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Abstract. Morphisms in a monoidal category are usually interpreted as processes, and
graphically depicted as square boxes. In practice, we are faced with the problem of
interpreting what non-square boxes ought to represent in terms of the monoidal category
and, more importantly, how should they be composed. Examples of this situation include
lenses or learners. We propose a description of these non-square boxes, which we call
open diagrams, using the monoidal bicategory of profunctors. A graphical coend calculus
can then be used to reason about open diagrams and their compositions.

1. Introduction

1.1. Open Diagrams. Morphisms in monoidal categories are interpreted as processes
with inputs and outputs and generally represented by square boxes. This interpretation,
however, raises the question of how to represent a process that does not consume all the
inputs at the same time or a process that does not produce all the outputs at the same
time. For instance, consider a process that consumes an input, produces an output, then
consumes a second input and ends producing an output. Graphically, we have a clear idea
of how this process should be represented, even if it is not a morphism in the category.

A

X Y

B

Figure 1. A process with a non-standard shape. The input A is taken
at the beginning, then the output X is produced, strictly after that, the
input Y is taken; finally, the output B is produced.

Reasoning graphically, it seems clear, for instance, that we should be able to plug a
morphism connecting the first output to the second input inside this process and get back
an actual morphism of the category.

A B

f

Figure 2. It is possible to plug a morphism f : X → Y inside the
previous process (Figure 1), and, importantly, get back a morphism
A→ B.

The particular shape depicted above has been extensively studied by [Ril18] under the
name of (monoidal) optic; it can be also called a monoidal lens; and it has applications
in bidirectional data accessing [PGW17, BG18, Kme18] or compositional game theory
[GHWZ18]. A multi-legged generalization has appeared also in quantum circuit design
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[CDP08] and quantum causality [KU17] as a notational convention, see [Rom20]. It can be
shown that boxes of that particular shape should correspond to elements of a suitable coend
(Figure 3, see also §1.2 and [Mil17, Ril18]). The intuition for this coend representation is
to first consider a tuple of morphisms, and then quotient out by the equivalence relation
generated by sliding morphisms along connected wires.

f gA
X Y

B ∼ f gA
X Y

B

Figure 3. A box of this shape is meant to represent a pair of morphisms
in a monoidal category quotiented out by ”sliding a morphism” over the
upper wire.

It has remained unclear, however, how this process should be carried in full generality
and if it was in solid ground. Are we being formal when we use these open or incomplete
diagrams? What happens with all the other possible shapes that one would want to
consider in a monoidal category? In principle, they are not usual squares. For instance,
the second of the shapes in Figure 4 has three inputs and two outputs, but the first input
cannot affect the last output; and the last input cannot affect the first output.1

gA X Y Bf f

g

h

Figure 4. Some other shapes for boxes in a monoidal category.

This text presents the idea that incomplete diagrams should be interpreted as valid
diagrams in the monoidal bicategory of profunctors; and that compositions of incomplete
diagrams correspond to reductions that employ the monoidal bicategory structure. At the
same time, this gives a graphical presentation of coend calculus.

1.2. Coend calculus. Coends are particular cases of colimits and coend calculus is a
practical formalism that uses Yoneda reductions to describe isomorphisms between them.
Their dual counterparts are ends, and formalisms for both interact nicely in a (Co)End
calculus [Lor19].

Definition 1.1. The coend
∫ X∈C

P (X,X) of a profunctor P : Cop × C → Set is the
coequalizer of the action of morphisms on both arguments of the profunctor.∫ X∈C

P (X,X) ∼= coeq

( ⊔
f : B→A P (A,B)

⊔
X∈C P (X,X)

)
.

An element of the coend is an equivalence class of pairs [X,x ∈ P (X,X)] under the
equivalence relation generated by [X,P (f,−)(z)] ∼ [Y, P (−, f)(z)] for each f : Y → X.

1This particular shape comes from a question by Nathaniel Virgo on categorytheory.zulipchat.com.
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Our main idea is to use these equivalence relations to deal with the quotienting arising
in non-square monoidal boxes.

f gA
X Y

B ∼ f gA
X Y

B

∫ M

C(A,M ⊗X)×C(M ⊗ Y,B).

Figure 5. We can go back to the previous example (Figure 3) to check
how it coincides with the quotienting arising from the dinaturality of a
coend.

