑿 )◦ = 𝑀 ⊗ 𝑿◦
leaving the rest of the stream the

same, (𝑀 · 𝑿 )+ = 𝑿+
. The action of a morphism 𝑟 : 𝑀𝒈 → 𝑀𝒇 is

defined by (𝑟 · 𝒇 )◦ (𝑚, 𝑥◦) = 𝒇 (𝑟 (𝑚), 𝑥◦) and (𝑟 · 𝒇 )+ = 𝒇+. Effect-
ful streams use this action to introduce a new element: an explicit

memory that allows to connect each piece of the stream to the next.

Definition 3.1. An effectful stream, 𝒇 : 𝑨 → 𝑩, over an effect-

ful category (P,C) with inputs 𝑨 = (𝐴0, 𝐴1...) and outputs 𝑩 =

(𝐵0, 𝐵1, ...) is a triple consisting of

• 𝑀𝒇 ∈ P𝑜𝑏 𝑗 , the memory;
• 𝒇◦ : 𝑨◦ { 𝑀𝒇 ⊗ 𝑩◦

, the first action, or head;
• 𝒇+ : 𝑀𝒇 · 𝑨+ { 𝑩+

, the tail of the stream.

Effectful streams are quotiented by dinaturality over the memory:

the minimal equivalence relation (∼) such that

(𝑀𝒇 ,𝒇
◦,𝒇+) ∼ (𝑀𝒈,𝒈

◦,𝒈+),
for each pure morphism 𝑟 : 𝑀𝒈 → 𝑀𝒇 in P such that 𝒈◦ #𝑟 = 𝒇◦ and
𝑟 ·𝒇+ ∼ 𝒈+. Effectful streams from𝑨 to𝑩, quotiented by dinaturality,
form a set Stream(P,C) (𝑨;𝑩).

Remark 3.2. Definition 3.1 can be recast in coalgebraic terms. The

set Stream(P,C) (𝑨;𝑩) of effectful streams from𝑨 to𝑩 in the effect-

ful category (P,C) is the final fixpoint of the functor 𝜙 : [(C𝜔 )o ×
C𝜔 , Set] → [(C𝜔 )o × C𝜔 , Set] defined by

𝜙 (Q) (𝑨,𝑩) B
∫ 𝑀 ∈P

homC (𝑨◦
;𝑀 ⊗ 𝑩◦) × Q (𝑀 · 𝑨+

;𝑩+) .

When reasoning coinductively about streams, we will sometimes

need a stronger coinductive hypothesis that adds a parameter 𝑃

in the first input of the stream. It is convenient to explicitly define

effectful streams of this shape: streams with parameters.

Definition 3.3. A stream from 𝑿 to 𝒀 with a parameter 𝑃 ∈ C𝑜𝑏 𝑗
is a stream from (𝑃 · 𝑿 ) = (𝑃 ⊗ 𝑋0, 𝑋1, . . . ) to 𝒀 = (𝑌0, 𝑌1, . . . ).
Equivalently, it is a morphism 𝑃 ⊗ 𝑋0 → 𝑀 ⊗ 𝑌0 followed by

a stream from 𝑿+
to 𝒀+

with parameter 𝑀 , for some object 𝑀

quotiented by dinaturality.

The coinductive definitions of sequential composition andwhisker-

ing of effectful streams uses the stronger coinductive hypothe-

sis given by streams with parameters. The definition for generic

streams is, then, obtained by taking the parameter to be the monoi-

dal unit, 𝑃 = 𝐼 .

Definition 3.4. The sequential composition of two streams with

parameters, 𝒇𝑃 : 𝑃 ·𝑿 → 𝒀 and 𝒈𝑄 : 𝑄 · 𝒀 → 𝒁 , is the stream with

parameters (𝒇𝑃 #𝒈𝑄 ) : (𝑃 ⊗𝑄) ·𝑿 → 𝒀 . The whiskering of a stream

with parameters, 𝒇 : 𝑃 ·𝑿 → 𝒀 , by a stream 𝑼 results on the stream

𝑤 (𝒇𝑃 ) : 𝑃 · 𝑼 ⊗𝑿 → 𝑼 ⊗ 𝒀 . These are defined coinductively below.

(𝒇𝑃 # 𝒈𝑄 )◦(𝑝,𝑞,𝑥◦) =
𝒇◦(𝑝,𝑥◦){𝑚,𝑦◦

𝒈◦(𝑞,𝑦◦){ 𝑛,𝑧◦

return (𝑚,𝑛,𝑧◦)
(𝒇 # 𝒈)+ = 𝒇+𝑀 # 𝒈+𝑁

𝑤 (𝒇𝑃 )◦(𝑝,𝑢,𝑥◦) =
𝒇◦(𝑝,𝑥◦){𝑚,𝑦◦

return (𝑚,𝑢,𝑦◦)
𝑤 (𝒇𝑃 )+ = 𝑤 (𝒇𝑀+)

The sequential composition of two streams, 𝒇 : 𝑿 → 𝒀 and 𝒈 : 𝒀 →
𝒁 , takes the parameter to be the monoidal unit, (𝒇 # 𝒈) = (𝒇 𝐼 # 𝒈𝐼 ).
Whiskering of a stream 𝒇 ∈ Stream(𝑿 ; 𝒀 ) is the stream 𝑤 (𝒇 ) ∈
Stream(𝑼 ⊗ 𝑿 ;𝑼 ⊗ 𝒀 ) defined by whiskering with the parameter

being the monoidal unit,𝑤 (𝒇 ) = 𝑤 (𝒇 𝐼 ) ∈ Stream(𝑼 ⊗ 𝑿 ;𝑼 ⊗ 𝒀 ).
Theorem 3.5. Effectful streams over (P,C) form an effectful cate-
gory, Stream(P,C).

Feedback is a derived operation. It takes an effectful stream

𝒇 : wt𝑺 ⊗ 𝐴 → 𝑺 ⊗ 𝐵 and returns one of type 𝑨 → 𝑩. Intuitively,
this operation takes the outputs 𝑆𝑛 of 𝒇 and “feeds them back” to

𝒇 as inputs in the next time step. For this operation to typecheck,

wt𝑺 is the operation that “delays” the stream of inputs by one time

step. It is defined as (wt𝑺)◦ B 𝐼 and (wt𝑺)+ B 𝑺 .

Definition 3.6. The feedback of a streamwith parameters, 𝑓 : (𝑃 ⊗
𝑇 ) ·wt𝑺 ⊗𝑿 → 𝑺 ⊗ 𝒀 , is a stream fbk(𝑓𝑃,𝑇 ) : 𝑃 ⊗𝑇 ·𝑿 → 𝒀 defined

as follows.

fbk(𝑓𝑃,𝑇 )◦ = 𝑓 ◦; fbk(𝑓𝑃,𝑇 )+ = fbk(𝑓 +𝑀,𝑆◦ ).
Proposition 3.7. The category of effectful streams is an effectful
category with delayed feedback.

3.1 Observational sequences
Observational sequences are sequences of morphisms ⟨𝑡𝑛 | 𝑛 ∈ N⟩
quotiented by observational equivalence: any two sequences whose

finite executions coincide are equal (cf. monoidal observational

sequences [SK19, DLdFR22]).

Definition 3.8. Let (P,C) be an effectful category. An intensional
sequence between two sequences of objects, 𝑿 = (𝑋 0, 𝑋 1, ...) and
𝒀 = (𝑌 0, 𝑌 1, ...), consists of a family of morphisms in C

𝑡𝑛 : 𝑀𝑛−1 ⊗ 𝑋𝑛 → 𝑀𝑛 ⊗ 𝑌𝑛,

for some sequence of objects 𝑴 = (𝑀0, 𝑀1, . . . ). Intensional se-
quences form a set, IntSeq(𝑿 , 𝒀 ).

We define the 𝑛th-truncation of an intensional sequence to be

the result of executing the first 𝑛 morphisms up to dinaturality. This
is to say that we consider the set of truncated sequences to be

Trunc𝑛 (𝑿 , 𝒀 ) =
∫ 𝑀0,...,𝑀𝑛 ∈P 𝑛∏

𝑖=0

hom (𝑀𝑖−1 ⊗ 𝑋𝑖 , 𝑀𝑖 ⊗ 𝑌𝑖 ),

where 𝑀−1 = 𝐼 by convention, and that there exist projections

𝜋𝑛 : IntSeq(𝑿 , 𝒀 ) → Trunc𝑛 (𝑿 , 𝒀 ).
Definition 3.9. Observational sequences are intensional sequences
quotiented by observational equivalence,

ObsSeq(𝑿 , 𝒀 ) = IntSeq(𝑿 , 𝒀 )/(≈) .
Two intensional sequences, 𝑓 , 𝑔 ∈ IntSeq(𝑿 , 𝒀 ), are observationally
equivalent, 𝑓 ≈ 𝑔, whenever all their truncations coincide, 𝜋𝑛 (𝑓 ) =
𝜋𝑛 (𝑔) for each 𝑛 ∈ N.
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The main theorem in the work of Di Lavore, de Felice and Román

[DLdFR22] shows, in the monoidal case, that coinductive streams

are characterized by observational sequences whenever the cate-

gory satisfies a technical condition called “productivity”. Intuitively,

productivity ensures that, at each step, some part of the process is

independent from the future and can be executed. Formally, this

is ensured by every 1-stage process having a minimal canonical
representative that gives the behaviour of the process by keeping a

maximally informative memory.

Definition 3.10. A representative 𝑡 : 𝑋 → 𝑀0 ⊗𝑌 of a 1-truncated

sequence, ⟨𝑡 | ∈ Trunc1 (𝑿 , 𝒀 ) is minimal if, every other repre-

sentative, ⟨𝑢 | = ⟨𝑡 |, factors through it, i.e. there is a morphism

𝑠𝑢 : 𝑀0 → 𝑀𝑢 in P such that 𝑢 = 𝑡 # (𝑠𝑢 ⊗ id). Such a representative

is, moreover, canonical if whenever

⟨(𝑢 ⊗ id) # (𝑎 ⊗ id) | = ⟨(𝑣 ⊗ id) # (𝑏 ⊗ id) |

as elements of the coend

∫ 𝑀 ∈P hom (𝑋 ⊗ 𝐴,𝑀 ⊗ 𝑌 ⊗ 𝐵) then
⟨(𝑠𝑢 ⊗ id) # 𝑎 | = ⟨(𝑠𝑣 ⊗ id) # 𝑏 |

as elements of

∫ 𝑀 ∈P hom (𝑀0 ⊗ 𝐴,𝑀 ⊗ 𝐵), for 𝑢, 𝑣 ∈ ⟨𝑡 |, 𝑎 : 𝑀𝑢 ⊗
𝐴 → 𝑀𝑎 ⊗ 𝐵 and 𝑏 : 𝑀𝑣 ⊗ 𝐴 → 𝑀𝑏 ⊗ 𝐵.

An effectful category is productive whenever every 1-stage pro-

cess has a minimal canonical representative. Our interest in pro-

ductivity is limited to the following characterization lemma. In the

following section, we will prove that all categories we care about

are indeed productive.

Definition 3.11. An effectful category (P,C) is productive if every
1-truncation, ⟨𝑡 | ∈ Trunc1 (𝑿 , 𝒀 ), has a minimal canonical repre-

sentative.

Theorem 3.12. Effectful streams over a productive effectful cate-
gory (P,C) are isomorphic to observational sequences over the same
effectful category, Stream(P,C) � ObsSeq(P,C).

Productivity for copy-discard categories. We show that quasi-total

conditionals and ranges give productivity. Quasi-total conditionals

imply the first condition for productivity while ranges imply the

second.

Proposition 3.13. Whenever a copy-discard category, (V, P), has
quasi-total conditionals and ranges, the effectful category of its total
morphisms, (Tot(P), P), is productive.

Corollary 3.14. Let (V, P) be a copy-discard category with quasi-
total conditionals and ranges; streams coincide with observational
sequences Stream(P,C) � ObsSeq(P,C).

3.2 Example: the stream cipher is secure
Let us discuss security for the stream cipher protocol (Section 1.2)

by giving it appropriate semantics.

For this purpose, we will use the Kleisli category of the finitely-

supported distribution monad, Stoch. We employ two fixed sets: a

finite alphabet of characters, Char, and a finite set of seeds to our

random number generator, Seed. For both these sets, there exist

uniform distributions, unifc : () → Char and unifs : () → Seed.
For the set of characters, there exists moreover a nilpotent and

deterministic “bitwise XOR” operation (⊕) : Char × Char → Char,

for which the uniform distribution is a Sweedler integral [Swe69],

meaning that XOR-ing by uniform noise results in uniform noise,

unif()→𝑏

return(𝑥 ⊕ 𝑏)

}
=

unif()→𝑏

return(𝑏)

}
Of course, it is impossible to prove that the stream cipher pro-

tocol is exactly equal to a secure channel: it can be easily seen

that there exist no perfect random generators in the category of

finitely-supported distributions, Stoch. Instead, we will prove that

the protocol is “approximately equal” (≈) to the secure channel.

Assumption 3.15 (Broadbent and Karvonen, [BK23, §7.4]). Let

(≈) be a congruence, preserved by composition and tensoring. An

(≈)-pseudorandom number generator over a finite alphabet is a

deterministic morphism, prng : Seed → Char ⊗ Seed, that satisfies
the following equation.

unifs()→𝑔

prng(𝑔)→ℎ,𝑘
return(ℎ,𝑘)

 ≈
unifs()→𝑔

unifc()→𝑘

return(𝑔,𝑘)


Proposition 3.16. There exist no (=)-pseudorandom number gen-
erators in the category of finitary distributions, Stoch.

The last ingredient we need for this interpretation is to traduce

the effectful generators into modifications of a global state, this is a

quite general technique [MS14]: effectful categories can be hardly

modeled by a monoidal category – where interchange necessarily

holds – but they can be modeled in the Kleisli category of a global

state monad – where interchange can fail.

We declare global state to consist of the pair of seeds that Alice

and Bob keep, Seed⊗Seed. Our semantics will consist on an effectful

copy-discard functor to a category of effectful computations given

by the Kleisli category of the global state promonad,

SeedStoch(𝑋 ;𝑌 ) = Stoch(Seed ⊗ Seed ⊗ 𝑋 ; Seed ⊗ Seed ⊗ 𝑌 ) .

Definition 3.17. The interpretation functor,

J−K : Cipher → (Set, Stoch, SeedStoch),
is the unique effectful copy-discard functor extending the following

assingment on the generators of the effectful copy-discard graph

inducing Cipher (Example 2.10). It interprets the only object as

the set of characters JCK = Char. On values, it interprets the XOR

symbol as the “bitwise XOR of characters”, J⊕K = (⊕). It interprets
the only pure morphism as the uniform distribution, JunifK =

unifc. Finally, on effectful generators, it must provide the following

interpretations,

JseedK : Seed ⊗ Seed → Seed ⊗ Seed;

Jrand𝑎K : Seed ⊗ Seed → Seed ⊗ Seed ⊗ Char;
Jrand𝑏K : Seed ⊗ Seed → Seed ⊗ Seed ⊗ Char.

These are defined by the following fragments of do-notation.

