
Evidential Decision Theory via Partial Markov Categories

Elena Di Lavore and Mario Román

Tallinn University of Technology, Tallinn, Estonia.
elendi@ttu.ee, mroman@ttu.ee

Abstract

We introduce the algebraic structure of partial Markov categories and we use it to encode
a synthetic formulation of Evidential Decision Theory. The theory is implemented in the
monoidal Kleisli category of the finitary subdistribution monad.

1 Introduction

Evidential Decision Theory is a paradigm in decision theory that focuses on observational
evidence: given a decision problem, Evidential Decision Theory prescribes the action that we
would observe to have done in the best possible outcome [Ahm14]. This contrasts with Causal
Decision Theory, which prescribes the action that causes the best possible outcome [GH78]. In
the framework of Evidential Decision Theory, no direct causal connection is required for the
action to affect the outcome: it suffices that the observation of the action alters the conditional
probability of the outcome via Bayesian update [YS17].

However, formalizing Evidential Decision Theory makes for a subtle art: different decision
theories disagree in many well-studied scenarios [GH78], and solutions are sensitive to slight
modifications in the problem statement. In order to clarify these disagreements, we need both an
intuitive mathematical syntax to model decision problems, and a formal algorithmic procedure
to solve them according to the prescriptions of the theory. In this paper, we answer the following
question:

What is a minimalistic mathematical framework that can formulate
and solve decision problems following Evidential Decision Theory?

Markov categories allow a synthetic approach to probability theory in which we can formulate
notions of conditioning, independence, or Bayesian network [Fon13, CJ19, Fri20]. Our main
observation is that this framework can be elegantly extended to capture explicit notions of
observation and Bayesian update. The resulting algebraic structure, partial Markov categories,
proves to be a good theoretical framework for Evidential Decision Theory: partial Markov
categories provide both a convenient syntax in terms of string diagrams and a straightforward
translation from these diagrams to a simple probabilistic programming language that computes
the solution to the given decision problem.

Contributions. Our main contribution is an extension of the framework of Markov cate-
gories that can be used to formalize Evidential Decision Theory. We introduce the notion of
partial Markov category, translating the idea of partial Frobenius monoids in discrete cartesian
restriction categories [CGH12, CO89, DLNS21] to the stochastic setting.

Funding. Elena Di Lavore and Mario Román were supported by the ESF funded Estonian IT Academy
research measure (project 2014-2020.4.05.19-0001) and the Estonian Research Council grant PRG1210.

Partial Markov Categories Di Lavore, Román

2 Partial Markov categories

Symmetric monoidal categories are a framework to reason about processes and, in particular,
probabilistic processes. Markov categories are an abstract algebra of probabilistic processes
proposed by Cho and Jacobs and then unified by Fritz [Fri20, CJ19]. The setting of Markov
categories, however, is too restrictive for our aims: it is not possible to encode Bayesian updates
as morphisms in a Markov category (Remark B.3).

Partial cartesian categories, introduced as discrete cartesian restriction categories [CGH12],
are an extension of cartesian categories that allows for the encoding of constraints: a map may
fail if some conditions are not satisfied. Our observation is that a similar extension can be
applied to Markov categories to obtain partial Markov categories. They provide a setting in
which it is possible to (i) constrain, via Bayesian updates; and (ii) reason with stochastic maps.

Definition 2.1. A partial Markov category is a symmetric monoidal category (C,⊗, I) such that
(i) every object X ∈ Cobj has a partial Frobenius monoid (Figure 1) structure (X, δX , εX , µX)
which is uniform, meaning that εX⊗Y = εX⊗εY , εI = id, δX⊗Y = (δX⊗δY)#(idX⊗σX,Y ⊗idY),
δI = id, µX⊗Y = (idX ⊗ σX,Y ⊗ idY) # (µX ⊗ µY), and µI = id; and (ii) every morphism
f : X → Y1 ⊗ Y2 splits both as δ # (id ⊗ (f2 # δY2)) # (g1 ⊗ id) and as δ # ((f1 # δY1)⊗ id) # (id ⊗ g2)
for some f1 : X → Y1, some f2 : X → Y2, some g1 : X ⊗ Y2 → Y1 and some g2 : Y1 ⊗X → Y2.