1.3. Contributions. Our first contribution is a graphical calculus of shapes of open di-
agrams (§2), with semantics on the monoidal bicategory of profunctors, and with an em-
phasis on representing monoidal structures. We show how to compose and simplify shapes
(§3). Our second contribution is a graphical calculus with open diagrams, in terms of the
category of pointed profunctors, and hinting at a pseudofunctorial analogue of functor
boxes [Mel06] (§4).

As examples, we recast the multiple ways of composing monoidal lenses and other coend
constructions on the literature on optics (§2.3). We study categories with feedback (§2.4)
and learners (§8.4).

2. Shapes of Open Diagrams

In the same sense that morphisms sharing the same domain and codomain are collected
into an hom-set; open diagrams sharing the same shape will be collected into a set. Our
first step is to provide a graphical calculus for these shapes and, at the same time, an
interpretation that assigns a set to each shape (Figure 6).

A BX Y ∼=
∫ M,N

C(A,M ⊗X ⊗N)×C(M ⊗ Y ⊗N,B),

I0

I1
O1

O2
I2

∼=
∫ M,N

C(I0,M ⊗N)×C(I1 ⊗M,O1)×C(N ⊗ I2, O2).

Figure 6. The shapes of Figure 4, interpreted as sets.

2.1. Inputs, outputs, junctions and forks. Shapes will be interpreted in Prof , the
monoidal bicategory of profunctors. Its 0-cells are small categories (A,B,C, . . . ); its 1-cells
from A to B are profunctors Aop ×B→ Set; and its 2-cells are natural transformations
(see [Lor19, §5]). Two profunctors P : Aop ×B → Set and Q : Bop ×C → Set compose
into a profunctor (P �Q) : Aop ×C→ Set given by

(P �Q)(A,C) :=

∫ B∈B
P (A,B)×Q(B,C).
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The monoidal product is the cartesian product of categories, two profunctors P1 : Aop
1 ×

B1 → Set and P2 : Aop
2 × B2 → Set can be joint into the profunctor (P1 ⊗ P2) : (A1 ×

A2)op × (B1 ×B2)→ Set defined by

(P1 ⊗ P2)(A1, A2, B1, B2) := P1(A1, B1)× P2(A2, B2).

The string diagrammatic calculus for monoidal bicategories has been studied by Bartlett
[Bar14] expanding on a strictification result by Schommer-Pries [SP11]. It is similar to the
graphical calculus of monoidal categories, with the caveat that deformations correspond
to invertible 2-cells instead of equalities. For instance, arrows between diagrams on this
text will denote natural transformations, which are 2-cells of the bicategorical structure
of profunctors.

Definition 2.1 (Input and output ports). Every object A ∈ C determines two profunc-
tors ( A ) := C(A,−) : 1op × C → Set and ( A ) := C(−, A) : Cop × 1 → Set via its
contravariant and covariant Yoneda embeddings.

Definition 2.2 (Junctions and forks). Every monoidal category C has a canonical pseu-
domonoid structure on the monoidal bicategory Prof given by ( ) := C(− ⊗ −,−)
and ( ) := C(I,−), and also a canonical pseudocomonoid structure given by ( ) :=
C(−,−⊗−) and ( ) := C(−, I).

Proposition 2.3. By definition, ( I ) ∼= ( ) and ( I ) ∼= ( ); moreover,

A

B

∼= A⊗B
A

B

∼= A⊗B

In general, Yoneda embeddings are pseudofunctorial (see Proposition 8.3).

2.2. Copying and discarding. Shapes define sets in terms of coends, making them
less practical for direct manipulation. However, shapes can be reduced to more familiar
descriptions in some particular cases. For instance, if C is cartesian monoidal, the shape
of Figure 7 reduces to a pair of morphisms C(I0×I1, O1) and C(I0×I2, O2). This justifies
our previous intuition, back in Figure 4, that the input I1 should not be able to affect O2,
while the input I2 should not be able to affect O1.

I0

I1
O1

O2
I2

∼= I0

I1
O1

O2
I2

∼=
I0

I1
O1

O2
I2

I0

Figure 7. Simplifying a diagram.

Our second step is to justify some reductions like these in the cases of cartesian, co-
cartesian and symmetric monoidal categories. Every object of the category of profunctors
has already a canonical pseudocomonoid structure lifted from Cat which is given by
( ) := C(−0,−1)×C(−0,−2) and ( ) := 1, and also a pseudomonoid structure given by
( ) := C(−1,−0) ×C(−2,−0), and ( ) := 1. These two structures “copy and discard”
representable and corepresentable functors, respectively (see Proposition 8.5).