Jrand𝑎K(𝑔𝑎,𝑔𝑏)=
prng(𝑔𝑎)→ℎ𝑎,𝑘
return(ℎ𝑎,𝑔𝑏,𝑘)

Jrand𝑏K(𝑔𝑎,𝑔𝑏)=
prng(𝑔𝑏)→ℎ𝑏,𝑘
return(𝑔𝑎,ℎ𝑏,𝑘)

JseedK(𝑔𝑎,𝑔𝑏)=
unif()→𝑔
return(𝑔,𝑔)

Finally, we can state security for the stream cipher: it means that

it is approximately equal to using secure channel that sends the
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message directly from Alice to Bob and outputs random noise to

an external observer.

Definition 3.18. The secure channel is the following morphism

in the syntactic category Cipher.

secure◦(𝑚) =
unif()→𝑛
return(𝑚,𝑛);

secure+ = secure

Theorem 3.19. The interpretation of the stream cipher is approxi-
mately equal to the interpretation of the secure channel,

JcipherK ≈ JsecureK.

Proof. We will prove this statement by coinduction. Let us first

compute the interpretation of the whole stream cipher from the

interpretation of each one of its generators.

JcipherK◦(𝑔𝑎,𝑔𝑏,𝑚) =
unif()→𝑔

prng(𝑔)→ℎ𝑎,𝑘𝑎
prng(𝑔)→ℎ𝑏,𝑘𝑏
return(ℎ𝑎,ℎ𝑏,
𝑚 ⊕ 𝑘𝑎 ⊕ 𝑘𝑏,𝑚 ⊕ 𝑘𝑎)

JcipherK+◦(𝑔𝑎,𝑔𝑏,𝑚) =
prng(𝑔𝑎)→ℎ𝑎,𝑘𝑎
prng(𝑔𝑏)→ℎ𝑏,𝑘𝑏
return(ℎ𝑎,ℎ𝑏,
𝑚 ⊕ 𝑘𝑎 ⊕ 𝑘𝑏,𝑚 ⊕ 𝑘𝑎)

JcipherK++ = JcipherK+

We can now simplify the first step of the stream cipher. We use

(i) determinism of unif; (ii) that unif is a pseudorandom number

generator and that XOR forms a nilpotent algebra; and (iii) that the
uniform distribution is a Sweedler integral.

unif()→𝑔

prng(𝑔𝑎)→ℎ𝑎,𝑘𝑎
prng(𝑔𝑏)→ℎ𝑏,𝑘𝑏
return(ℎ𝑎,ℎ𝑏,
𝑚 ⊕ 𝑘𝑎 ⊕ 𝑘𝑏,𝑚 ⊕ 𝑘𝑎)


(𝑖)
=

unif()→𝑔

prng(𝑔)→ℎ,𝑘
return(ℎ,ℎ,
𝑚 ⊕ 𝑘 ⊕ 𝑘,𝑚 ⊕ 𝑘)


(𝑖𝑖)
≈

unif()→ℎ

unif()→𝑘

return(ℎ,ℎ,𝑚,𝑚 ⊕ 𝑘)


(𝑖𝑖𝑖)
=

unif()→ℎ

unif()→𝑘

return(ℎ,ℎ,𝑚,𝑘)


We now rewrite the interpretation of the stream cipher as follows.

By dinaturality over the unif statement, JcipherK ≈ Jcipher′K.

Jcipher’K◦(𝑔𝑎,𝑔𝑏,𝑚) =
unif()→𝑘

return(𝑔𝑎,𝑔𝑏,𝑚,𝑘)

Jcipher’K++ = JcipherK+

Jcipher’K+◦(𝑔𝑎,𝑔𝑏,𝑚) =
unif()→𝑔

prng(𝑔)→ℎ𝑎,𝑘𝑎
prng(𝑔)→ℎ𝑏,𝑘𝑏
return(ℎ𝑎,ℎ𝑏,
𝑚 ⊕ 𝑘𝑎 ⊕ 𝑘𝑏,𝑚 ⊕ 𝑘𝑎)

Finally, we observe that Jcipher′K◦ = JsecureK◦; by the coin-

ductive hypothesis, we know that

Jcipher′K+ = JcipherK ≈ JsecureK = JsecureK+ . □

4 CAUSAL PROCESSES
Causal processes are sequeqnces of morphisms (𝑓𝑛)𝑛∈N indexed by

the natural numbers, where each morphism 𝑓𝑛 : 𝐴0 ⊗ · · · ⊗ 𝐴𝑛 →
𝐵0 ⊗ · · · ⊗ 𝐵𝑛 does not only represent a single step of a process, but

the whole process until time 𝑛 [SJ19, SK19]. This intuition leads

naturally to causality condition: each morphism 𝑓𝑛+1 must extend

the previous one 𝑓𝑛 ; i.e. they need to have the same behaviour on

the first 𝑛 inputs. The notion of conditionals promotes this intuition

into a formal condition: a causal process must be such that 𝑓𝑛 ⊗
is a marginal for 𝑓𝑛+1.

Definition 4.1. A causal process, 𝒇 : 𝑿 → 𝒀 , in a copy-discard

category (V, P), is a family of morphisms

𝑓𝑛 : 𝑋0 ⊗ . . . ⊗ 𝑋𝑛 → 𝑌 0 ⊗ . . . ⊗ 𝑌𝑛

that are causal: each 𝑓𝑛 ⊗ is a marginal of 𝑓𝑛+1. Explicitly, there

must exist morphisms 𝑐𝑛 : 𝑌 0 ⊗ ... ⊗ 𝑌𝑛 ⊗ 𝑋 0 ⊗ ... ⊗ 𝑋𝑛+1 → 𝑌𝑛+1,

the conditionals, that satisfy the following equation
1
.

𝑓𝑛+1(
#„𝑥𝑛+1) → #„𝑦𝑛+1

} = 𝑓𝑛(
#„𝑥𝑛) → #„𝑦𝑛

𝑐𝑛(
#„𝑦𝑛,

#„𝑥𝑛+1) → 𝑦𝑛+1

}
String diagrams for this condition are in Figure 1.

Note that the conditionals 𝑐𝑛 of the morphisms 𝑓𝑛 don’t need to

be quasi-total. This ensures that 𝑓𝑛+1 is allowed to fail on an input

(𝑥0, . . . , 𝑥𝑛, 𝑥𝑛+1), even if 𝑓𝑛 did not fail on (𝑥0, . . . , 𝑥𝑛).
This section characterises effectful streams for copy-discard cate-

gories with quasi-total conditionals and ranges as causal processes.

Examples include the categories Set of sets and functions, Rel of
relations, Par of partial functions, Stoch of finitary probabilistic

processes and ParStoch of finitary partial probabilistic processes,

which we study in detail.

While the coinductive definition of effectful streams is conve-

nient for defining and implementing them, the characterisation as

causal processes allows one to avoid working up to dinaturality

and easily compute traces (Section 5.3). Causal processes form a

symmetric monoidal category where compositions, identities and

monoidal products are defined component-wise by those in the

base category.

Proposition 4.2. Causal processes over a copy-discard category
(V, P) with quasi-total conditionals form a copy-discard category,
Causal(V, P), whose objects are streams 𝑨 = (𝐴0, 𝐴1, . . . ) of objects
of P and whose morphisms𝒇 : 𝑨 → 𝑩 are causal processes with inputs
in 𝑨 and outputs in 𝑩.

Proof. See Appendix E for the details. □

Each causal process 𝒇 : 𝑿 → 𝒀 has a sequence 𝑐𝑛 : 𝑋0 ⊗ · · · ⊗
𝑋𝑛 ⊗ 𝑌0 ⊗ · · · ⊗ 𝑌𝑛−1 → 𝑌𝑛 of conditionals of 𝑓𝑛 . Each of these

sequences defines a stream that, at every step 𝑛, has in memory all

the inputs and outputs until time 𝑛 − 1, receives the input at time 𝑛

and produces the output at time 𝑛 using 𝑐𝑛 . The resulting stream is

independent of the choice of conditionals and this mapping defines

a monoidal functor. The proof works with observational sequences,

which are isomorphic to streams whenever there are conditionals

and ranges (Theorem 3.12).

Proposition 4.3. For a copy-discard category (V, P) with quasi-
total conditionals and ranges, there is an identity-on-objects monoidal
functor obs : Causal(P) → ObsSeq(Tot(P), P).

Proof. See Appendix E. □

1
For convenience, we denote with

#„𝑥𝑛 a list (𝑥0, . . . , 𝑥𝑛) of elements of𝑋0 ⊗ · · · ⊗𝑋𝑛 .
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Proposition 4.4. An observational sequence ⟨𝑡𝑛 | 𝑛 ∈ N⟩ : 𝑿 → 𝒀
defines a causal process by executing the components 𝑡𝑛 in sequence.

𝑓𝑛(𝑥0,...,𝑥𝑛) =
𝑡0(𝑥0)→ (𝑚0,𝑦0)
. . .

𝑡𝑛(𝑚𝑛−1,𝑥𝑛)→ (𝑚𝑛,𝑦𝑛)
return(𝑦0,...,𝑦𝑛)

This assingment extends to a monoidal functor

proc : ObsSeq(Tot(P), P) → Causal(P).

Proof. Lemma E.4 shows that proc is well-defined. Together
with fully-faithfulness of obs (Proposition 4.5), we obtain that proc
is a monoidal functor. □

This sequence is independent of the particular representatives 𝑡𝑛
chosen for the observational sequence (Lemma E.3). Proposition 4.5

show that this mapping makes the functor obs of Proposition 4.3

fully-faithful, i.e. bijective on morphisms.

Proposition 4.5. For a copy-discard category (V, P) with quasi-total
conditionals and ranges, the functor obs is fully-faithful.

Proof. See Lemmas E.7 and E.9. □

Identity-on-objects fully-faithful functors are isomorphisms and

we obtain that streams is isomorphic to causal processes by applying

Theorem 3.12.

Theorem 4.6. For a copy-discard category (V, P) with quasi-total
conditionals and ranges, the category of effectful streams is monoidal
and isomorphic to the monoidal category of causal processes,

Stream(Tot(P), P) � Causal(P) .

As a consequence of this result, we recover the characterisations

of cartesian and stochastic streams as causal processes [DLdFR22].

All the examples in this section are Kleisli categories over Set, so
they inherit the copy-discard structure ( , ) from it. In these

cases, we denote the monoidal product as ×.

Example 4.7 ([DLdFR22, Section 6]). Streams over a cartesian cate-

gory coincide with causal stream functions [SJ19] because, in the

cartesian case, conditionals always exist and the causality condi-

tion simplifies. Since the outputs are independent, it is sufficient

to specify, for each 𝑛, the 𝑛-th output depending on the first 𝑛 in-

puts. This coincides with the classical notion of causality for stream

functions [Ran58]. The details are in Lemma E.10.

A cartesian causal process 𝑓 : 𝑨 → 𝑩 is a family of morphisms

𝑓𝑛 : 𝐴0 × · · · × 𝐴𝑛 → 𝐵𝑛 indexed by the natural numbers, 𝑛 ∈ N.

These were described as the coKleisli category of the non-empty

list comonad [UV08], but this characterisation works only when

the base category C is cartesian [DLdFR22, Theorem 6.1].

Example 4.8 ([DLdFR22, Section 7]). Streams over the Kleisli cat-

egory of the finitary distribution monad, Stoch, yield controlled

stochastic processes [FR75, Ros96]. The monoidal category Stoch
has conditionals [Fri20] that are quasi-total because all morphisms

are total. Explicitly, a conditional of a morphism 𝑓 : 𝑋 → 𝐴 × 𝐵 in

Stoch is given by

𝑐 (𝑏 | 𝑥, 𝑎) = 𝑓 (𝑎, 𝑏 | 𝑥)∑
𝑏′∈𝐵 𝑓 (𝑎, 𝑏 ′ | 𝑥)

whenever defined for the given 𝑥 and 𝑎, and by any arbitrary dis-

tribution over 𝑏 otherwise. The monoidal category Stoch also has

ranges [DLdFR23, Proposition 9.9]. For a morphism𝑚 : 𝑋 → 𝐴 its

range 𝑟 is the deterministic morphism defined as

𝑟 (𝑥, 𝑎) =
{
(𝑥, 𝑎), if𝑚(𝑎 | 𝑥) > 0;

(𝑥, 𝑎𝑥 ), if𝑚(𝑎 | 𝑥) = 0;

for some elements 𝑎𝑥 ∈ 𝐴 such that𝑚(𝑎𝑥 | 𝑥) > 0. Note that 𝑟 is

also total because every morphism is and factors as id # 𝑟 .
A probabilistic causal process 𝑓 : 𝑨 → 𝑩 is a family of functions

𝑓𝑛 : 𝐴0 × · · · × 𝐴𝑛 → D(𝐵0 × · · · × 𝐵𝑛) indexed by the natural

numbers such that 𝑓𝑛+1 # (id × 𝑛+1) = 𝑓𝑛 × 𝑛+1. The causality

condition is simplified because all morphisms are total.

The distinction between morphisms that are pure and effectful

is crucial to the characterisation of Theorem 4.6. It allows the result

to hold even when the morphisms in the base category are not

necessarily total. In fact, the more naive construction of monoidal

streams over the category Rel of relations collapses: every two

parallel morphisms are equal because, thanks to the compact closed

structure, a stream can always wait and produce nothing.

We study in detail the cases of relational, partial and partial

stochastic causal processes. We refer the reader to Appendix E.1

for the proofs of the results about conditionals and ranges in these

categories.

4.1 Relational causal processes
Consider the copy-discard category (Set,Rel) where objects are sets
andmorphisms𝑋 → 𝑌 are relations between𝑋 and𝑌 , i.e. functions

to the powerset, 𝑋 → ℘(𝑌 ). This category has conditionals (see

Figure 4) and they are quasi-total – in fact, every morphism in Rel
is quasi-total.

𝑓 =

𝑓

𝑓

𝑐

𝑓𝑛+1 =

𝑓𝑛

𝑓𝑛+1

Figure 4: A quasi-total conditional 𝑐 of 𝑓 in Rel, where
denotes the opposite relation to and the causality condi-
tion for relational processes.

Proposition 4.9. A relational causal process 𝒇 : 𝑨 → 𝑩 is a family
of functions 𝑓𝑛 : 𝐴0 × · · · ×𝐴𝑛 → ℘(𝐵0 × · · · × 𝐵𝑛) indexed by the
natural numbers satisfying the equation in Figure 4.

Relations also have ranges that are the identity on all the possible

input-output pairs and empty otherwise. For a relation𝑚 : 𝑋 → 𝐴,

its range is given by the partial function 𝑟 ′ : 𝑋 × 𝐴 → 𝑅 and the

function 𝜄 : 𝑅 → 𝑋 × 𝐴, with 𝑅 B {(𝑥, 𝑎) ∈ 𝑋 × 𝐴 : 𝑎 ∈ 𝑚(𝑥)},
defined as

𝑟 ′(𝑥, 𝑎) =
{
{(𝑥, 𝑎)}, if 𝑎 ∈𝑚(𝑥);
∅, otherwise;

and 𝜄 (𝑥, 𝑎) = {(𝑥, 𝑎)}.

Lemma 4.10. The monoidal category of relations Rel has quasi-total
conditionals (Figure 4) and ranges.

Proof. See Appendix, Lemmas E.11 and E.12. □
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As a consequence of Lemma 4.10 and Proposition 4.2 relational

causal processes form amonoidal category, and, applying Lemma 4.10

and Theorem 4.6, this category is isomorphic to the monoidal cat-

egory of streams over the effectful category of relations and total

relations, (tRel,Rel).