= =

=

;

= =; ;

= ;= ;

=;

Figure 1: Axioms of a partial Frobenius monoid.

The Bayesian inversion of a stochastic channel g : X → Y with respect to a distribution f
over X is the stochastic channel g†f : Y → X classically defined as in Figure 2, left. Bayesian
inversions can be defined in any partial Markov category. The Bayesian inversion of a morphism
g : X → Y with respect to f : I → X is a morphism g†f : Y → X such that there is a morphism
h : I → Y satisfying the equation (i) in Figure 2, right.

g†f (x|y) =
g(y|x)f(x)∑

x•∈X g(y|x•)f(x•)
;

(i)
=

f

g (ii)
=

f

g

g†
g†

h

Figure 2: Bayesian inversion.

If the Bayesian inversion, g†f , is moreover total (Definition B.5), then the map h is forced
to be f # g, as in equation (ii). For instance, in the category of subdistributions, Kl(D≤1)
(Appendix B.4), which is the main example of partial Markov categories, there always exists a
total Bayesian inversion, even when not all maps are total.

2

Partial Markov Categories Di Lavore, Román

Theorem 2.2 (Bayes’ Theorem in a partial Markov category). An observation induces an
update that follows the formula of Bayesian inversion. In other words, observing a deterministic
y ∈ Y from the prior distribution f : I → X through a channel g : X → Y is the same, up to
scalar, as evaluating the total bayesian inversion of the channel g†f on y.

(i)
=

f

g

f

g

g†f

y y

f

g

g†f

y
(ii)
=

f

g
g†f

y
y

(iii)
=

;

Figure 3: Proof of Bayes’ Theorem.

Proof. We employ string diagrams (Figure 3). Equalities follow from: (i) the definition of
Bayesian inversion, (ii) the partial frobenius axioms, and (iii) determinism of y.

3 Evidential Decision Theory

Our formulation of Evidential Decision Theory starts by constructing a model of the given
decision problem. The model is described as a morphism in a free partial Markov category and
depicted as a string diagram. We give semantics to the model by assigning a subdistribution to
each node in the string diagram. We formulate a question about one of these nodes, a special
node which we colour in grey. The optimal answer to the problem will be the one that, once
observed as the output of this node, maximises the outcome. In this manuscript, we model two
decision problems (see also Appendix A) and explicitly compute their solutions in Appendix C.

3.1 Newcomb’s Problem

An agent confronts two boxes: the box A contains 1e; the box B contains either 1000e or 0e.
A predictor made a prediction and claimed to have left money in B if and only if the agent
will leave A behind. The predictor is perfectly reliable or, in some formulations, reliable with
a very high probability [Noz69, YS17] (Figure 4).

Should the agent take both boxes (“two-boxing”) or just take the B box (“one-boxing”)?

act predict

outcome

x

;
act predict

outcome

Figure 4: Model for the Newcomb problem and observation.

Causal Decision Theory prescribes two-boxing [GH78], but a good predictor would anticipate
this and leave B empty, for a final utility of 1e. Evidential Decision Theory prescribes one-
boxing: if we observe one-boxing, by the premise, we must also observe that the predictor filled
both boxes. In this case, the agent would get 1000e.

3

Partial Markov Categories Di Lavore, Román

Acknowledgements

We thank Siddharth Bhat, Pim de Haan, Miguel Lopez and Ruben Van Belle for discussion,
many helpful suggestions on the first versions of this manuscript and, in particular, for the joint
ongoing work on the applications of partial Markov categories to the study of causal networks.

References

[ACU15] Thorsten Altenkirch, James Chapman, and Tarmo Uustalu. Monads need not be endofunc-
tors. Logical Methods in Computer Science, 11(1), 2015.