Proposition 2.4 (Cartesian and cocartesian). A monoidal category is cartesian if and
only if ( ) ∼= ( ) and ( ) ∼= ( ), i.e. the monoidal structure coincides with the canonical
one. Dually, a monoidal category is cocartesian if and only if ( ) ∼= ( ) and ( ) ∼= ( ).
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Proof. The natural isomorphism C(X,Y ⊗Z) ∼= C(X,Y )×C(X,Z) is precisely the univer-
sal property of the product; a similar reasoning holds for initial objects, terminal objects
and coproducts. �

Proposition 2.5 (Symmetric monoidal). If a monoidal category C is symmetric then its
symmetric pseudomonoid structure can be lifted from Cat to Prof . We have σ : ( ) ∼=
( ) and σ∗ : ( ) ∼= ( ), dual 2-cells in the bicategory Prof that commute with unitors
and associators (see also Proposition 8.4).

2.3. Example: Lenses. Profunctor optics and lenses have been extensively studied in
functional programming [Kme18, Mil17, PGW17, BG18] for bidirectional data accessing.
The theory of optics uses coend calculus both to describe how optics compose and how
to reduce them in sufficiently well-behaved cases to tuples of morphisms. Categories of
monoidal optics and the informal interpretation of optics as diagrams with holes have
been studied in depth [Ril18]. We will study lenses from the perspective of the graphical
calculus of Prof . This presents a new way of describing reductions with coend calculus
that also formalizes the intuition of lenses as diagrams with holes.

Definition 2.6. A monoidal lens [Mil17, PGW17, Ril18, “Optic” in Definition 2.0.1] from
A,B ∈ C to X,Y ∈ C is an element of the following set.

A

X Y

B =

∫ M

C(A,M ⊗X)×C(M ⊗ Y,B)

For applications [FJ19, GHWZ18], the most popular case of monoidal lenses is that of
cartesian lenses.

Proposition 2.7. In a cartesian category C, a lens (A,B)→ (X,Y ) is given by a pair of
morphisms C(A,X) and C(A× Y,B). In a cocartesian category, lenses are called prisms
[Kme18] and they are given by a pair of morphisms C(S,A+ T ) and C(B, T ).

Proof. We write the proof for lenses, the proof for prisms is dual and can be obtained by
mirroring the diagrams. The coend derivation can be found, for instance, in [Mil17].

A

X Y

B

∫ M

C(A,M ×X)×C(M × Y,B)

∼= {( ) ∼= ( )} ∼= {Universal property of the product}

A

X Y

B

∫ M

C(A,M)×C(A,X)×C(M × Y,B)

∼= {Copy} ∼= {Yoneda lemma}

XA

A

B

Y

C(A,X)×C(A× Y,B) �

2.4. Example: Feedback. Shapes do not need to be limited to a single category. For
instance, we can make use of the opposite category to introduce feedback, in the sense of
the categories with feedback of [KSW02]. Wires in the opposite category will be marked
with an arrow to distinguish them.
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X Y
=

∫ M∈C
C(M ⊗X,M ⊗ Y ).

Figure 8. A shape with feedback, interpreted as a set.

Proposition 2.8 (see [Sta13]). Profunctors form a compact closed bicategory. The dual
of a category is its opposite category.

3. Composing and Reducing Shapes

We have been focusing on the invertible transformations between shapes, but arguably
the most interesting case is that of non-invertible transformations. Our next step is to
describe rules for composing and reducing diagrams that translate to valid coend calculus
reductions. For instance, as we saw in the introduction (Figure 2), a lens (A,B)→ (X,Y )
can be composed with a morphism X → Y to obtain a morphism A→ B.

A

X Y

B

YX

(∫ M

C(A,M ⊗X)×C(M ⊗ Y,B)

)
×C(X,Y )

∼= {Isotopy} ∼= {Continuity}

A

X Y

B

X Y

∫ M

C(A,M ⊗X)×C(X,Y )×C(M ⊗ Y,B)

→ {εX} → {Composition along X}

A

Y

B

Y

∫ M

C(A,M ⊗ Y )×C(M ⊗ Y,B)

→ {εY } → {Composition along Y }

A B

∫ M,N

C(A,M ⊗N)×C(M ⊗N,B)

→ {ε⊗} → {Composition along M ⊗N}

BA
C(A,B)

Figure 9. Composing a lens with a morphism, formalizing Figure 2.

Definition 3.1 (Joining and splitting wires). Identities and composition define natural
transformations ηA : ( ) → ( A A ) and εA : ( A A ) → ( ). They determine an
adjunction, as the following transformations are identities.