Corollary 4.11. Relational causal processes form a monoidal cate-
gory Causal(Rel) that is isomorphic to Stream(tRel,Rel).

4.2 Partial deterministic causal processes
We now consider the category of partial functions, Par, whose
objects are sets and whose morphisms 𝑋 → 𝑌 are partial functions,

i.e. functions of the form𝑋 → 𝑌 +1. Alternatively, Par is the Kleisli
category of the Maybe monad over Set.

Lemma 4.12. The monoidal category of partial functions Par has
quasi-total conditionals (Figure 5) and ranges.

Proof. Lemma E.13 checks that the conditionals defined in

Figure 5 are quasi-total and satisfy the property of conditionals.

Lemma E.14 checks the properties of ranges. □

𝑓 =

𝑓

𝑓

𝑐

𝑓𝑛+1 =

𝑓𝑛

𝑓𝑛+1

Figure 5: Quasi-total conditionals and causality for deter-
ministic partial processes.

A partial causal process 𝒇 : 𝑨 → 𝑩 is a family of functions

𝑓𝑛 : 𝐴0 × · · · × 𝐴𝑛 → (𝐵0 × · · · × 𝐵𝑛) + 1 indexed by the natural

numbers satisfying the equation in Figure 5.

As a consequence of Lemma 4.12 and Proposition 4.2 partial

causal processes form a monoidal category; applying Lemma 4.12

and Theorem 4.6, this category is isomorphic to the monoidal cate-

gory of streams over the effectful category of partial functions and

functions, (Set, Par).

Corollary 4.13. Partial deterministic causal processes form a mo-
noidal category Causal(Par) that is isomorphic to Stream(Set, Par).

4.3 Partial stochastic streams
Consider the Kleisli category ParStoch of the finitary subdistribu-

tion monad on Set. Its objects are sets and morphisms 𝑋 → 𝑌 are

functions 𝑓 : 𝑋 → D≤1 (𝑌 ) that assign to each 𝑥 and 𝑦 a number

𝑓 (𝑦 | 𝑥) ∈ [0, 1], the probability of 𝑦 given 𝑥 , such that (i) the
total probability mass is at most 1,

∑
𝑦∈𝑌 𝑓 (𝑦 | 𝑥) ≤ 1 and (ii) the

support {𝑦 ∈ 𝑌 : 𝑓 (𝑦 | 𝑥) > 0} is finite.

Lemma 4.14. The monoidal category ParStoch has quasi-total con-
ditionals and ranges (see Appendix, Lemma E.15.).

The causality condition in ParStoch remains the general one

of Figure 1. As a consequence of [DLR23, Proposition 2.13] and

Proposition 4.2, partial stochastic causal processes form a monoidal

category and, applying Lemma E.16 and Theorem 4.6, we obtain

that it is isomorphic to streams over (Stoch, ParStoch).

Corollary 4.15. Partial stochastic causal processes form a monoidal
category, Causal(ParStoch), that is isomorphic to the category of
streams over partial stochastic functions Stream(Stoch, ParStoch).

5 EFFECTFUL MEALY MACHINES
This section employs effectful streams as semantic universe for

state machines with an initial state, also known as Mealy machines.
We introduce Mealy machines in an effectful copy-discard category,

and show that they compose forming an effectful copy-discard

category themselves (Proposition 5.3). The categorical structure

naturally leads to definitions of trace equivalence (Definition 5.5)

and bisimulation (Definition 5.8) for effectful Mealy machines.

Section 5.3 concludes by checking our definitions against the

coalgebraic literature: when the effectful copy-discard category

is (Set, Tot(kl(T)), kl(T)) for a commutative monad T on Set pre-
serving weak pullbacks, effectful bisimulation coincides with the

classical notion of coalgebraic bisimulation (Proposition 5.17). For

the monads that define deterministic, partial, non-deterministic and

stochastic Mealy machines, we show that effectful trace equivalence

coincides with existing notions of trace semantics.

Our definition of effectful Mealy machine originates from the

work of Katis, Sabadini and Walters [KSW97] where the authors

define monoidal Mealy machines and their bicategory.

Definition 5.1. An effectful Mealy machine in an effectful copy-

discard category, (V, P,C), taking inputs on 𝐴 ∈ Obj(C) and pro-

ducing outputs in 𝐵 ∈ Obj(C), is a triple (𝑈 , 𝑖, 𝑓 ) consisting of

a state space 𝑈 ∈ Obj(C), an initial state 𝑖 : 𝐼 → 𝑈 in C, and a

transition morphism, 𝑓 : 𝑈 ⊗ 𝐴 { 𝑈 ⊗ 𝐵 in C.

Associativity of composition of effectful Mealy machines only

holds up to isomorphism, there are two options: consider a bi-
category of them [KSW97]; or consider Mealy machines modulo

the equivalence relation � given by isomorphisms of Mealy ma-

chines [KSW99], defined below. To simplify presentation, we choose

the second possibility.

A homomorphism of effectful Mealy machines is a value mor-

phism between their state spaces that preserves the transition struc-

ture and the initial state (Figure 10).

Definition 5.2. A homomorphism of effectful Mealy machines

with the same inputs and outputs, (𝑈 , 𝑖, 𝑓 ) ⇒ (𝑉 , 𝑗, 𝑔), is a value
morphism 𝛼 : 𝑈 → 𝑉 such that 𝑖 # 𝛼 = 𝑗 and moreover

𝑓 (𝑖, 𝑥){𝑢1, 𝑦
return(𝛼(𝑢1),𝑦)

}
=

𝑔(𝛼(𝑖),𝑥){ 𝑣1,𝑦
return(𝑣1,𝑦)

}
.

Effectful Mealy machines quotiented by isomorphism assemble

into a category via the state construction [KSW02, DLGR
+
23]. We

show that this construction also preserve the effectful structure.

Proposition 5.3. Effectful Mealy machines over an effectful copy-
discard category (V, P,C) and quotiented by isomorphism of the state
space form an effectful copy-discard category,Mealy(V, P,C), with
objects the objects of C and morphisms (𝑈 , 𝑖, 𝑓 ) : 𝐴 → 𝐵 are effectful
Mealy machines. The composition of two Mealy machines tensors both
state spaces and both initial states (Figure 11). Sequential composition
seq(𝑓 , 𝑔) and whiskering whisk𝐶 (𝑓 ) are specified below.

seq(𝑓 ,𝑔)(m0,n0,a) =
𝑓 (m0,a){ m1,b
𝑔(n0,b){ n1,c
return (m1,n1,c)

whisk𝐶 (𝑓 )(m0,a,c) =
𝑓 (m0,c){ m1,b
return (m1,b,c).

Example 5.4. We recast the components of the stream cipher (Sec-

tion 1.2) as effectful Mealy machines. There is an agent, act : 1 ×
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𝐶 → 1×𝐶 , that receives a message and encrypts or decrypts it using

the operation, XOR. Another agent, attack : 𝐶∗ × 𝐶 → 𝐶∗ × 𝐶∗
,

listens to the broadcast messages and records them in memory.

act(𝑚) = attack(𝑚,𝑥,𝑦) =
rand(){ 𝑘 return((𝑥 :: 𝑚), (𝑥 :: 𝑚))
return(𝑚 ⊕ 𝑘)

These agents are given a initial states 𝑠0 : 1 → 1 and 𝑐0 : 1 → 𝐶∗

defined by 𝑠0 = seed and 𝑐0 = return([]). With these transition

morphisms and initial states, we can define the following Mealy

machines that we will use to recover the cipher protocol.

alice B (1, 𝑠0, act) bob B (1, id, act) eve B (𝐶∗, 𝑐0, attack)

5.1 Compositional effectful traces
Every effectful Mealy machine induces an effectful stream that

represents its execution. An object 𝐴 can be repeated to form a

stream J𝐴K, defined by J𝐴K◦ = 𝐴 and J𝐴K+ = J𝐴K. Analogously, a
transition morphism, 𝑓 : 𝑈 ⊗ 𝐴 → 𝑈 ⊗ 𝐵 with state space 𝑈 , can

be repeated to form an effectful stream J𝑓 K : 𝑈 · J𝐴K → J𝐵K defined
by J𝑓 K◦ = 𝑓 and J𝑓 K+ = J𝑓 K. When the transition morphism has

an initial state, 𝑠0, it defines a Mealy machine, and we can use it to

construct an effectful stream that represents the execution trace of

the Mealy machine. The operation · attaches the initial state 𝑖 at
the beginning of the execution of the machine 𝑓 and gives its trace.

Definition 5.5. The trace tr(𝑈 , 𝑖, 𝑓 ) : J𝐴K → J𝐵K of an effectful

Mealy machine (𝑈 , 𝑖, 𝑓 ) : 𝐴 → 𝐵 is the effectful stream defined by

tr(𝑈 , 𝑖, 𝑓 ) = 𝑖 · J𝑓 K. We say that two Mealy machines are trace-
equivalent if their traces coincide.

The trace is compositional: it respects the categorical structure

of effectful Mealy machines.

Proposition 5.6. The trace of effectful Mealy machines defines an
effectful functor tr : Mealy(V, P,C) → Stream(P,C).

Example 5.7. The effectful Mealy machines defined in Example 5.4

can be composed into the cipher protocol, preserving their seman-

tics. The cipher protocol takes a message as input and encrypts it

with alice. The encrypted message is then broadcast and sent to the

receiver bob, who decrypts it. The protocol allows for a listener, eve,
who receives the encrypted messages and stores them in memory.

cipher(m) =
alice(m){ b
bob(b){ m’
eve(b){ c
return (m’,c)

5.2 Bisimulation implies trace equivalence
Morphisms of effectful Mealy machines give rise to an equivalence

relation that is different from the one of trace. More precisely, it is

weaker than trace equivalence. In the case of Kleisli categories of

weak pullback-preserving commutative monads on Set, this equiv-
alence relation coincides with the classical notion of coalgebraic

bisimulation. Intuitively, two Mealy machines should be bisimilar

when they map to the same bisimulation quotient. This condition

translates into the existence of a cospan of homomorphisms be-

tween them. Bisimilarity is, usually, an equivalence relation and,

in particular, it is transitive. However, cospans do not compose in

general, but they do when the category has pullbacks. In general,

we keep sequences of cospans to specify bisimilarity.

Definition 5.8. Two effectful Mealy machines are bisimilar if they
are connected by homomorphisms. Explicitly, for two machines

(𝑈 , 𝑖, 𝑓 ), (𝑉 , 𝑗, 𝑔) : 𝐴 → 𝐵, there need to be sequences (𝑈𝑘 , 𝑖𝑘 , 𝑓𝑘 )
and (𝑉𝑘 , 𝑗𝑘 , 𝑔𝑘 ), for 𝑘 = 0, . . . , 𝑛, with (𝑈0, 𝑖0, 𝑓0) = (𝑈 , 𝑖, 𝑓 ) and
(𝑉𝑛, 𝑗𝑛, 𝑔𝑛) = (𝑉 , 𝑗, 𝑔), together with morphisms 𝛼𝑘 : (𝑈𝑘 , 𝑖𝑘 , 𝑓𝑘 ) ⇒
(𝑉𝑘 , 𝑗𝑘 , 𝑔𝑘 ) and 𝛽𝑘 : (𝑈𝑘+1

, 𝑖𝑘+1
, 𝑓𝑘+1

) ⇒ (𝑉𝑘 , 𝑗𝑘 , 𝑔𝑘 ).

Homomorphisms of effectful Mealy machines compose sequen-

tially and in parallel, making Mealy(V, P,C) a 2-dimensional cat-

egory. We show that they also preserve the effectful structure,

makingMealy(V, P,C) an effectful 2-category. This is an effectful

category where the hom-sets carry the structure of a category; this

gives a strict counterpart to effectful bicategories [PS23].

Proposition 5.9. Let (V, P,C) be a strict effectful copy-discard cat-
egory (or consider its strictification). Homomorphisms of effectful
Mealy machines makeMealy(V, P,C) an effectful 2-category.

With this result, we can restate bisimulation: two effectful Mealy

machines of type 𝐴 → 𝐵 are bisimilar if they belong to the same

connected component in the hom-categoryMealy(V, P,C) (𝐴, 𝐵).

Theorem 5.10. If there is a morphism between two effectful Mealy
machines, then they are trace equivalent. In particular, bisimulation
implies effectful trace equivalence.

The effectful category Stream(P,C) can be trivially made into an

effectful 2-category by only adding identity 2-cells. Theorem 5.10

ensures that the trace extends to an effectful 2-functor.

Corollary 5.11. The trace effectful functor extends to an effectful
2-functor tr : Mealy(V, P,C) → Stream(P,C).

5.3 Case Study: T-Mealy Machines
In this section, we check our semantics framework against state-

machines. We consider partial, non-deterministic and probabilistic

transducers, also known as Mealy machines. In order to deal with

all of them at once, we found convenient to model effects as mon-

ads T : Set → Set. For the sake of simplicity, we assume T to be

commumative: this guarantees that the associated Kleisli category

kl(T) is monoidal and thus to apply the results in Section 4. Here-

after, we will always work in the effectful copy-discard category

(Set, Tot(kl(T)), kl(T)).

Remark 5.12. Modulo the initial state 𝑖 , Mealy machines are ex-

actly coalgebras [Rut00] for the functor T(𝐼𝑑 ⊗ 𝐵)𝐴 . Similarly, the

morphisms are coalgebra homomorphisms.

T-traces. We can instantiate the construction of effectful trace in

this case. It is worth to mention that the effectful streams arising

as traces of Mealy machines are of a rather simple shape. Indeed,

for all sets 𝐴, J𝐴K is nothing else than 𝐴𝜔
, namely the sets of all

infinite sequences (𝑎0, 𝑎1, . . . ) with each 𝑎𝑖 ∈ 𝐴. For later use, we

fix 𝐴𝑛
to be the set of n-uple (𝑎0, 𝑎1, . . . , 𝑎𝑛−1). For a Mealy ma-

chine (𝑈 , 𝑖, 𝑓 ), the effectful stream tr(𝑈 , 𝑖, 𝑓 ) : 𝐴𝜔 → 𝐵𝜔 is the

observational sequence (Definition 3.9) having the family of ob-

jects 𝑈𝜔 = (𝑈 ,𝑈 , . . . ) as memories, intuitively meaning that the
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memory object is always the same state space, and the family of

kl(T)-morphisms ⟨𝑡𝑛 | 𝑛 ∈ N⟩ defined as

𝑡0 = (𝑖 ⊗ 𝑖𝑑𝐴) # 𝑓 : 𝐼 ⊗ 𝐴 → 𝑈 ⊗ 𝐵 𝑡𝑛+1 = 𝑓 : 𝑈 ⊗ 𝐴 → 𝑈 ⊗ 𝐵 .

When kl(T) has quasi-total conditionals and ranges, thanks to Theo-
rem 4.6, tr(𝑈 , 𝑖, 𝑓 ) can be characterised as a causal process. The fam-

ily of morphisms defined by Proposition 4.4 reduces for tr(𝑈 , 𝑖, 𝑓 )
to the following family of kl(T)-morphisms 𝑓𝑛 : 𝐴𝑛+1 → 𝐵𝑛+1

.