[Ahm14] Arif Ahmed. Evidence, Decision and Causality. Cambridge University Press, 2014.

[CG99] Andrea Corradini and Fabio Gadducci. An Algebraic Presentation of Term Graphs, via
GS-Monoidal Categories. Applied Categorical Structures, 7(4):299–331, 1999.

[CGH12] J. Robin B. Cockett, Xiuzhan Guo, and Pieter Hofstra. Range Categories I: General theory.
Theory and Applications of Categories, 26(17):412–452, 2012.

[CJ19] Kenta Cho and Bart Jacobs. Disintegration and Bayesian Inversion via String Diagrams.
Mathematical Structures in Computer Science, pages 1–34, March 2019.

[CO89] Pierre-Louis Curien and Adam Obtulowicz. Partiality, cartesian closedness and toposes.
Inf. Comput., 80(1):50–95, 1989.

[DLNS21] Ivan Di Liberti, Fosco Loregiàn, Chad Nester, and Pawel Sobocinski. Functorial semantics
for partial theories. Proc. ACM Program. Lang., 5(POPL):1–28, 2021.

[FL22] Tobias Fritz and Wendong Liang. Free GS-monoidal categories and free Markov categories.
CoRR, abs/2204.02284, 2022.

[Fon13] Brendan Fong. Causal Theories: A Categorical Perspective on Bayesian Networks. Master’s
Thesis, University of Oxford. ArXiv preprint arXiv:1301.6201, 2013.

[Fox76] Thomas Fox. Coalgebras and Cartesian Categories. Communications in Algebra, 4(7):665–
667, 1976.

[Fri20] Tobias Fritz. A synthetic approach to Markov kernels, conditional independence and theo-
rems on sufficient statistics. Advances in Mathematics, 370:107239, 2020.

[GH78] Allan Gibbard and William L. Harper. Counterfactuals and two kinds of expected utility.
In Ifs, pages 153–190. Springer, 1978.

[HHJW07] Paul Hudak, John Hughes, Simon L. Peyton Jones, and Philip Wadler. A history of Haskell:
being lazy with class. In Barbara G. Ryder and Brent Hailpern, editors, Proceedings of the
Third ACM SIGPLAN History of Programming Languages Conference (HOPL-III), San
Diego, California, USA, 9-10 June 2007, pages 1–55. ACM, 2007.

[HKSY17] Chris Heunen, Ohad Kammar, Sam Staton, and Hongseok Yang. A convenient category
for higher-order probability theory. In 2017 32nd Annual ACM/IEEE Symposium on Logic
in Computer Science (LICS), pages 1–12. IEEE, 2017.

[Jac19] Bart Jacobs. The mathematics of changing one’s mind, via jeffrey’s or via pearl’s update
rule. J. Artif. Intell. Res., 65:783–806, 2019.

[Noz69] Robert Nozick. Newcomb’s Problem and Two Principles of Choice. In Essays in honor of
Carl G. Hempel, pages 114–146. Springer, 1969.

[Pea09] Judea Pearl. Causality. Cambridge university press, 2009.

[Ste21] Dario Maximilian Stein. Structural foundations for probabilistic programming languages.
University of Oxford, 2021.

[SWY+16] Sam Staton, Frank Wood, Hongseok Yang, Chris Heunen, and Ohad Kammar. Semantics
for probabilistic programming: higher-order functions, continuous distributions, and soft
constraints. In 2016 31st annual acm/ieee symposium on logic in computer science (lics),
pages 1–10. IEEE, 2016.

4

Partial Markov Categories Di Lavore, Román

[YS17] Eliezer Yudkowsky and Nate Soares. Functional Decision Theory: a New Theory of Instru-
mental Rationality. ArXiv preprint arXiv:1710.05060, 2017.

5

Partial Markov Categories Di Lavore, Román

A Examples in Evidential Decision Theory

A.1 Death in Damascus

In a completely deterministic world, Death collects people on a designated place on a designated
day. If the chosen people is not there to confront Death, they survive (which represents a great
utility, say, 1000u).