( A )
η→ ( A A A )

ε→ ( A ); ( A )
ε→ ( A A A )

η→ ( A ).

In the same vein, junctions and forks have natural transformations ε⊗ : ( ) → ( )
and η⊗ : ( )→ ( ). They determine an adjunction, as the following transformations
are identities.

( )
η→ ( )

ε→ ( ); ( )
η→ ( )

ε→ ( ).
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3.1. Example: Categories of Optics. Two lenses of types (A,B) → (X,Y ) and
(X,Y ) → (U, V ) can be composed with each other to form a category of optics [Ril18].
There is, however, another way of composing two lenses. When the base category is sym-
metric, a lens (A, Y ) → (X,V ) can be composed with a lens (X,B) → (U, Y ) into a lens
(A,B)→ (U, Y ). We will observe that, even if Prof is symmetric, the reduction explicitly
uses symmetry on the base category C.

A

X Y

B X

U V

Y A

X V

Y X

U Y

B

∼= ∼=

A

X Y

B

X

U V

Y

A

X

U

B

X Y

V

Y

→ {εX} → {εX}

A

Y

B

U V

Y

A

U

B

Y

V

Y

→ {εY } → {εY }

A B

U V

A

U

B

V

→ {α} → {α}

A B

U V

A

U

B

V

→ {ε⊗} ∼= {σ, symmetry}

A

U V

B
A

U

B

V

→ {ε⊗}

A

U V

B

Figure 10. In parallel, two possible compositions of optics.

3.2. Example: from Lenses to Dynamical Systems. In [SSV16, Definition 2.3.1],
a discrete dynamical system, a Moore machine, is characterized to have the same data
as a lens (A,A) → (X,Y ). The following derivation is a conceptual justification of this
coincidence: a lens with suitable types can be made into a morphism of the free category
with feedback [KSW02], subsuming particular cases such as Moore machines.
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X Y

AA

∫ M

C(A,M ⊗X)×C(M ⊗ Y,A)

∼= {Isotopy} ∼= {Commutativity of (×)}

XY

A A

∫ M

C(M ⊗ Y,A)×C(A,M ⊗X)

→ {εA} → {Composition along A}

Y X

∫ M

C(M ⊗ Y,M ⊗X)

Figure 11. From lenses to dynamical systems.

4. Open Diagrams

Our final step is to justify how to obtain the diagrams that originally motivated this
text (open diagrams) by “looking inside” the shapes. So far, the element of a set described
by a shape could be only expressed as a derivation of the shape from the empty diagram.
In this section, we show diagrams that summarize these derivations and that represent
specific elements of the shape.

f,g→ f gA

M

X

M

Y

B
εM→ f g

X Y

A B

Figure 12. Open diagrams represent specific elements.

4.1. Open Diagrams. Open diagrams will be interpreted in Prof∗, the symmetric mo-
noidal bicategory of pointed profunctors. Its 0-cells are categories with a chosen object;
its 1-cells from (A, X) to (B, Y ) are profunctors P : Aop ×B→ Set with a chosen point
p ∈ P (X,Y ); and its 2-cells are natural transformations preserving that chosen point.

Proposition 4.1. Reductions on shapes can be lifted to reductions on open diagrams.

Proof. There exists a pseudofunctor U : Prof∗ → Prof that forgets about the specific
point. It holds that a ∈ A for every element (A, a) ∈ Prof∗((1, 1), (1, 1)). Natural
transformations α : P → Q can be lifted to α∗ : (P, p) → (Q,α(p)) in a unique way,
determining a discrete opfibration Prof∗(A,B)→ Prof(A,B) for every pair of categories
A and B. �

Proposition 4.2. Diagrams on the base category can be lifted to open diagrams.

Proof. Let C be a small category. There exists a pseudofunctor C→ Prof∗ sending every
object A ∈ C to the 0-cell pair (C, A) and every morphism f ∈ C(A,B) to the 1-cell
pair (homC, f). Moreover, when (C,⊗, I) is monoidal, the pseudofunctor is lax and oplax
monoidal (weak pseudofunctor in [MV18]), with oplaxators being left adjoint to laxators
(see §8.3). This can be called an op-ajax monoidal pseudofunctor, following the notion of
ajax monoidal functor from [FS18]. �
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The graphical calculus for open diagrams can then be interpreted as the graphical
calculus of pointed profunctors enhanced with a pseudofunctorial box, in the same vein as
the functor boxes of [Mel06]. Similar “internal diagrams” have been described before by
[BDSPV15] (and summarized in [Hu19]) as a “graphical mnemonic notation”.