𝑓𝑛 B

𝑡0 (𝑎0) → (𝑥1, 𝑏0)
𝑓 (𝑥1, 𝑎1) → (𝑥2, 𝑏1)
...

𝑓 (𝑥𝑛, 𝑎𝑛) → (𝑥𝑛+1, 𝑏𝑛)
return ( #„

𝑏𝑛)


(1)

Hereafter, we illustrate that by instantiating T to some monads,

one recovers existing notions of Mealy machines and their seman-

tics. To spell out their traces, one can safely exploit (1) since, for

all the monads we consider, kl(T) has quasi-total conditionals and
ranges, as shown in Section 4.

Example 5.13 (Mealy machines). We start by taking T to be the

identity monad Id : Set → Set. In this case, kl(T) is Set and a T-
machine (𝑈 , 𝑖, 𝑓 ) : 𝐴 → 𝐵 consists of an initial state 𝑖 (•) ∈ 𝑈 ,

hereafter referred as𝑢0, and a transition function 𝑓 : 𝑈 ×𝐴 → 𝑈 ×𝐵.
The causal process tr(𝑈 , 𝑖, 𝑓 ) : 𝐴𝜔 → 𝐵𝜔 is the family of functions

𝑓𝑛 : 𝐴𝑛+1 → 𝐵𝑛+1
mapping (𝑎0, . . . , 𝑎𝑛) into (𝑏0, . . . , 𝑏𝑛) where

(𝑢𝑘+1
, 𝑏𝑘 ) = 𝑓 (𝑢𝑘 , 𝑎𝑘 ) for all 𝑘 ≤ 𝑛. This is exactly the standard

semantics by means of causal functions given, e.g., in [SJ19].

Example 5.14 (Partial Mealy machines). For T the maybe monad,

Id+1 : Set → Set, kl(T) is the category Par of partial functions. In a

T-machine (𝑈 , 𝑖, 𝑓 ) : 𝐴 → 𝐵, both 𝑖 : 𝐼 → 𝑈 and 𝑓 : 𝑈 ×𝐴 → 𝑈 × 𝐵

are partial functions. The partial causal process (see Section 4.2)

tr(𝑈 , 𝑖, 𝑓 ) : 𝐴𝜔 → 𝐵𝜔 is the family of partial functions 𝑓𝑛 : 𝐴𝑛+1 →
𝐵𝑛+1

mapping (𝑎0, . . . , 𝑎𝑛) into (𝑏0, . . . , 𝑏𝑛) whenever 𝑖 (•) = 𝑢0

and, for all 𝑘 ≤ 𝑛, (𝑢𝑘+1
, 𝑏𝑘 ) = 𝑓 (𝑢𝑘 , 𝑎𝑘 ).

Example 5.15 (Non-deterministicMealymachines). For T the power-
set monad ℘ : Set → Set, kl(T) is the category Rel and T-machines

(𝑈 , 𝑖, 𝑓 ) : 𝐴 → 𝐵 are exactly non-deterministic Mealy machines as

defined in [BK08]. These are a set of initial states 𝑖 (•) ⊆ 𝑈 and

a transition relation 𝑓 : 𝑈 × 𝐴 → 𝑈 × 𝐵. The relational causal

process (see Section 4.1) tr(𝑈 , 𝑖, 𝑓 ) : 𝐴𝜔 → 𝐵𝜔 is the family of rela-

tions 𝑓𝑛 : 𝐴𝑛+1 → 𝐵𝑛+1
relating (𝑎0, . . . , 𝑎𝑛) ∈ 𝐴𝑛+1

to (𝑏0, . . . , 𝑏𝑛)
whenever ∃𝑢0, . . . 𝑢𝑛+1 . 𝑢0 ∈ 𝑖 (•) ∧ ∀𝑘 ≤ 𝑛 . (𝑢𝑘+1

, 𝑏𝑘 ) ∈ 𝑓 (𝑢𝑘 , 𝑎𝑘 ).

Example 5.16 (Partial stochastic Mealy machines). Finally, we take

T to be the finitary subdistribution monad D≤1 : Set → Set. In a T-
machines (𝑈 , 𝑖, 𝑓 ) : 𝐴 → 𝐵, 𝑖 (•) is a subdistribution in D≤1 (𝑈 ) and
for all (𝑢, 𝑎) ∈ 𝑈 ×𝐴, 𝑝 (𝑢, 𝑎) is a subdistribution inD≤1 (𝑈 ×𝐵). The
partial stochastic causal process (see Section 4.3) tr(𝑈 , 𝑖, 𝑓 ) : 𝐴𝜔 →
𝐵𝜔 is the family of kl(D)-morphisms 𝑓𝑛 : 𝐴𝑛+1 → 𝐵𝑛+1

mapping

(𝑎0, . . . , 𝑎𝑛) ∈ 𝐴𝑛+1
into the distribution in D(𝐵𝑛+1) assigning to

each (𝑏0, . . . , 𝑏𝑛) the probability∑
(𝑢0,...,𝑢𝑛+1)

𝑖 (𝑢0 | •) ·
∏
𝑘≤𝑛

𝑝 ( (𝑢𝑘+1
, 𝑏𝑘 ) | (𝑢𝑘 , 𝑎𝑘 ) ) .

T-bisimilarity. The notion of morphism of T-Mealy machines

gives rise to an equivalence relation different from the one of traces.

When instantiating T to the monads in the previous examples,

our definition of bisimilarity captures the expected notions of bisim-

ilarities. In fact, ≡ coincides with coalgebraic bisimilarity [Rut00]

under reasonable assumptions. The reader should be aware that in

the literature of coalgebras there are several notions of bisimilarity

(see [Sta09] for a complete overview) but they all coincide when

restricting to weak-pullback preserving endofunctors on Set.
As discussed in Remark 5.12, T-Mealy machines are coalgebras

for the functor T(𝐼𝑑 ⊗ 𝐵)𝐴 modulo the presence of initial states

𝑖 : 𝐼 → T(𝑈 ). Since coalgebraic bisimilarity is defined on states, i.e.,

elements of 𝑈 and not of 𝑇 (𝑈 ), to formally state the correspon-

dence we assume that 𝑖 factors as 𝑖 ′ : 𝐼 → 𝑋 and 𝜂𝑋 : 𝑋 → T(𝑋 ),
intuitively meaning that 𝑖 is actually an element of 𝑈 . We do not

loose generality with this assumption as the initial state can always

be added to the transition morphism by adding an extra state, •.
The initial state of this transformed machine will be the state •.

Proposition 5.17. Let T : Set → Set be a commutative monad
preserving weak pullbacks and let (𝑈 , 𝑖, 𝑓 ), (𝑉 , 𝑗, 𝑔) : 𝐴 → 𝐵 be two
T-Mealy machines such that 𝑖 and 𝑗 factors respectively as 𝑖 ′ #𝜂𝑋 and
𝑗 ′ # 𝜂𝑌 . Then 𝑖 ′(•) and 𝑗 ′(•) are bisimilar in the sense of [Rut00] if
and only if (𝑈 , 𝑖, 𝑓 ) ≡ (𝑉 , 𝑗, 𝑔).

It is well known that in non-deterministic systems bisimilarity

entails trace equivalence. The same happens for coalgebras (when

traces are defined as in both [HJS07] and [SBBR10]) and for our

T-Mealy machines, as a consequence of Theorem 5.10.

6 CONCLUSIONS
We have introduced effectful streams, a notion of trace for effect-

ful programs and effectful state machines. Effectful streams recast

the classical coinductive description of streams, but they use the

morphisms of an effectful copy-discard category. Effectful copy-

discard categories are a refined version of the categorical semantics

for a programming language with a value/computation distinction.

These programs can be understood as a formal syntax for the mor-

phisms of effectful copy-discard categories and effectful streams

become the execution trace of the programs.

Do-notation for effectful streams is not only a convenient syntax

for the description of effectful streams; together with dinaturality

and coinduction, it allows us to reason about the behaviour of

potentially infinite iterative processes. Our running example, the

stream cipher, is an illustration: reasoning about the safety of the

one-time pad extends coinductively to a proof of safety for the

whole stream cipher. Many effectful programs (like servers, or

operating systems) are not designed to stop but to run forever;

further work could try to extend our techniques to these cases.

We have shown that effectful streams are can be characterized by

causal processes, a generalized notion of causal function sequence

that can be defined in any monoidal category with conditionals.

Conditionals come from categorical probability, where they are used

to alter the causal structure of a probabilistic process by Bayesian

inversion; the fact that the same structure appears in the study of

causal functions makes us think that conditionals may play a role

in many other aspects of categorical semantics apart from their



Effectful Trace Semantics via Effectful Streams Conference’17, July 2017, Washington, DC, USA

probabilistic interpretation. Further work may explore applications

of Markov categories to traces and causality.

We have seen how effectful streams allow us to introduce no-

tions of bisimulation and trace equivalence that particularize to

the well-known monadic cases while generalizing them to effectful

categories. The bicategorical structure of effectful Mealy machines

seems to be of particular interest.
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Figure 11: Composition of effectful Mealy machines.

B PROOFS ON DO-NOTATION
Definition B.1 (Graph homomorphism). An effectful copy-discard
graph homomorphism, 𝑓 : (O1,V1,P1, C1) → (O2,V2,P2, C2),
consists of (𝑖) a function on objects, (𝑖𝑖) a function on value genera-

tors that translates their objects, (𝑖𝑖𝑖) a function on pure generators

that translates their objects, and a (𝑖𝑣) function on effectful genera-

tors that translates their objects; that is,

(i) 𝑓 : O1 → O2;

(ii) 𝑓𝑣 : V1 (𝑋 1...𝑋𝑛 ;𝑌 ) → V2 (𝑓 𝑋 1...𝑓 𝑋𝑛 ; 𝑓 𝑌 );
(iii) 𝑓𝑝 : P1 (𝑋 1...𝑋𝑛 ;𝑌 1...𝑌𝑚) → P2 (𝑓 𝑋 1...𝑓 𝑋𝑛 ; 𝑓 𝑌 1...𝑓 𝑌𝑚);
(iv) 𝑓𝑐 : C1 (𝑋 1...𝑋𝑛 ;𝑌 1...𝑌𝑚) → C2 (𝑓 𝑋 1...𝑓 𝑋𝑛 ; 𝑓 𝑌 1...𝑓 𝑌𝑚).

Proposition B.2. Interchanging the order of a pure statement with
either a pure or an effectful statement on a well-formed derivation
results on a well-formed derivation.

Definition B.3 (Substitution). Let Γ ⊩ 𝑝 : Y and Γ ⊢ 𝑡 : Y be a

derivation and a term, and let (𝑥𝑖 : 𝑋 𝑖 ) ∈ Γ be a variable. The sub-

stitution of the variable 𝑥𝑖 by a term 𝑠 : 𝑋 𝑖 , on a derivation or value,

𝑝 [𝑠/𝑥𝑖 ] or 𝑡 [𝑠/𝑥𝑖 ], is defined inductively over both derivations and

values as follows.

(1) 𝑥𝑖 [𝑠/𝑥𝑖 ] = 𝑠; and 𝑥 𝑗 [𝑠/𝑥𝑖 ] = 𝑥 𝑗 when 𝑗 ≠ 𝑖;

(2) return(𝑡1, ..., 𝑡𝑛)[𝑠/𝑥𝑖 ] = return(𝑡1 [𝑠/𝑥𝑖 ], ..., 𝑡𝑛 [𝑠/𝑥𝑖 ]);
(3) 𝑓 (𝑡1, ..., 𝑡𝑛) [𝑠/𝑥𝑖 ] = 𝑓 (𝑡1 [𝑠/𝑥𝑖 ], ..., 𝑡𝑛 [𝑠/𝑥𝑖 ]);
(4) (𝑔(𝑡1, ..., 𝑡𝑛)→𝑦1, ..., 𝑦𝑛 # 𝑝) [𝑠/𝑥𝑖 ] =

𝑔(𝑡1 [𝑠/𝑥𝑖 ], ..., 𝑡𝑛 [𝑠/𝑥𝑖 ])→𝑦1, ..., 𝑦𝑛 # 𝑝 [𝑠/𝑥𝑖 ];
(5) (ℎ(𝑡1, ..., 𝑡𝑛){𝑦1, ..., 𝑦𝑛 # 𝑝) [𝑠/𝑥𝑖 ] =

ℎ(𝑡1 [𝑠/𝑥𝑖 ], ..., 𝑡𝑛 [𝑠/𝑥𝑖 ]){𝑦1, ..., 𝑦𝑛 # 𝑝 [𝑠/𝑥𝑖 ];
We must ensure that the variables that we create are fresh, different

from 𝑥𝑖 .

Definition B.4. The composition of two derivations

Γ ⊩ 𝑝 : 𝑌 1, ..., 𝑌𝑛 and 𝑦1 : 𝑌 1, ..., 𝑦𝑛 : 𝑌𝑛 ⊢ 𝑡 : Z,

is the derivation Γ ⊩ comp(𝑝 ;𝑞) : Z defined by structural induction

as follows.

• comp(return(𝑡1, ..., 𝑡𝑛);𝑞) = 𝑞 [𝑡1/𝑦1, ..., 𝑡𝑛/𝑦𝑛];
• comp((𝑔(𝑡1, ..., 𝑡𝑛)→𝑦1, ..., 𝑦𝑛 # 𝑝);𝑞) =

𝑔(𝑡1, ..., 𝑡𝑛)→𝑦1, ..., 𝑦𝑛 # comp(𝑝;𝑞);
• comp((ℎ(𝑡1, ..., 𝑡𝑛){𝑦1, ..., 𝑦𝑛 # 𝑝);𝑞) =

ℎ(𝑡1, ..., 𝑡𝑛){𝑦1, ..., 𝑦𝑛 # comp(𝑝;𝑞).
The identity derivation simply gives back all the variables on a

context, without changing their order or multiplicity,

𝑥1 : 𝑋 1, ..., 𝑥𝑛 : 𝑋𝑛 ⊢ return(𝑥1, ..., 𝑥𝑛) : 𝑋 1, ..., 𝑋𝑛 .

Proposition B.5 (From Proposition 2.8). Do-notation derivations
over an effectful copy-discard graph, G = (O,V,P, E), quotiented
by interchange, form an effectful copy-discard category, DoG (V) →
Do(P) → Do(E).

Proof. The morphisms of the cartesian category, DoG (V), are
derivations that only contain a return statement. The morphisms

of the monoidal category, DoG (P), are derivations that only con-

tain pure generators (→) and values. The morphisms of the pre-

monoidal category, DoG (E), are derivations nthat contain now

values, pure generators, effectful generators ({).
Composition is defined as in the previous Definition B.4. Com-

position is associative and unital; composition also respects the

property defining each one of the categories: the composition of

return statements is a return statement; the composition of pure

generator derivations is a pure generator derivation. □

C EFFECTFUL AND COPY-DISCARD
CATEGORIES

Definition C.1. An effectful copy-discard (strict) functor between
strict effectful copy-discard categories,

(𝐹,𝐺, 𝐻 ) : (V, P,C) → (V′, P′,C′),

is a triple consisting of a two strict monoidal functors 𝐹 : V → V′

and 𝐺 : P → P′ and a functor 𝐻 : C → C′
strictly preserving

the premonoidal structure. These functors must commute with

the inclusions determining the effectful copy-discard categories,

meaning that the following diagram must commute.