The legend says that a merchant found Death in Damascus, and Death promised to come
for him in the next day. The merchant thought of fleeing to Aleppo, trying to escape death; but
that came with a cost (a small negative utility, say, -1u). However, Death is a perfect predictor,
so the merchant found Death in Aleppo. Should the merchant have fled to Aleppo?

world

flee death

outcome

x;

world

flee death

outcome

Figure 5: Death in Damascus, deterministic version.

Consider the model in Figure 5. Evidential Decision Theory prescribes just waiting for
Death in Damascus. In this model, if Death is really omniscient, it will be impossible to avoid
it. It only makes sense to avoid the small negative utility of a last trip to Aleppo, accepting 0u.

A.2 Cheating Death in Damascus with a random oracle

The reader may observe this problem could have been also modelled in a way similar to New-
comb’s. The only difference is that, in this case, the predictor is always adversarial. How could
we cheat against such a predictor? A possible answer is to allow ourselves to use a true random
oracle: if we were to decide whether to flee to Damascus or Aleppo based on a random oracle
that even Death cannot predict, we would still have a chance of cheating Death.

In this second formulation of the problem (Figure 6), we can use a fair coin that Death
cannot predict. What is the strategy the agent should follow?

;

world

strategy f

death

coin

flee

outcome

world

strategy

death

coin

flee

outcome

Figure 6: Cheating Death in Damascus with a random coin.

Evidential Decision Theory now prescribes that the agent should use the coin to try to cheat
Death. This is no longer a lost cause: the expected utility is now 445.5u, see Appendix C.2.

6

Partial Markov Categories Di Lavore, Román

B Monoidal Categories

B.1 Cartesian monoidal categories

A symmetric monoidal category (C,⊗, I) is said to be cartesian monoidal whenever the tensor
A ⊗ B of two objects A and B is their categorical product, and associators and unitors are
derived from the universal property of the categorical product.

A well-known characterization of cartesian monoidal categories is Fox’s theorem [Fox76],
which states that a symmetric monoidal category is cartesian if and only if every object has
a comonoid structure that is natural and coherent with the monoidal structure. We present a
similar characterization: cartesian monoidal categories are monoidal categories where all joint
maps split.

Proposition B.1. A symmetric monoidal category (C,⊗, I) is cartesian if and only if (i) every
object X ∈ Cobj has a uniform comonoid structure (X, εX , δX), meaning that εX⊗Y = εX ⊗ εY ,
εI = id and that δX⊗Y = δX ⊗ δY , δI = id; (ii) every morphism f : X → I is equal to εX ;
and (iii) every morphism f : X → Y1 ⊗ Y2 splits as δX # (f1 ⊗ f2) for some f1 : X → Y1 and
f2 : X → Y2.

f
f1 f2

= ;
f =

Figure 7: Cartesian category

Proof. We will show that the comonoid structure is natural. Firstly, we know from the premises
that the discard is natural: that is, f # εY = εX for each f : X → Y . We now show that every
time we split f : X → Y1⊗Y2 into f1 and f2, we are forced to admit that f1 = f #(idY1

⊗εY2
) and

that f2 = f # (εY1
⊗ idY2

). This implies in turn that copying must be a natural transformation:
given any g : X → Y , we know that f = g # δY must split into f = δX # (g ⊗ g).

By Fox’s theorem, that means that the category is cartesian.

B.2 Markov categories

Markov categories [Fri20] have been defined as categories with a uniform comonoid structure
where the counit is moreover natural. The Markov categories better suited for probability
theory are those that have conditionals. We decide to call Markov categories only to those
with conditionals. The purpose of this slight change of convention is to make the parallel with
cartesian categories more explicit: Markov categories are just cartesian categories with a weaker
splitting pattern.