V

𝐹

��

// P

𝐺

��

// C

𝐻

��
𝑉 ′ // P′ // C′

Bayes inversions are a particular case of quasi-total conditionals.

The Bayesian inversion of a morphism 𝑔 : 𝑌 → 𝑍 with respect to

𝑓 : 𝑋 → 𝑌 is a morphism 𝑔∗
𝑓

: 𝑋 ⊗𝑍 → 𝑌 such that can recover the

output of 𝑓 from the output of 𝑓 # 𝑔.

𝑓 (𝑥) → 𝑦

𝑔(𝑦) → 𝑧

𝑔∗𝑓 (𝑥, 𝑧) → 𝑚
return (m,z)

 =

𝑓 (𝑥) → 𝑦

𝑔(𝑦) → 𝑧
return (y,z)


These equations correspond to asking that 𝑔∗

𝑓
is a quasi-total condi-

tional of 𝑓 # # (𝑔 ⊗ id).

D PROOFS ON EFFECTFUL STREAMS
Remark D.1 (Ehrenfest model). The Ehrenfest model represents a

system with two urns and multiple particles; at each step, a ran-

domly and uniformly picked particle jumps from its current urn to

the other.

ehrenfest◦() =
yield ([],full)

ehrenfest+◦(left,right) =
uniform() → ball
move(left,ball) → left
move(right,ball) → right
yield (left,right)

ehrenfest++ = ehrenfest+

Compare with the type-theoretic formalization of this same model

in the work of Di Lavore, de Felice and Román, where feedback

appears as a primitive operation [DLdFR22].
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Lemma D.2. The set of observational sequences from 𝑿 to 𝒀 in a
productive effectful category (P,C) is isomorphic to the set of effectful
streams of the same type.

Proof sketch. The proof proceeds analogous to the monoidal

case [DLdFR22, DLdFR23]. □

Corollary D.3. Observational sequences over a productive effectful
category (P,C) form an effectful category OSeq(P,C) , where objects
are streams of objects 𝑿 = (𝑋0, 𝑋1, . . . ) in C.

Proof. We define composition, identities and monoidal actions

as in streams, using the bijection between hom-sets. □

Proof of Theorem 3.12. The bijections of Lemma D.2 define an

effectful functor because the category of observational sequences is

defined in order for these bijections to respect compositions, iden-

tities and monoidal actions. An identity-on-objects fully-faithful

functor is an isomorphism. □

Lemma D.4. Let 𝑓 : 𝑋 → 𝐴 ⊗ 𝐵 be a morphism in a copy-discard
category C with quasi-total conditionals and ranges. Then, all its
quasi-total conditionals 𝑐 are total on its range 𝑟 ′ # 𝜄, the composition
𝜄 # 𝑐 is total.

Proof. We apply the properties of quasi-total conditionals.

𝑓

= 𝑓

=

𝑓

𝑐

By the properties of ranges and totality of 𝜄, we obtain the thesis,

𝜄 # 𝑐 # = 𝜄 # = . □

Definition D.5. For morphisms𝑚 : 𝑋 → 𝐴 and 𝑐 : 𝑋 ⊗ 𝐴 → 𝐵 in

a copy-discard category, define𝑚 ⊳ 𝑐 : 𝑋 → 𝐵 ⊗ 𝐴 as

𝑚 ⊳ 𝑐 B
𝑚(𝑥) → 𝑎

𝑐 (𝑥, 𝑎) → 𝑏

return (𝑏, 𝑎)


Proof of Proposition 3.13. Given a 1-stage process ⟨𝑡 |, con-

sider the range 𝑟 = 𝑟 ′ # 𝜄 of 𝑡 # ( ⊗ id) and define a candidate

minimal representative 𝑡0 B (𝑡 # ( ⊗ id)) ⊳ 𝑟 ′.

𝑡0 B

𝑡 (𝑥) → (𝑚,𝑦)
𝑟 ′(𝑥,𝑦) → 𝑠

return (𝑠)

 𝑡

𝑟 ′

This is an element of ⟨𝑡 | because we can rewrite ⟨𝑡 | as below apply-

ing the properties of a quasi-total conditional 𝑐 of 𝑡 , the properties

of the range 𝑟 , and Lemma D.4.

⟨𝑡 |
= ⟨(𝑡 # ( ⊗ id)) ⊳ 𝑐 |
=

〈
(𝑡 # ( ⊗ id)) ⊳ (𝑟 ′ # 𝜄 # 𝑐)

��
∼

〈
(𝑡 # ( ⊗ id)) ⊳ 𝑟 ′

��

= ⟨𝑡0 |

We show that 𝑡0 does not depend on the particular representative 𝑡 .

Suppose that ⟨𝑡 | = ⟨𝑢 | in 𝑘 sliding steps and proceed by induction

on 𝑘 . If 𝑘 = 0, then 𝑡 = 𝑢 and we are done. Otherwise, suppose

that there is 𝑣 such that ⟨𝑢 | = ⟨𝑣 | in 𝑘 − 1 steps and there are total

morphisms 𝑎 and 𝑏 such that 𝑣 # (𝑎 ⊗ id) = 𝑡 # (𝑏 ⊗ id). Since 𝑎
and 𝑏 are total, we obtain that 𝑣 # ( ⊗ id) = 𝑡 # ( ⊗ id). By
induction hypothesis, 𝑢 # ( ⊗ id) = 𝑣 # ( ⊗ id), which gives

𝑡 # ( ⊗ id) = 𝑢 # ( ⊗ id) and that 𝑡0 does not depend on the

chosen representative 𝑡 .

We define a candidate total morphism 𝑠𝑡 for every element 𝑡 ∈
⟨𝑡0 | as one of its quasi-total conditionals precomposed with 𝜄: 𝑠𝑡 B
𝜄 # 𝑐𝑡 . By the definition of conditionals and ranges, 𝑡0 # (𝑠𝑡 ⊗ id) = 𝑡 .

We show that they satisfy the last condition for productivity by

the axioms of ranges. Suppose that 𝑡,𝑢 ∈ ⟨𝑡0 | and〈
𝑡 (𝑥) → (𝑚,𝑦)
𝑎(𝑥 ′) → (𝑚′, 𝑦′)
return (𝑚′, 𝑦,𝑦′)


������ =

〈
𝑢 (𝑥) → (𝑚,𝑦)
𝑏 (𝑥 ′) → (𝑚′, 𝑦′)
return (𝑚′, 𝑦,𝑦′)


������ .

By the first point in this proof, 𝑡 # ( ⊗ id) = 𝑢 # ( ⊗ id) = ℎ and

𝑡 (𝑥) → (𝑚,𝑦)
𝑎(𝑚, 𝑥 ′) → (𝑚′, 𝑦′)
return (𝑦,𝑦′)

 =

𝑢 (𝑥) → (𝑚,𝑦)
𝑏 (𝑚, 𝑥 ′) → (𝑚′, 𝑦′)
return (𝑦,𝑦′)

 .

This equation implies, for 𝑐 and 𝑑 quasi-total conditionals of 𝑡 and

𝑢, that

ℎ(𝑥) → 𝑦

𝑐 (𝑥,𝑦) →𝑚

𝑎(𝑚, 𝑥 ′) → (𝑚′, 𝑦′)
return (𝑦,𝑦′)

 =

ℎ(𝑥) → 𝑦

𝑑 (𝑥,𝑦) →𝑚

𝑏 (𝑚, 𝑥 ′) → (𝑚′, 𝑦′)
return (𝑦,𝑦′)

 .

By the properties of ranges, we obtain that

((𝜄 # 𝑐) ⊗ id) # 𝑎 # ( ⊗ id) = ((𝜄 # 𝑑) ⊗ id) # 𝑏 # ( ⊗ id) .

We apply the sliding equivalence and obtain

⟨((𝜄 # 𝑐) ⊗ id) # 𝑎 | ∼ ⟨((𝜄 # 𝑑) ⊗ id) # 𝑏 | .

□

E PROOFS ON CAUSAL PROCESSES
Proof of Proposition 4.2. We show that causal processes are a

category where identities and composition are defined component-

wise by those in C. Since they are defined component wise, they

must be associative and unital. We proceed to check that they are

well-defined, i.e. that the identity satisfies the causality condition

and that, whenever 𝑓 and 𝑔 satisfy the causal condition, 𝑓 #𝑔 does so
too. The projection 𝜋 : 𝐴0⊗· · ·⊗𝐴𝑛+1 → 𝐴𝑛+1 on the last coordinate

is always a conditional of the identity id𝐴0⊗···⊗𝐴𝑛+1
with respect to

the marginal id𝐴0⊗···⊗𝐴𝑛
, which shows that the causality condition

is satisfied. For compositions, suppose that the processes 𝒇 : 𝑨 → 𝑩
and 𝒈 : 𝑩 → 𝑠𝑡𝑟𝑒𝑎𝑚𝐶 have conditionals 𝑐𝑛 : 𝐵0 ⊗ · · · ⊗ 𝐵𝑛−1 ⊗𝐴0 ⊗
· · · ⊗𝐴𝑛 → 𝐵𝑛 and 𝑑𝑛 : 𝐶0 ⊗ · · · ⊗𝐶𝑛−1 ⊗ 𝐵0 ⊗ · · · ⊗ 𝐵𝑛 → 𝐶𝑛 . We

show that 𝑓𝑛 # 𝑔𝑛 is a marginal of 𝑓𝑛+1 # 𝑔𝑛+1 with do-notation.

(𝒇 # 𝒈)𝑛+1

B 𝑓𝑛+1 # 𝑔𝑛+1
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=

𝑓𝑛 ( #„𝑥𝑛) → #„𝑦𝑛
𝑐𝑛+1 ( #„𝑦𝑛,

#„𝑥𝑛+1) → 𝑦𝑛+1

𝑔𝑛 ( #„𝑦𝑛) → #„𝑧𝑛
𝑑𝑛+1 ( #„𝑧𝑛,

#„𝑦𝑛+1) → 𝑧𝑛+1

return ( #„𝑧𝑛+1)


=

𝑓𝑛 ( #„𝑥𝑛) → #„𝑦𝑛
𝑔𝑛 ( #„𝑦𝑛) → #„𝑧𝑛
𝑐𝑛+1 ( #„𝑦𝑛,

#„𝑥𝑛+1) → 𝑦𝑛+1

𝑑𝑛+1 ( #„𝑧𝑛,
#„𝑦𝑛+1) → 𝑧𝑛+1

return ( #„𝑧𝑛+1)


(2)

=

𝑓𝑛 ( #„𝑥𝑛) → #„𝑚𝑛

𝑔𝑛 ( #„𝑚𝑛) → #„𝑧𝑛
𝑔∗𝑓 ( #„𝑥𝑛,

#„𝑧𝑛) → #„𝑦𝑛
𝑐𝑛+1 ( #„𝑦𝑛,

#„𝑥𝑛+1) → 𝑦𝑛+1

𝑑𝑛+1 ( #„𝑧𝑛,
#„𝑦𝑛+1) → 𝑧𝑛+1

return ( #„𝑧𝑛+1)


(3)

=

(𝑓 # 𝑔)𝑛 ( #„𝑥𝑛) → #„𝑧𝑛
𝑔∗𝑓 ( #„𝑥𝑛,

#„𝑧𝑛) → #„𝑦𝑛
𝑐𝑛+1 ( #„𝑦𝑛,

#„𝑥𝑛+1) → 𝑦𝑛+1

𝑑𝑛+1 ( #„𝑧𝑛,
#„𝑦𝑛+1) → 𝑧𝑛+1

return ( #„𝑧𝑛+1)


The category C is monoidal so statements can be interchanged

(Equation (2)). Equation (3) uses the Bayes inversion 𝑔∗
𝑓
of 𝑔𝑛 with

respect to 𝑓𝑛 .

The monoidal product 𝒇 ⊗ 𝒈 is defined on the components by

reshuffling the order of the inputs and outputs of the monoidal

product 𝑓𝑛 ⊗ 𝑔𝑛 in C.

(𝑓 ⊗ 𝑔)𝑛 B
𝑓𝑛 ( #„𝑤𝑛) → #„𝑦𝑛
𝑔𝑛 ( #„𝑥𝑛) → #„𝑧𝑛

return ( #       „(𝑦, 𝑧)𝑛)


This operation preserves identities and compositions.

(id𝑨 ⊗ id𝑩)𝑛

B

id #„
𝐴𝑛

( #„𝑎𝑛) →
#„

𝑎′𝑛
id #„

𝐵𝑛
( #„

𝑏𝑛) →
#„

𝑏 ′𝑛
return (

#           „

(𝑎′, 𝑏 ′)𝑛)


= return ( #       „(𝑎, 𝑏)𝑛)

}
= (id𝑨⊗𝑩)𝑛

((𝑓 ⊗ 𝑓 ′) # (𝑔 ⊗ 𝑔′))𝑛

B

𝑓𝑛 ( #„𝑥𝑛) → #„𝑦𝑛

𝑓 ′𝑛 (
#„

𝑥 ′𝑛) →
#„

𝑦′𝑛
𝑔𝑛 ( #„𝑦𝑛) → #„𝑧𝑛

𝑔′𝑛 (
#„

𝑦′𝑛) →
#„

𝑧′𝑛
return (

#         „

(𝑧, 𝑧′)𝑛)


=

𝑓𝑛 ( #„𝑥𝑛) → #„𝑦𝑛
𝑔𝑛 ( #„𝑦𝑛) → #„𝑧𝑛

𝑓 ′𝑛 (
#„

𝑥 ′𝑛) →
#„

𝑦′𝑛
𝑔′𝑛 (

#„

𝑦′𝑛) →
#„

𝑧′𝑛
return (

#         „

(𝑧, 𝑧′)𝑛)


(4)

= ((𝑓 # 𝑔) ⊗ (𝑓 ′ # 𝑔′))𝑛

Finally, the monoidal product is well-defined because (𝑓 ⊗ 𝑔)𝑛 is a

marginal for (𝑓 ⊗ 𝑔)𝑛+1.

(𝑓 ⊗ 𝑔)𝑛+1

B

𝑓𝑛+1 ( #„𝑤𝑛+1) → #„𝑦𝑛+1

𝑔𝑛+1 ( #„𝑥𝑛+1) → #„𝑧𝑛+1

return ( #       „(𝑦, 𝑧)𝑛+1)


=

𝑓𝑛 ( #„𝑤𝑛) → #„𝑦𝑛
𝑐𝑛+1 ( #„𝑤𝑛+1,

#„𝑦𝑛) → 𝑦𝑛+1

𝑔𝑛 ( #„𝑥𝑛) → #„𝑧𝑛
𝑑𝑛+1 ( #„𝑥𝑛+1,

#„𝑧𝑛) → 𝑧𝑛+1

return ( #       „(𝑦, 𝑧)𝑛+1)


(5)

=

𝑓𝑛 ( #„𝑤𝑛) → #„𝑦𝑛
𝑔𝑛 ( #„𝑥𝑛) → #„𝑧𝑛
𝑐𝑛+1 ( #„𝑤𝑛+1,

#„𝑦𝑛) → 𝑦𝑛+1

𝑑𝑛+1 ( #„𝑥𝑛+1,
#„𝑧𝑛) → 𝑧𝑛+1

return ( #       „(𝑦, 𝑧)𝑛+1)


(6)

=

(𝑓 ⊗ 𝑔)𝑛 (
#         „(𝑤, 𝑥)𝑛) →

#       „(𝑦, 𝑧)𝑛
𝑐𝑛+1 ( #„𝑤𝑛+1,

#„𝑦𝑛) → 𝑦𝑛+1

𝑑𝑛+1 ( #„𝑥𝑛+1,
#„𝑧𝑛) → 𝑧𝑛+1

return ( #       „(𝑦, 𝑧)𝑛+1)


Equation (5) applies the causality condition to 𝑓𝑛+1 and 𝑔𝑛+1, and

Equations (4) and (6) use interchange. □

Lemma E.1. Consider two observational sequences ⟨𝑡𝑛 | 𝑛 ∈ N⟩ and
⟨𝑢𝑛 | 𝑛 ∈ N⟩, and suppose there are𝑎𝑛 pure such that (𝑎𝑛−1⊗id)#𝑡𝑛 =

𝑢𝑛 # (𝑎𝑛 ⊗ id). Then ⟨𝑡𝑛 | 𝑛 ∈ N⟩ = ⟨𝑢𝑛 | 𝑛 ∈ N⟩.