Definition B.2. A Markov category is a symmetric monoidal category (C,⊗, I) such that (i)
every object X ∈ Cobj has a uniform comonoid structure (X, δX , εX), meaning that εX⊗Y =
εX ⊗ εY , εI = id and that δX⊗Y = (δX ⊗ δY) # (idX ⊗ σX,Y ⊗ idY), δI = id; (ii) every
morphism f : X → I is equal to εX ; and (iii) every morphism f : X → Y1 ⊗ Y2 splits both as
δ # (id ⊗ (f2 # δY2

)) # (g1 ⊗ id) and as δ # ((f1 # δY1
) ⊗ id) # (id ⊗ g2) for some f1 : X → Y1, some

f2 : X → Y2, some g1 : X ⊗ Y2 → Y1 and some g2 : Y1 ⊗X → Y2.

In this situation, g2 : Y1 ⊗X → Y2 is said to be the conditional of f with respect to Y1 and
g1 : X ⊗ Y2 → Y1 is said to be the conditional of f with respect to Y2.

7

Partial Markov Categories Di Lavore, Román

f

f1

g2

= ;
f ==

f2

g1

Figure 8: Markov category with conditionals.

Remark B.3. Performing a Bayesian update on a model means comparing an observation with
a prediction in order to update the model that produced the prediction. In a monoidal category,
a process that simply checks whether two inputs are equal must be of type A ⊗ A → I. The
only possible map of this type in a Markov category is the trivial one and thus this comparison
is not possible. This is what motivates the passage to partial Markov categories.

B.3 Copy-Discard categories and partial Markov categories

Copy-Discard categories is the name we give to any category where each object has a uniform
comonoid structure. The comultiplication is what we call the “copy” and the counit is what we
call the “discard”: they have the same operations as cartesian monoidal categories, but neither
is assumed to be natural. Copy-Discard categories have been called GS-monoidal categories
when they have been applied to graph rewriting [CG99] (see [FL22, Remark 2.2] for a history
of the term).

Definition B.4. A Copy-Discard category is a symmetric monoidal category C where every ob-
ject X ∈ C has a cocommutative comonoid structure (X, δX , εX) and this structure is uniform:
δX⊗Y = (δX ⊗ δY) # (idX ⊗ σX,Y ⊗ idY), δI = id, εX⊗Y = εX ⊗ εY , and εI = id.

= ; = ; = .

Figure 9: Axioms of a cocommutative comonoid.

Copying an discarding are not required to be natural: this means that only some of the
morphisms can be copied or discarded. We call these deterministic and total, respectively.

Definition B.5. A morphism f : X → Y in a Copy-Discard category is called deterministic if
f # δY = δX # (f ⊗ f); and total if f # εY = εX .

=f

f f

f =; .

Figure 10: Deterministic and total morphisms.

8

Partial Markov Categories Di Lavore, Román

Probability theory requires more structure than the one given by Copy-Discard monoidal
categories. Explicitly, it is usually assumed that a category that encodes a theory of probability
will have a notion of conditional [Fri20, CJ19].

Definition B.6. A Copy-Discard category C has conditionals if, for every morphism f : X →
Y1 ⊗ Y2, there are g1 : X ⊗ Y2 → Y1, f1 : X → Y1, g2 : Y1 ⊗X → Y2 and f2 : X → Y2 such that
f = δ # (id ⊗ (f2 # δY2

)) # (g1 ⊗ id) = δ # ((f1 # δY1
)⊗ id) # (id ⊗ g2), i.e. they satisfy the equations

on the left in Figure 8.

Evidential probability theory can be encoded using comparators: a comparator declares that
some constraint – usually an observation, on which we condition – needs to be satisfied in a
probabilistic process.

Definition B.7. A Copy-Discard category C has comparators if every object X has a morphism
µX : X ⊗X → X that is uniform, commutative, associative and satisfies the Frobenius axioms
with the Copy-Discard structure, as in Figure 1.

Definition B.8. A Markov category is a Copy-Discard category with conditionals, in which
the counit is natural. A partial Markov category is a Copy-Discard category with conditionals
and comparators.

Proposition B.9. Bayesian inversions are just a particular case of conditionals. In a Copy-
Discard category with conditionals, all Bayesian inversions exist.

Proof. This can be easily checked by applying the axiom of conditionals to the morphism defined
by f # δX # (g ⊗ id).

B.4 Subdistributions

A subdistribution σ over X is a distribution whose total probability is allowed to be less than
1. In other words, it is a distribution over X + 1. This means that a morphism f : X → Y
in Kl(D≤1) represents a stochastic channel that has some probability of failure. We interpret
the value of f(x) in y ∈ Y as the probability of y given x according to the channel f , and we
indicate it as f(y | x).

The symmetric monoidal Kleisli category of the finitary subdistribution monoidal monad,
D≤1, is the main example for partial Markov categories. It is the semantic universe where we
compute the solutions to the decision problems in Section 3 and Appendix A.

Definition B.10. The finitary subdistribution monad D≤1 : Set→ Set is defined on a sets by

D≤1(X) =
{
σ : X → [0, 1]

∣∣∣ {x ∈ X | σ(x) > 0} is finite, and
∑
x∈X

σ(x) ≤ 1
}

;

and on functions, f : X → Y , by

D≤1(f)(y | σ) =
∑

f(x)=y

σ(x),

for any subdistribution σ ∈ D≤1(X) and any element y ∈ Y .
The monad multiplication µX : D≤1(D≤1(X))→ D≤1(X) is defined by

µX(x | p) =
∑

σ∈D≤1(X)

p(σ) · σ(x);

9

Partial Markov Categories Di Lavore, Román

the monad unit ηX : X → D≤1(X) is defined by ηX(x | x′) = dx′(x), where dx ∈ D(X) is the
Dirac distribution that assigns probability 1 to x and 0 to everything else.

Remark B.11. The fact that D≤1 is a functor and a monad can be seen by the fact that there
is a distributive law between the Maybe monad (− + 1) with the finitary Distribution monad
D. Their composition is the finitary subdistribution monad D≤1 = D(−+ 1). The distributive
law λ : D(−) + 1 → D(−+ 1) is defined by λX(σ) = σ∗ and λX(∗) = d∗, where σ ∈ D(X) and
σ∗ is σ extended to X + 1 by σ(∗) = 0.

We show that Kl(D≤1) is a partial Markov category.

Proposition B.12. The monoidal Kleisli category of the finitary subdistribution commutative
monad, Kl(D≤1), is a partial Markov category.

Proof. Every partial function can be lifted to a subdistribution. In fact, there is an inclusion
monoidal functor ι : Kl(−+ 1)→ Kl(D≤1). Every set can be endowed with a partial Frobenius
monoid structure, (X, εX , δX , µX), given by the partial functions ε(x) = ∗, δX(x) = (x, x) and

µ(x, x′) =

{
x if x = x′

∗ otherwise.

This structure can then be lifted to the category of subdistributions.
We now check that Kl(D≤1) satisfies the existence of conditionals. Let f : X → Y1 ⊗ Y2 be

any morphism. We will split it as f = δX # (id ⊗ (f2 # δY2
)) # (g1 ⊗ id) for some g1 and f2. We

pick f2 : X → Y2 to be

f2(y2 | x) =
∑
y∈Y1

f(y, y2 | x), and f2(∗ | x) = f(∗ | x),

and g1 : X ⊗ Y2 → Y1 to be

g1(y1 | x, y2) =


f(y1, y2 | x)∑
y∈Y1

f(y, y2 | x)
if
∑
y∈Y1

f(y, y2 | x) 6= 0,

c if
∑
y∈Y1

f(y, y2 | x) = 0.

This defines a valid conditional split; note that

f(y1, y2 | x) =
f(y1, y2 | x)∑

y∈Y1

f(y, y2 | x)

∑
y∈Y1

f(y, y2 | x) = f2(y2 | x) · g1(y1 | x, y2), and

f(∗ | x) = f2(∗ | x) +
∑
y∈Y2

f2(y | x) · g1(∗ | x, y),

where we used that
∑
y∈Y1

f(y, y2 | x) = 0 implies f(y1, y2 | x) = 0 for each y1 ∈ Y1. The
second conditional split follows a symmetric reasoning.