Proof. Show by induction on 𝑛 that

⟨𝑡0 | · · · | 𝑡𝑛 | = ⟨𝑢0 | · · · | 𝑢𝑛 # (𝑎𝑛 ⊗ id) |

by sliding only identities on the last memory. If 𝑛 = 0 then 𝑡0 =

𝑢0 # (𝑎0 ⊗ id) by hypothesis. Suppose the thesis is true for 𝑛.

⟨𝑡0 | · · · | 𝑡𝑛 | 𝑡𝑛+1 |
∼ ⟨𝑢0 | · · · | 𝑢𝑛 # (𝑎𝑛 ⊗ id) | 𝑡𝑛+1 |
∼ ⟨𝑢0 | · · · | 𝑢𝑛 | (𝑎𝑛 ⊗ id) # 𝑡𝑛+1 |
= ⟨𝑢0 | · · · | 𝑢𝑛 | 𝑢𝑛+1 # (𝑎𝑛+1 ⊗ id) |

With this, we show that, for every 𝑛 ∈ N,

⟨𝑡0 | · · · | 𝑡𝑛 |
∼ ⟨𝑢0 | · · · | 𝑢𝑛 # (𝑎𝑛 ⊗ id) |
∼ ⟨𝑢0 | · · · | 𝑢𝑛 |

□

Lemma E.2. Let 𝑐𝑛 :

#„
𝐴𝑛−1 ⊗ #„

𝐵𝑛−1 ⊗ 𝐴𝑛 → 𝐵𝑛 be a family of
morphisms, for 𝑛 ∈ N, and define 𝑟 ′

0
, 𝑗0 to be the range of 𝑐0 and

𝑟 ′
𝑛+1

, 𝑗𝑛+1 to be the range of ( 𝑗𝑛 ⊗ id) # 𝑐𝑛+1. Then,〈
𝑐𝑛 ( #„𝑎𝑛,

#„

𝑏𝑛−1) → 𝑏𝑛

return ( #„

𝑏𝑛,
#„𝑎𝑛, 𝑏𝑛)

}
| 𝑛 ∈ N

〉

∼
〈 𝑗𝑛−1 (𝑠) → ( #„𝑎𝑛−1,

#„

𝑏𝑛−1)
𝑐𝑛 ( #„𝑎𝑛,

#„

𝑏𝑛−1) → 𝑏𝑛

𝑟 ′𝑛 ( #„𝑎𝑛,
#„

𝑏𝑛) → 𝑠 ′

return (𝑠 ′, 𝑏𝑛)

 | 𝑛 ∈ N

〉
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Proof. By determinism of 𝑗𝑛 and their definition, we have the

following equalities.

𝑗𝑛−1 (𝑠) → ( #„𝑎𝑛−1,
#„

𝑏𝑛−1)
𝑐𝑛 ( #„𝑎𝑛,

#„

𝑏𝑛−1) → 𝑏𝑛

return ( #„𝑎𝑛−1,
#„

𝑏𝑛−1, 𝑎𝑛, 𝑏𝑛, 𝑏𝑛)


=
𝑐𝑛 ( 𝑗𝑛−1 (𝑠), 𝑎𝑛) → 𝑏𝑛
return ( 𝑗𝑛−1 (𝑠), 𝑎𝑛, 𝑏𝑛, 𝑏𝑛)

}
=

𝑐𝑛 ( 𝑗𝑛−1 (𝑠), 𝑎𝑛) → 𝑏𝑛
𝑟𝑛 (𝑠, 𝑎𝑛, 𝑏𝑛) → (𝑠 ′, 𝑎′𝑛, 𝑏 ′𝑛)
return ( 𝑗𝑛−1 (𝑠 ′), 𝑎′𝑛, 𝑏 ′𝑛, 𝑏𝑛)


=

𝑐𝑛 ( 𝑗𝑛−1 (𝑠), 𝑎𝑛) → 𝑏𝑛
𝑟 ′𝑛 (𝑠, 𝑎𝑛, 𝑏𝑛) → 𝑠 ′

return ( 𝑗𝑛 (𝑠 ′), 𝑏𝑛)


We can, then, apply Lemma E.1 with 𝑎𝑛 B 𝑗𝑛 and get the thesis. □

Lemma E.3. Consider two families of conditionals

𝑐𝑛, 𝑑𝑛 :

#„
𝐴𝑛−1 ⊗ #„

𝐵𝑛−1 ⊗ 𝐴𝑛 → 𝐵𝑛

that induce the same family of morphisms,

𝑐0 (𝑎0) → 𝑏0

.

.

.

𝑐𝑛 ( #„𝑎𝑛−1,
#„

𝑏𝑛−1, 𝑎𝑛) → 𝑏𝑛

return ( #„

𝑏𝑛)


=

𝑑0 (𝑎0) → 𝑏0

.

.

.

𝑑𝑛 ( #„𝑎𝑛−1,
#„

𝑏𝑛−1, 𝑎𝑛) → 𝑏𝑛

return ( #„

𝑏𝑛)


.

Then they are equal up to appropriate ranges,

𝑐𝑛 ( 𝑗𝑛−1 (𝑠𝑛−1), 𝑎𝑛) = 𝑑𝑛 ( 𝑗𝑛−1 (𝑠𝑛−1), 𝑎𝑛) ,

where 𝑗0 = 𝜄0 : 𝑅0 → 𝐴0 ⊗ 𝐵0 is the total part of the range 𝑟0 = 𝑟 ′
0
# 𝜄0

of 𝑐0, 𝜄𝑛+1 is the total part of the range of ( 𝑗𝑛 ⊗ id) # 𝑐𝑛+1, and
𝑗𝑛+1 = 𝜄𝑛+1 # ( 𝑗𝑛 ⊗ id).

Proof. Proceed by induction. The base case checks that 𝑐0 = 𝑑0,

by hypothesis. For the inductive step, we need an auxiliary inductive

lemma to show that, whenever

𝑐𝑘 ( #„𝑎𝑘−1
,

#„

𝑏𝑘−1
, 𝑎𝑘 ) → 𝑏𝑘

.

.

.

𝑐𝑛 ( #„𝑎𝑛−1,
#„

𝑏𝑛−1, 𝑎𝑛) → 𝑏𝑛

return ( #„

𝑏𝑛)


=

𝑑𝑘 ( #„𝑎𝑘−1
,

#„

𝑏𝑘−1
, 𝑎𝑘 ) → 𝑏𝑘

.

.

.

𝑑𝑛 ( #„𝑎𝑛−1,
#„

𝑏𝑛−1, 𝑎𝑛) → 𝑏𝑛

return ( #„

𝑏𝑛)


,

and 𝑐𝑘 ( 𝑗𝑘−1
(𝑠𝑘−1

), 𝑎𝑘 ) = 𝑑𝑘 ( 𝑗𝑘−1
(𝑠𝑘−1

), 𝑎𝑘 ), then we can deduce,

by the properties of ranges, the definition of 𝑗𝑘 and the inductive

hypothesis on 𝑘 , that

𝑐𝑘+1
( #„𝑎𝑘 ,

#„

𝑏𝑘 , 𝑎𝑘+1
) → 𝑏𝑘+1

.

.

.

𝑐𝑛 ( #„𝑎𝑛−1,
#„

𝑏𝑛−1, 𝑎𝑛) → 𝑏𝑛

return ( #„

𝑏𝑛)


=

𝑑𝑘+1
( #„𝑎𝑘 ,

#„

𝑏𝑘 , 𝑎𝑘+1
) → 𝑏𝑘+1

.

.

.

𝑑𝑛 ( #„𝑎𝑛−1,
#„

𝑏𝑛−1, 𝑎𝑛) → 𝑏𝑛

return ( #„

𝑏𝑛)


.

With this auxiliary lemma, the initial hypothesis and the induction

hypothesis, i.e. that 𝑐𝑘 ( 𝑗𝑘−1
(𝑠𝑘−1

), 𝑎𝑘 ) = 𝑑𝑘 ( 𝑗𝑘−1
(𝑠𝑘−1

), 𝑎𝑘 ) for𝑘 ≤
𝑛, we conclude that 𝑐𝑛+1 ( 𝑗𝑛 (𝑠𝑛), 𝑎𝑛+1) = 𝑑𝑛+1 ( 𝑗𝑛 (𝑠𝑛), 𝑎𝑛+1). □

LemmaE.4. For any two equivalent observational sequences, ⟨𝑡𝑛 | 𝑛 ∈ N⟩ ∼
⟨𝑢𝑛 | 𝑛 ∈ N⟩, all their 𝑛-th executions coincide.

𝑡0 (𝑎0) →𝑚0, 𝑏0

.

.

.

𝑡𝑛 (𝑚𝑛−1, 𝑎𝑛) →𝑚𝑛, 𝑏𝑛

return ( #„

𝑏𝑛)


=

𝑢0 (𝑎0) →𝑚0, 𝑏0

.

.

.

𝑢𝑛 (𝑚𝑛−1, 𝑎𝑛) →𝑚𝑛, 𝑏𝑛

return ( #„

𝑏𝑛)


Proof. This is easily shown by induction using the fact that

sliding is on total maps. □

Lemma E.5. For two causal processes (𝑓𝑛 | 𝑛 ∈ N) : 𝑿 → 𝒀 and
(𝑔𝑛 | 𝑛 ∈ N) : 𝒀 → 𝒁 ,〈𝑐𝑛 ( #„𝑥𝑛−1,

#„𝑦𝑛−1, 𝑥𝑛) → 𝑦𝑛

𝑑𝑛 (
#„

𝑦′𝑛−1,
#„𝑧𝑛−1, 𝑦𝑛) → 𝑧𝑛

return ( #„𝑥𝑛,
#„𝑦𝑛−1, 𝑦𝑛,

#„

𝑦′𝑛−1, 𝑦𝑛,
#„𝑧𝑛, 𝑧𝑛)

 | 𝑛 ∈ N

〉

=

〈𝑔∗𝑓𝑛−1

( #„𝑥𝑛−1,
#„𝑧𝑛−1) → 𝑦𝑛

𝑐𝑛 ( #„𝑥𝑛−1,
#„𝑦𝑛−1, 𝑥𝑛) → 𝑦𝑛

𝑑𝑛 ( #„𝑦𝑛−1,
#„𝑧𝑛−1, 𝑦𝑛) → 𝑧𝑛

return ( #„𝑥𝑛,
#„𝑧𝑛, 𝑧𝑛)

 | 𝑛 ∈ N

〉

Proof. Let 𝑣𝑛,𝑤𝑛 :

#„
𝑋𝑛−1 ⊗ #„

𝑍𝑛−1 ⊗ 𝑋𝑛 → 𝑍𝑛 be defined by

𝑣𝑛(
#„𝑥𝑛−1,

#„𝑧𝑛−1, 𝑥𝑛) =
𝑔∗𝑓𝑛−1

( #„𝑥𝑛−1,
#„𝑧𝑛−1){

#„𝑦𝑛−1

𝑐𝑛(
#„𝑥𝑛−1,

#„𝑦𝑛−1, 𝑥𝑛){𝑦𝑛
𝑑𝑛(

#„𝑦𝑛−1,
#„𝑧𝑛−1, 𝑦𝑛){ 𝑧𝑛

return (𝑧𝑛)

𝑣𝑛(
#„𝑥𝑛−1,

#„𝑧𝑛−1, 𝑥𝑛) =
𝑔∗𝑓𝑛−1

( #„𝑥𝑛−1,
#„𝑧𝑛−1){

#„𝑦𝑛−1

𝑐𝑛(
#„𝑥𝑛−1,

#„𝑦𝑛−1, 𝑥𝑛){𝑦𝑛
𝑑𝑛(

#„𝑦𝑛−1,
#„𝑧𝑛−1, 𝑦𝑛){ 𝑧𝑛

𝑔∗𝑓𝑛(
#„𝑥𝑛,

#„𝑧𝑛){
#„

𝑦′𝑛
return (𝑧𝑛)

We can check that 𝑣𝑛 ⊳ id and𝑤𝑛 ⊳ id define the same family of mor-

phisms, (𝑓𝑛 # 𝑔𝑛 | 𝑛 ∈ N), as in Lemma E.3. Applying Lemma E.3,

we obtain that ( 𝑗𝑛−1 ⊗ id) # 𝑣𝑛 = ( 𝑗𝑛−1 ⊗ id) #𝑤𝑛 . Lemma E.2 im-

plies that ⟨𝑣𝑛 ⊳ id | 𝑛 ∈ N⟩ ∼
〈
(( 𝑗𝑛−1 ⊗ id) # 𝑣𝑛) ⊳ 𝑟 ′𝑛 | 𝑛 ∈ N

〉
and

⟨𝑤𝑛 ⊳ id | 𝑛 ∈ N⟩ ∼
〈
(( 𝑗𝑛−1 ⊗ id) #𝑤𝑛) ⊳ 𝑟 ′𝑛 | 𝑛 ∈ N

〉
. From these

two facts, we deduce that ⟨𝑣𝑛 ⊳ id | 𝑛 ∈ N⟩ ∼ ⟨𝑤𝑛 ⊳ id | 𝑛 ∈ N⟩. Fi-
nally, we apply Lemma E.1 with the total morphism 𝑎𝑛 defined

below.

𝑎𝑛(𝑠𝑛) =
𝑗𝑛−1(𝑠𝑛){

#„𝑥𝑛,
#„𝑧𝑛

𝑔∗𝑓𝑛(
#„𝑥𝑛,

#„𝑧𝑛){
#„𝑦𝑛

return ( #„𝑥𝑛,
#„𝑦𝑛,

#„𝑦𝑛,
#„𝑧𝑛)

□

Remark E.6. The sequence (𝑓𝑛 | 𝑛 ∈ N) defined in Proposition 4.4

is, more explicitly, defined by induction via the auxiliary morphisms

ˆ𝑓𝑛 : 𝑋0 ⊗ · · · ⊗ 𝑋𝑛 → 𝑀𝑛 ⊗ 𝑌0 ⊗ · · · ⊗ 𝑌𝑛 .

ˆ𝑓0 B 𝑡0;
ˆ𝑓𝑛+1 B

ˆ𝑓𝑛 ( #„𝑥𝑛) → (𝑚′, #„𝑦𝑛)
𝑡𝑛+1 (𝑚′, 𝑥𝑛+1) → (𝑚,𝑦𝑛+1)
return (𝑚, #„𝑦𝑛+1)


The components 𝑓𝑛 are obtained from

ˆ𝑓𝑛 by projecting out the

memory, 𝑓𝑛 B ˆ𝑓𝑛 # 𝜋 #„
𝑌𝑛

.