C Implementation

C.1 Newcomb’s Problem

The following is the model for Newcomb’s Problem. An agent will take action a with an
uninformative prior. A predictor will try to predict it with p, again using an uninformative
prior. We observe that the prediction is correct. Which is the action x that we would like to
observe we have chosen?

10

Partial Markov Categories Di Lavore, Román

newcomb :: Action → Distribution Value

newcomb x = do

a ← act

p ← predict

observe (a == p)

observe (a == x)

return $ outcome a p

act :: Distribution Action

act = Distribution λcase
OneBox → 1 / 2

TwoBox → 1 / 2

predict :: Distribution Action

predict = Distribution λcase
OneBox → 1 / 2

TwoBox → 1 / 2

outcome :: Action → Action → Value

outcome OneBox OneBox = Hundred

outcome OneBox TwoBox = Zero

outcome TwoBox OneBox = HundredOne

outcome TwoBox TwoBox = One

Our program will evaluate argmax newcomb to the answer OneBox.

C.2 Death in Damascus

The following is the model for the “Death in Damascus” problem. We sample a merchant from
the population of the world, and this information is also known by death, who uses it to decide
which city to go to. The merchant throws a coin and chooses whether to flee or to stay following
some strategy. Which is the strategy f that we would like to observe the merchant to have
chosen?

deathInDamascus :: Strategy → Distribution Outcome

deathInDamascus f = do

merchant ← world

cityDeath ← death merchant

coin ← throwCoin

cityMerchant ← return (flee (strategy merchant) coin)

observe (f == strategy merchant)

return $ outcome cityMerchant cityDeath

world :: Distribution Merchant

world = Distribution λcase
FleeingMerchant → 1 / 3

StayingMerchant → 1 / 3

RandomMerchant → 1 / 3

strategy :: Merchant → Strategy

strategy FleeingMerchant = Fleeing

strategy StayingMerchant = Staying

strategy RandomMerchant = Random

11

Partial Markov Categories Di Lavore, Román

throwCoin :: Distribution Coin

throwCoin = Distribution λcase
Heads → 1 / 2

Tails → 1 / 2

flee :: Strategy → Coin → City

flee Fleeing _ = Aleppo

flee Staying _ = Damascus

flee Random Heads = Aleppo

flee Random Tails = Damascus

death :: Merchant → Distribution City

death FleeingMerchant = return Aleppo

death StayingMerchant = return Damascus

death RandomMerchant = Distribution λcase
Damascus → 1 / 2

Aleppo → 1 / 2

outcome :: City → City → Outcome

outcome Aleppo Aleppo = MerchantTravelsAndMeetsDeath

outcome Aleppo Damascus = MerchantTravelsAndEscapes

outcome Damascus Aleppo = MerchantEscapes

outcome Damascus Damascus = MerchantMeetsDeath

C.3 Partial Markov Category of Subdistributions

The following is the library for Evidential reasoning using the partial Markov category of sub-
distributions. The subdistribution monad is better modelled here as a relative monad [ACU15]
from Finitary types to arbitrary types. We employ rebindable syntax in order to be able to
use do-notation [HHJW07] for the Kleisli category of this relative monad.

-- Evidential Decision Theory via Partial Markov Categories.

-- An experimental implementation of a probabilistic programming

-- language with the primitives of a Partial Markov Category.

{-# LANGUAGE GADTs #-}

{-# LANGUAGE RebindableSyntax #-}

{-# LANGUAGE DataKinds #-}

{-# LANGUAGE DeriveAnyClass #-}

{-# LANGUAGE DeriveGeneric #-}

{-# LANGUAGE DerivingStrategies #-}

{-# LANGUAGE LambdaCase #-}

{-# LANGUAGE BlockArguments #-}

module Bayes where

import Prelude hiding ((>>=), (>>), return)

import Data.Finitary

import Data.Ord

12

Partial Markov Categories Di Lavore, Román

import Data.List

import GHC.Generics (Generic)

-- Finitary subdistribution monad.

data Distribution a where

Distribution :: (Finitary a) ⇒ (a → Rational) → Distribution a

-- Properties of a distribution.

total :: Distribution a → Rational

total (Distribution d) = sum [d x | x ← inhabitants]

weight :: Distribution a → a → Rational

weight (Distribution f) a = f a

-- Normalization here is just a pretty printing thing.

normalize :: Distribution a → Distribution a

normalize (Distribution f) = Distribution $ λa →
f a / (total (Distribution f))

instance (Finitary a, Show a) ⇒ Show (Distribution a) where

show d =
let (Distribution f) = normalize d in

unlines [show (f a, a) | a ← inhabitants]

-- Rebindable do notation.

(>>=) :: (Finitary a , Finitary b) ⇒
Distribution a → (a → Distribution b) → Distribution b

(>>=) (Distribution d) f = Distribution $ λb →
sum $ [(d a) ∗ (weight (f a) b) | a ← inhabitants]

(>>) :: (Finitary a, Finitary b) ⇒
Distribution a → Distribution b → Distribution b

(>>) d (Distribution f) = Distribution $ λb → (total d) ∗ (f b)

fail :: Distribution a → String

fail = undefined

ifThenElse :: Bool → a → a → a

ifThenElse True x _ = x

ifThenElse False _ y = y

-- Distribution combinators.

return :: (Finitary a) ⇒ a → Distribution a

return x = Distribution (λy →
case (x == y) of

True → 1

False → 0)

absurd :: (Finitary a) ⇒ Distribution a

absurd = Distribution (λa → 0)

observe :: Bool → Distribution ()

observe True = return ()

13

Partial Markov Categories Di Lavore, Román

observe False = absurd

class (Finitary a) ⇒ Valuable a where

value :: a → Rational

expectedValue :: (Valuable a) ⇒ Distribution a → Rational

expectedValue u =
let (Distribution d) = normalize u in

sum $ fmap (λx → value x ∗ d x) inhabitants

argmax :: (Finitary a, Valuable b) ⇒ (a → Distribution b) → a

argmax f = maximumBy (comparing (expectedValue ◦ f)) inhabitants

D Conclusions

Related work. There exists a vast literature on categorical semantics for probabilistic pro-
gramming languages (see, e.g. [SWY+16, Ste21]). However, while the internal language
of Markov categories has been studied, the notion of partial Markov category and its dia-
grammatic syntax have remained unexplored. In the same way that the structure of partial
Markov categories informs the toy probabilistic programming language that we implement in
this manuscript, we expect that real, higher-order and continuous probabilistic programming
languages can inform the precise categorical structure needed for the study of decision theory.

Further work. Evidential Decision Theory needs careful modelling to solve problems such
as the “Smoking Lesion Problem” [YS17]. It is sometimes claimed that these problems are
better solved by Causal Decision Theory [GH78], which makes use of “interventions” to apply
an action to a node of a causal graph [Pea09, Jac19].

The present manuscript deals only with the case of discrete probability theory. It seems dif-
ficult to find well-behaved partial Markov categories accounting for the case of continuous prob-
ability theory. We conjecture that this can be solved, and that freely generated partial Markov
categories might be enough: by applying Bayes’ theorem, one could rewrite a morphism in a par-
tial Markov category to only use Bayesian inversions. We could then reuse well-known Markov
categories with conditionals that do allow for continuous distributions [HKSY17, Fri20].

14

	Introduction
	Partial Markov categories
	Evidential Decision Theory
	Newcomb's Problem

	Examples in Evidential Decision Theory
	Death in Damascus
	Cheating Death in Damascus with a random oracle

	Monoidal Categories
	Cartesian monoidal categories
	Markov categories
	Copy-Discard categories and partial Markov categories
	Subdistributions

	Implementation
	Newcomb's Problem
	Death in Damascus
	Partial Markov Category of Subdistributions

	Conclusions