Proof of Proposition 4.3. For amorphism𝒇 : 𝑨 → 𝑩 inCausal(C),
consider the conditionals 𝑐𝑛 :

#„
𝐵𝑛−1⊗

#„
𝐴𝑛 → 𝐵𝑛 of 𝑓𝑛 with respect to

𝑓𝑛−1, and, for a morphism ⟨𝑡𝑛 | 𝑛 ∈ N⟩ : 𝑨 → 𝑩 in OSeq(Tot(C),C) ,
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consider its 𝑛-th executions, 𝑔𝑛 :

#„
𝐴𝑛 → 𝑀𝑛 ⊗ #„

𝐵𝑛 defined by induc-

tion.

𝑔0 B 𝑡0

𝑔𝑛+1 B

𝑔𝑛 ( #„𝑎𝑛) → (𝑠 ′, #„

𝑏𝑛)
𝑡𝑛+1 (𝑠 ′, 𝑎𝑛+1) → (𝑠, 𝑏𝑛+1)
return (𝑠, #„

𝑏𝑛+1)


With these, we define the candidate functors obs : Causal(C) →
OSeq(Tot(C),C) and proc : OSeq(Tot(C),C) → Causal(C) as identity
on objects and, on morphisms using the notation above.

obs(𝒇 ) B
〈
𝑐𝑛 ( #„𝑎𝑛,

#„

𝑏𝑛−1) → 𝑏𝑛

return ( #„𝑎𝑛,
#„

𝑏𝑛, 𝑏𝑛)

}
| 𝑛 ∈ N

〉
proc(⟨𝑡𝑛 | 𝑛 ∈ N⟩) B

(
𝑔𝑛 ( #„𝑎𝑛) → (𝑠, #„

𝑏𝑛)
return ( #„

𝑏𝑛)

}
| 𝑛 ∈ N

)
We show that obs is well-defined, i.e. that any two choices 𝑐𝑛 and

𝑑𝑛 of conditionals for 𝑓𝑛 define the same observational sequence.

We apply Lemmas E.2 and E.3.〈
𝑐𝑛 ( #„𝑎𝑛,

#„

𝑏𝑛−1) → 𝑏𝑛

return ( #„

𝑏𝑛,
#„𝑎𝑛, 𝑏𝑛)

}
| 𝑛 ∈ N

〉

∼
〈 𝑗𝑛−1 (𝑠) → ( #„𝑎𝑛−1,

#„

𝑏𝑛−1)
𝑐𝑛 ( #„𝑎𝑛,

#„

𝑏𝑛−1) → 𝑏𝑛

𝑟 ′𝑛 ( #„𝑎𝑛,
#„

𝑏𝑛) → 𝑠 ′

return (𝑠 ′, 𝑏𝑛)

 | 𝑛 ∈ N

〉

=

〈 𝑗𝑛−1 (𝑠) → ( #„𝑎𝑛−1,
#„

𝑏𝑛−1)
𝑑𝑛 ( #„𝑎𝑛,

#„

𝑏𝑛−1) → 𝑏𝑛

𝑟 ′𝑛 ( #„𝑎𝑛,
#„

𝑏𝑛) → 𝑠 ′

return (𝑠 ′, 𝑏𝑛)

 | 𝑛 ∈ N

〉

∼
〈
𝑐𝑛 ( #„𝑎𝑛,

#„

𝑏𝑛−1) → 𝑏𝑛

return ( #„

𝑏𝑛,
#„𝑎𝑛, 𝑏𝑛)

}
| 𝑛 ∈ N

〉
We show that obs preserves identities. The identity causal pro-

cess has identities as components. The projection 𝜋𝑋𝑛
is a condi-

tional of id #„
𝑋𝑛

with respect to themarginal id #„
𝑋𝑛−1

. Then, obs(id𝑿 ) =
⟨𝜋𝑛 ⊳ id | 𝑛 ∈ N⟩. We can rewrite this sequence to〈

id ⊗ ( # ( ⊗ id)) | 𝑛 ∈ N
〉
,

which, applying Lemma E.1 with 𝑢𝑛 = ⊗ id, is equivalent to〈
id𝑋𝑛

| 𝑛 ∈ N
〉
. This is the identity observational sequence.

Themapping obs preserves composition by Lemma E.5 and is mo-

noidal by applying Lemma E.1 with the symmetries. By Lemma E.4,

proc is well-defined. □

Lemma E.7. For a copy-discard category C with quasi-total condi-
tionals and ranges, the functor defined in Proposition 4.3 is faithful.

Proof. We show that, for every𝑿 and 𝒀 , the hom-setCausal(C) (𝑿 , 𝒀 )
is included in OSeq(Tot(C),C) (𝑿 , 𝒀 ) via obs with inverse proc. We

check that proc(obs(𝒇 )) = 𝒇 for every 𝒇 : 𝑿 → 𝒀 in Causal(C).

proc(obs(𝒇 ))

B proc

(〈
𝑐𝑛 ( #„𝑎𝑛,

#„

𝑏𝑛−1) → 𝑏𝑛

return ( #„𝑎𝑛,
#„

𝑏𝑛, 𝑏𝑛)

}
| 𝑛 ∈ N

〉)

B

©­­­­­«
𝑐0 (𝑎0) → 𝑏0

.

.

.

𝑐𝑛 ( #„𝑎𝑛−1,
#„

𝑏𝑛−1, 𝑎𝑛) → 𝑏𝑛

return ( #„

𝑏𝑛)


ª®®®®®¬

= 𝒇

The last equality holds because 𝑐𝑛 is defined as the conditional of

𝑓𝑛 with respect to the marginal 𝑓𝑛−1 ⊗ . □

Lemma E.8. Let ⟨𝑡𝑛 | 𝑛 ∈ N⟩ be an observational sequence, and
consider (𝑓𝑛 | 𝑛 ∈ N) = proc⟨𝑡𝑛 | 𝑛 ∈ N⟩, 𝑞−1 B id𝐼 and 𝑞𝑛 to be a
quasi-total conditional of (𝑞𝑛−1 ⊗ id) # 𝑡𝑛 . Then, (𝑞𝑛−1 ⊗ id) # 𝑡𝑛 #
( ⊗ id) is a conditional of 𝑓𝑛 with respect to the marginal 𝑓𝑛−1.

Proof. Proceed by induction on 𝑛 with the stronger induction

hypothesis below, where
ˆ𝑓𝑛 is defined as in the proof of Proposi-

tion 4.4.

ˆ𝑓𝑛 =

𝑓𝑛−1 ( #„𝑎𝑛−1) →
#„

𝑏𝑛−1

𝑞𝑛−1 ( #„𝑎𝑛−1,
#„

𝑏𝑛−1) →𝑚′

𝑡𝑛 (𝑚′, 𝑎𝑛) → (𝑚,𝑏𝑛)
return (𝑚,

#„

𝑏𝑛)


If 𝑛 = 0, then

ˆ𝑓0 B 𝑡0 and we are done. Suppose that the statement

is true for 𝑛, and we compute
ˆ𝑓𝑛+1.

ˆ𝑓𝑛+1

B

ˆ𝑓𝑛 ( #„𝑎𝑛) → (𝑚′,
#„

𝑏𝑛)
𝑡𝑛+1 (𝑚′, 𝑎𝑛+1) → (𝑚,𝑏𝑛+1)
return (𝑚,

#„

𝑏𝑛+1)


=

𝑓𝑛−1 ( #„𝑎𝑛−1) →
#„

𝑏𝑛−1

𝑞𝑛−1 ( #„𝑎𝑛−1,
#„

𝑏𝑛−1) →𝑚′

𝑡𝑛 (𝑚′, 𝑎𝑛) → (𝑚,𝑏𝑛)
𝑡𝑛+1 (𝑚′, 𝑎𝑛+1) → (𝑚,𝑏𝑛+1)
return (𝑚,

#„

𝑏𝑛+1)


=

𝑓𝑛−1 ( #„𝑎𝑛−1) →
#„

𝑏𝑛−1

𝑞𝑛−1 ( #„𝑎𝑛−1,
#„

𝑏𝑛−1) →𝑚′

𝑡𝑛 (𝑚′, 𝑎𝑛) → (�̄�, 𝑏𝑛)
𝑞𝑛 ( #„𝑎𝑛,

#„

𝑏𝑛) →𝑚

𝑡𝑛+1 (𝑚′, 𝑎𝑛+1) → (𝑚,𝑏𝑛+1)
return (𝑚,

#„

𝑏𝑛+1)


=

ˆ𝑓𝑛 ( #„𝑎𝑛) →𝑚′,
#„

𝑏𝑛

𝑞𝑛 ( #„𝑎𝑛,
#„

𝑏𝑛) →𝑚

𝑡𝑛+1 (𝑚′, 𝑎𝑛+1) → (𝑚,𝑏𝑛+1)
return (𝑚,

#„

𝑏𝑛+1)


=

𝑓𝑛 ( #„𝑎𝑛) →
#„

𝑏𝑛

𝑞𝑛 ( #„𝑎𝑛,
#„

𝑏𝑛) →𝑚

𝑡𝑛+1 (𝑚′, 𝑎𝑛+1) → (𝑚,𝑏𝑛+1)
return (𝑚,

#„

𝑏𝑛+1)


The thesis follows from this by discarding the memory produced.

□

Lemma E.9. For a copy-discard category C with quasi-total condi-
tionals and ranges, the functor defined in Proposition 4.3 is full.
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Proof. We show that, for every𝑿 and 𝒀 , the hom-setCausal(C) (𝑿 , 𝒀 )
maps surjectively in OSeq(Tot(C),C) (𝑿 , 𝒀 ) via obs and proc. We

compute obs(proc(⟨𝑡𝑛 | 𝑛 ∈ N⟩)) and show by induction that this

is equivalent to ⟨𝑡𝑛 | 𝑛 ∈ N⟩ for every ⟨𝑡𝑛 | 𝑛 ∈ N⟩ : 𝑿 → 𝒀 in

OSeq(Tot(C),C) .

Define the families of morphisms
ˆ𝑓𝑛 and 𝑓𝑛 .

ˆ𝑓𝑛 B

𝑡0 (𝑥0) → (𝑚0, 𝑦0)
.
.
.

𝑡𝑛 (𝑚𝑛−1, 𝑥𝑛) → (𝑚𝑛, 𝑦𝑛)
return (𝑚𝑛,

#„𝑦𝑛)


𝑓𝑛 B

ˆ𝑓𝑛 ( #„𝑥𝑛) → (𝑚𝑛,
#„𝑦𝑛)

return ( #„𝑦𝑛)

}

By definition of proc, (𝑓𝑛 | 𝑛 ∈ N) = proc⟨𝑡𝑛 | 𝑛 ∈ N⟩. Let 𝑞−1 B
id𝐼 and 𝑞𝑛 be a quasi-total conditional of (𝑞𝑛−1 ⊗ id) # 𝑡𝑛 . By
Lemma E.8, 𝑐𝑛 B (𝑞𝑛−1 ⊗ id) # 𝑡𝑛 # ( ⊗ id) is a conditional

of 𝑓𝑛 with respect to the marginal 𝑓𝑛−1. Then, the family 𝑐𝑛 gives

the image of ⟨𝑡𝑛 | 𝑛 ∈ N⟩.

obs(proc(⟨𝑡𝑛 | 𝑛 ∈ N⟩))
= obs((𝑓𝑛 | 𝑛 ∈ N))

=

〈
𝑐𝑛 ( #„𝑎𝑛−1,

#„

𝑏𝑛−1, 𝑎𝑛) → 𝑏𝑛

return ( #„𝑎𝑛,
#„

𝑏𝑛, 𝑏𝑛)

}
| 𝑛 ∈ N

〉
B⟨𝑢𝑛 | 𝑛 ∈ N⟩

We show by induction on 𝑛 that

⟨𝑡0 | · · · |𝑡𝑛 |𝑡𝑛+1 | ∼ ⟨𝑢0 | · · · |𝑢𝑛 | (𝑞𝑛 ⊗ id) # 𝑡𝑛+1 | (7)

by only sliding identities on the last component. For 𝑛 = 0 this is

vacuously true because 𝑡0 = (id𝐼 ⊗ id) #𝑡0. Suppose that Equation (7)
is true for 𝑛 and we show that it holds for 𝑛 + 1 using the definition

of 𝑞𝑛+1 as quasi-total conditional, the range 𝑟 ′
𝑛+1

# 𝜄𝑛+1 of 𝑐𝑛+1 and

that 𝜄𝑛+1 # 𝑞𝑛+1 is total by Lemma D.4.

⟨𝑡0 | · · · |𝑡𝑛 |𝑡𝑛+1 |𝑡𝑛+2 |
∼ ⟨𝑢0 | · · · |𝑢𝑛 | (𝑞𝑛 ⊗ id) # 𝑡𝑛+1 |𝑡𝑛+2 |
∼ ⟨𝑢0 | · · · |𝑢𝑛 |𝑐𝑛+1 ⊳ 𝑞𝑛+1 |𝑡𝑛+2 |
=

〈
𝑢0 | · · · |𝑢𝑛 |𝑐𝑛+1 ⊳ (𝑟 ′𝑛+1

# 𝜄𝑛+1 # 𝑞𝑛+1) |𝑡𝑛+2

��
∼

〈
𝑢0 | · · · |𝑢𝑛 |𝑐𝑛+1 ⊳ 𝑟

′
𝑛+1

| ( (𝜄𝑛+1 # 𝑞𝑛+1) ⊗ id) # 𝑡𝑛+2

��
∼

〈
𝑢0 | · · · |𝑢𝑛 |𝑐𝑛+1 ⊳ (𝑟 ′𝑛+1

# 𝜄𝑛+1) | (𝑞𝑛+1 ⊗ id) # 𝑡𝑛+2

��
We have shown that Equation (7) holds for every 𝑛 ∈ N, which

implies that, for every 𝑛 ∈ N

⟨𝑡0 | · · · |𝑡𝑛 | ∼ ⟨𝑢0 | · · · |𝑢𝑛 | = obs(proc(⟨𝑡𝑛 | 𝑛 ∈ N⟩)) .

□

Proof of Theorem 4.6. Proposition 4.3 constructs a monoidal

functor obs : Causal(C) → OSeq(Tot(C),C) and Proposition 4.4 con-
structs, for every objects𝑿 and 𝒀 , a function proc : OSeq(Tot(C),C) (𝑿 , 𝒀 ) →
Causal(C) (𝑿 , 𝒀 ). Lemmas E.7 and E.9 show that this functor is

fully faithful with inverses given by proc. Identity-on-objects fully
faithful functors are isomorphisms. □

E.1 Proofs about conditionals and ranges
Lemma E.10. Any cartesian category has quasi-total conditionals.

Proof. A morphism 𝑓 : 𝑋 → 𝐴 × 𝐵 can be split, using its de-

terminism, as 𝑓 = # ((𝑓 # 𝜋𝐴) × (𝑓 # 𝜋𝐵)). Then, 𝑓 # 𝜋𝐵 is a

quasi-total conditional of 𝑓 because it is total. Using this fact, the

causality condition simplifies to that in Figure 5 and reduces causal

processes to families of morphisms 𝐴0 × · · · ×𝐴𝑛 → 𝐵𝑛 . □

Lemma E.11 (From Lemma 4.10). The monoidal category of rela-
tions Rel has quasi-total conditionals (Figure 4).

Proof. We use the syntax of cartesian bicategories of relations,

which is sound and complete for Rel [CKWW08]. Every morphism

in Rel is quasi-total.

𝑚

≤
𝑚

𝑚
(8)

≤ 𝑚 (9)

Equation (8) uses lax naturality of the copy morphism, while Equa-

tion (9) uses lax naturality of the discard morphism. The equation

for conditionals can be simplified using the Frobenius equation.

𝑓

𝑓

𝑐

=

𝑓

𝑓

We bound this morphism from above with 𝑓 using adjointness of

the discard and the codiscard, and lax naturality of the discard

morphism.

≤
𝑓

𝑓

≤
𝑓

= 𝑓

We bound the same morphism also from below with 𝑓 using lax

naturality of the copy morphism, and adjointness of the copy with

the cocopy.

≥ 𝑓

≥ 𝑓

= 𝑓

□

Lemma E.12 (From Lemma 4.10). The monoidal category of rela-
tions Rel has ranges. For a relation𝑚 : 𝑋 → 𝐴, its range is given by
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𝑟 ′ : 𝑋 ×𝐴 → 𝑅 and 𝜄 : 𝑅 → 𝑋 ×𝐴, with 𝑅 B {(𝑥, 𝑎) ∈ 𝑋 ×𝐴 : 𝑎 ∈
𝑚(𝑥)}, defined below.

𝑟 ′(𝑥, 𝑎) B
{
{(𝑥, 𝑎)} if 𝑎 ∈𝑚(𝑥)
∅ otherwise

𝜄 (𝑥, 𝑎) B {(𝑥, 𝑎)}

Proof. The relation 𝑟 ′ is deterministic and the relation 𝜄 is de-

terministic and total by definition. We check the first condition for

ranges.

𝑚 ⊳ 𝑟 (𝑥)
= {(𝑥 ′, 𝑎′, 𝑎) : 𝑎 ∈𝑚(𝑥) ∧ (𝑥 ′, 𝑎′) ∈ 𝑟 (𝑥, 𝑎)}
= {(𝑥, 𝑎, 𝑎) : 𝑎 ∈𝑚(𝑥)}
=𝑚 ⊳ id (𝑥)

Similarly, we check the last condition. Suppose that𝑚 ⊳ 𝑐 =𝑚 ⊳ 𝑑 .

Then, for all 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 ,

{(𝑏, 𝑎) ∈ 𝐴 × 𝐵 : 𝑎 ∈𝑚(𝑥) ∧ 𝑏 ∈ 𝑐 (𝑦, 𝑥, 𝑎)}
= {(𝑏, 𝑎) ∈ 𝐴 × 𝐵 : 𝑎 ∈𝑚(𝑥) ∧ 𝑏 ∈ 𝑑 (𝑦, 𝑥, 𝑎)} ,

which implies that, for all 𝑥 ∈ 𝑋 ,

{(𝑥, 𝑎, 𝑏) : (𝑎, 𝑥) ∈ 𝑅 ∧ 𝑏 ∈ 𝑐 (𝑦, 𝑥, 𝑎)}
= {(𝑥, 𝑎, 𝑏) : (𝑎, 𝑥) ∈ 𝑅 ∧ 𝑏 ∈ 𝑐 (𝑦, 𝑥, 𝑎)} .

This corresponds to saying that (id × 𝜄) # 𝑐 = (id × 𝜄) # 𝑑 . □

Lemma E.13. The monoidal category Par of partial functions has
quasi-total conditionals (Figure 5).

Proof. All morphisms in Par are deterministic. We use this to

show that there are conditionals.

𝑓

𝑓

𝑐

= 𝑓

= 𝑓

These conditionals are quasi-total because every morphism is de-

terministic and, in particular, 𝑐 # also is so. □

Lemma E.14 (From Lemma 4.12). The monoidal category of partial
functions Par has ranges. For a partial function𝑚 : 𝑋 → 𝐴, its range
is given by 𝑟 ′ : 𝑋 × 𝐴 → 𝑅 and 𝜄 : 𝑅 → 𝑋 × 𝐴, with 𝑅 B {(𝑥, 𝑎) ∈
𝑋 ×𝐴 : 𝑎 =𝑚(𝑥)}, defined below.

𝑟 ′(𝑥, 𝑎) B
{
(𝑥, 𝑎) if 𝑎 =𝑚(𝑥)
⊥ otherwise

𝜄 (𝑥, 𝑎) B (𝑥, 𝑎)

Proof. The ranges are defined as in Rel. Since Par is a subcate-
gory of Rel, these ranges also satisfy the same properties. □

Lemma E.15 (From Lemma 4.14). The monoidal category ParStoch
has quasi-total conditionals and ranges.

Proof. The existence of quasi-total conditionals was shown by

Di Lavore and Román [DLR23]. For a morphism 𝑓 : 𝑋 → 𝐴 ⊗ 𝐵 in

ParStoch a quasi-total conditional 𝑐 : 𝑋 ⊗ 𝐴 → 𝐵 of 𝑓 is defined as

𝑐 (𝑏 | 𝑥, 𝑎) = 𝑓 (𝑎, 𝑏 | 𝑥)∑
𝑏′∈𝐵 𝑓 (𝑎, 𝑏 ′ | 𝑥) ; 𝑐 (⊥ | 𝑥, 𝑎) = 0

whenever defined, and by 𝑐 (𝑏 | 𝑥, 𝑎) = 0 and 𝑐 (⊥ | 𝑥, 𝑎) = 1

otherwise. See the next Lemma E.16, for the properties of ranges.

□

Lemma E.16 (From Lemma 4.14). The monoidal category of partial
stochastic functions kl(D≤1) has ranges. For a partial stochastic func-
tion𝑚 : 𝑋 → 𝐴, its range is given by the deterministic morphisms
𝑟 ′ : 𝑋 ×𝐴 → 𝑅 and 𝜄 : 𝑅 → 𝑋 ×𝐴, with 𝑅 B {(𝑥, 𝑎) ∈ 𝑋 ×𝐴 : 𝑚(𝑎 |
𝑥) > 0}, defined as

𝑟 ′(𝑥, 𝑎) B
{
(𝑥, 𝑎) if𝑚(𝑎 | 𝑥) > 0

⊥ otherwise
𝜄 (𝑥, 𝑎) B (𝑥, 𝑎)

Proof. The morphism 𝑟 ′ is deterministic and the morphism 𝜄 is

deterministic and total by definition. We check the first condition

for ranges in the case in which the computation succeeds and the

one in which it fails.

𝑚 ⊳ 𝑟 (𝑥 ′, 𝑎′, 𝑎 | 𝑥)
=𝑚(𝑎 | 𝑥) · 𝑟 (𝑥 ′, 𝑎′ | 𝑥, 𝑎)
=𝑚 ⊳ id (𝑥 ′, 𝑎′, 𝑎 | 𝑥)

𝑚 ⊳ 𝑟 (⊥ | 𝑥)

=𝑚(⊥ | 𝑥) +
∑
𝑎∈𝐴

𝑚(𝑎 | 𝑥) · 𝑟 (⊥ | 𝑥, 𝑎)

=𝑚 ⊳ id (⊥ | 𝑥)

Similarly, we check the last condition. Suppose that𝑚 ⊳ 𝑐 =𝑚 ⊳ 𝑑 .

Then, for all 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 , 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵,

𝑚(𝑎 | 𝑥) · 𝑐 (𝑏 | 𝑦, 𝑥, 𝑎) =𝑚(𝑎 | 𝑥) · 𝑑 (𝑏 | 𝑦, 𝑥, 𝑎) ,
which implies that, if𝑚(𝑎 | 𝑥) > 0, then 𝑐 (𝑏 | 𝑦, 𝑥, 𝑎) = 𝑑 (𝑏 | 𝑦, 𝑥, 𝑎).
This means that, if (𝑥, 𝑎) ∈ 𝑅, then 𝑐 (𝑏 | 𝑦, 𝑥, 𝑎) = 𝑑 (𝑏 | 𝑦, 𝑥, 𝑎). We

can conclude that (id × 𝜄) # 𝑐 = (id × 𝜄) # 𝑑 . □

F EFFECTFUL MEALY MACHINES
Proof sketch of Proposition 5.3. Composition and identities

are defined as in the usual state construction [KSW02]. Thus, they

are associative and unital, makingMealy(V, P,C) a category.Whisker-

ing is also defined as in the monoidal case and it is easy to check that

it gives the monoidal actions required for the effectful structure. □

Proof sketch of Proposition 5.6. The trace coincideswith the

functor given by the universal property ofMealy(V, P,C). This is
the free category with delayed feedback [DLGR

+
23, Section 5.2]

and Stream(P,C) have delayed feedback by Proposition 3.7. In the

monoidal case, the trace preserves the monoidal structure. For the

same reasons, in the effectful case, it preserves whiskering. Then,

the trace is an effectful functor. □

Proof sketch of Proposition 5.9. Two morphisms of effect-

ful Mealy machines 𝛼 : (𝑈 , 𝑖, 𝑓 ) ⇒ (𝑉 , 𝑗, 𝑔) and 𝛽 : (𝑉 , 𝑗, 𝑔) ⇒
(𝑊,𝑘,ℎ) can be composed sequentially to obtain 𝛼 # 𝛽 : (𝑈 , 𝑖, 𝑓 ) ⇒
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(𝑊,𝑘,ℎ). This composition clearly satisfies the equations in Fig-

ure 10. Twomorphisms,𝛼 : (𝑈0, 𝑖0, 𝑓0) ⇒ (𝑉0, 𝑗0, 𝑔0) and 𝛽 : (𝑈1, 𝑖1, 𝑓1) ⇒
(𝑉1, 𝑗1, 𝑔1), can be composed in parallel into a morphism, (𝛼 ⊗
𝛽) : (𝑈0, 𝑖0, 𝑓0) # (𝑈1, 𝑖1, 𝑓1) ⇒ (𝑉0, 𝑗0, 𝑔0) # (𝑉1, 𝑗1, 𝑔1). We can check

that tensoring forms a homomorphism of transition systems.

𝑓 0(s0,x){ s1,y
𝑓 1(u0,y){ u1,z
let t1 = 𝛼(s1)
let v1 = 𝛽(u1)

 =

let t0 = 𝛼(s0)
let v0 = 𝛽(u0)
𝑔0(t0,x){ t1,y
𝑔1(v0,y){ v1,z


□

Proof of Theorem 5.10. We prove that the existence of a mor-

phism 𝛼 : (𝑈 , 𝑖, 𝑓 ) → (𝑉 , 𝑗, 𝑔) implies the equality 𝛼 · J𝑔K = J𝑓 K. We

proceed by coinduction, noting that

(𝛼 · J𝑔K)◦ = (𝛼 ⊗ id) # 𝑔 = 𝑓 # (𝛼 ⊗ id) = J𝑓 K◦ # (𝛼 ⊗ id);

and that then, by coinductive hypothesis, 𝛼 · (𝛼 · J𝑔K)+ = 𝛼 · J𝑔K =
J𝑓 K = J𝑓 K+. In particular, this implies that tr(𝑈 , 𝑖, 𝑓 ) = tr(𝑉 , 𝑗, 𝑔)
whenever 𝑗 = 𝑖 # 𝛼 .

We have shown that the existence of a morphism between two

Mealy machines implies trace equivalence; we conclude that the

existence of a zig-zag of morphisms also implies trace equivalence,

by transitivity of equality in Stream(P,C). □

F.1 T-Mealy machines
Definition F.1. Let T : Set → Set be a commutative monad and

𝐴, 𝐵 two sets. A T-Mealy machine with inputs in 𝐴 and outputs in

𝐵 is a triple (𝑈 , 𝑖, 𝑓 ) consisting of a set 𝑈 , a function 𝑖 : 𝐼 → T(𝑈 )
and a function 𝑓 : 𝑈 ×𝐴 → T(𝑈 × 𝐵).

The set 𝑈 represents the state space, 𝑖 the initial state and 𝑓 the

effectful transition function. We will often write (𝑈 , 𝑖, 𝑓 ) : 𝐴 → 𝐵

to mean that inputs are in 𝐴 and outputs in 𝐵.

Definition F.2. Let (𝑈 , 𝑖, 𝑓 ) and (𝑉 , 𝑗, 𝑔) be two T-Mealy machines

with inputs in 𝐴 and outputs in 𝐵. A morphism of Mealy machines

𝛼 : (𝑈 , 𝑖, 𝑓 ) ⇒ (𝑉 , 𝑗, 𝑔) is a function 𝛼 : 𝑈 → 𝑉 such that the

following two diagrams commute.

𝐼
𝑖 //

𝑗   

T(𝑈 )

T(𝛼)
��

T(𝑉 )

𝑈 ×𝐴

𝛼⊗𝑖𝑑𝐴
��

𝑓 // T(𝑈 × 𝐵)

T(𝛼⊗𝑖𝑑𝐵 )
��

𝑉 ×𝐴
𝑔
// T(𝑉 × 𝐵)

Themachines (𝑈 , 𝑖, 𝑓 ) and (𝑉 , 𝑗, 𝑔) are isomorphic, written (𝑈 , 𝑖, 𝑓 ) �
(𝑉 , 𝑗, 𝑔) if there exists an isomorphism 𝛼 : (𝑈 , 𝑖, 𝑓 ) ⇒ (𝑉 , 𝑗, 𝑔).

Proof of Proposition 5.17. First recall that, since T preserves

weak pullbacks, then 𝑖 ′(•) and 𝑗 ′(•) are bisimilar in the sense

of [Rut00] if and only if there exists a cospan of coalgebras mor-

phism

𝑋
𝛼 //

𝑝

��

𝑍

𝑟

��

𝑌
𝛽oo

𝑞

��
T(𝑋 ⊗ 𝐵)𝐴

T(𝛼⊗𝑖𝑑𝐵 )𝐴
// T(𝑍 ⊗ 𝐵)𝐴 T(𝑌 ⊗ 𝐵)𝐴

T(𝛽⊗𝑖𝑑𝐵 )𝐴
oo

such that 𝛼 (𝑖 ′(•)) = 𝛽 ( 𝑗 ′(•)). If this is the case, one takes 𝑘

to be 𝜂𝑍 (𝛼 (𝑖 ′(•))) and concludes by observing that (𝑈 , 𝑖, 𝑓 ) 𝛼⇒

(𝑊,𝑘,ℎ)
𝛽
⇐ (𝑉 , 𝑗, 𝑔) is a cospan of morphisms of Mealy machines.

For the other direction, assume to have a cospan (𝑈 , 𝑖, 𝑓 ) 𝛼⇒

(𝑊,𝑘,ℎ)
𝛽
⇐ (𝑉 , 𝑗, 𝑔). Since 𝑖 ′ # 𝜂𝑋 then, by naturality of 𝜂, also 𝑘

should factor as 𝑘 ′ # 𝜂𝑍 . In particular 𝑘 ′ should be equal to both

𝑖 ′ # 𝛼 and 𝑗 ′ # 𝛽 . Thus one has a cospan of coalgebra morphism as

above. □
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