4.2. Example: Categories of Optics. The lens 〈g, f〉 : (A,B)→ (X,Y ) is depicted as
the following open diagram.

f g

X Y

A B ∈ A

X Y

B

The quotienting that makes 〈g, (m ⊗ idX) ◦ f〉 = 〈g ◦ (m ⊗ idY ), f〉 is explicit in this
graphical calculus. The following two diagrams are equal in the category Prof∗: they
represent the same set and the same element within it.

f g

X Y

A B
m

= f g

X Y

A B
m

Note that we cannot speak of equality between open diagrams with different shapes, for
they belong to different sets. We could however speak of equality between two open
diagrams such that the shape of the first can be deformed into the shape of the second.
The deformation determines an isomorphism between the sets defined by the shapes.
Equality of elements on isomorphic sets is understood to be equality after applying the
isomorphism.

For instance, the following two elements are equal under the deformation given by
counitality of the pseudocomonoid structure. f ∈

 {λ⊗}∼=

 f ∈


We will use open diagrams to justify that both compositions from Example 3.1 deter-

mine a category. Consider two pairs of lenses of suitable types.

f1 g1

X Y

A B f2 g2

U V

X Y ∈ A

X Y

B X

U V

Y

f ′1 g′1

X V

A Y f ′2 g′2

U Y

X B ∈ A

X V

Y X

U Y

B

We can use Proposition 4.1 to lift the two compositions in Example 3.1 to two deformations
of open diagrams that send the two pairs of lenses to the following two open diagrams,
respectively.

f1

f2

A

U

B

V

g1

g2

f ′1

f ′2

A

U

B

V

g′1

g′2

Let us show that a category can be defined from the first composition. Consider three
lenses oi for i = 1, 2, 3. We have two ways of composing them, as o1◦(o2◦o3) or (o1◦o2)◦o3,
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but they both give rise to the same final diagram, thanks to associativity of the base
monoidal category. The identity is the diagram on the right.

f1

f2

f3
A4

A1 B1

B4

g1

g2

g3

A

AA

A

For the second composition, checking associativity amounts to the following equality. The
identity is the same as in the previous case.

f ′1

f ′2

f ′3

A1

A3

B3

B1

g′3

g′2

g′1

=

f ′1

f ′2

f ′3
A3

B3

B1

A1 g′3

g′2

g′1

The graphical calculus is hiding at the same time the details of two structures. The first
is the quotient relation given by the coend in the monoidal bicategory of profunctors; the
second is the coherence of the base monoidal category inside the pseudofunctorial box.

5. Related and Further Work

The graphical calculus for profunctors can be seen as a direction in which the graphical
calculus for the cartesian bicategory of relations [BPS17, FS18] can be categorified. A
notion of cartesian bicategory generalizing relations is discussed in [CKWW08]. For a
slightly different future direction, we could try to relate this work to many of the interesting
applications of compact closed bicategories (see [Sta13]); such as resistor networks, double-
entry bookeeping [KSW08] or higher linear algebra [KV94].

Certain shapes open diagrams have been described in the literature. Specifically, finite
combs were used as notation by [CDP08, KU17, Ril18]; the relation with lenses is described
in [Rom20]. Previous graphical calculi for lenses and optics [Hed17, Boi20] have elegantly
captured some aspects of optics by working on the Kleisli or Eilenberg-Moore categories of
the Pastro-Street monoidal monad [PS08]. The present approach diverges from previous
formalisms by using the monoidal bicategory structure of profunctors. It is more general
than considering combs, as it can express arbitrary shapes in non-symmetric monoidal
categories. In any case, it enables us to reason about categories of optics themselves; the
results on optics of [CEG+20] can be greatly simplified in this calculus. We believe that
it is closer to, and it provides a formal explanation to the diagrams with holes of [Ril18,
Definition 2.0.1], which were missing from previous approaches.

Most of our first part can be repeated for arbitrary monoidal bicategories such as en-
riched profunctors or spans. Multiple approaches to open systems (decorated cospans
[Fon15], structured cospans [BC19]) could be related in this way to open diagrams, but
we have not explored this possibility yet. Another potential direction is to repeat this
reasoning for the case of double categories and obtain a “tile” version of these diagrams
(see [Mye16, HS19]).

6. Conclusions

We have presented a way to study and compose processes in monoidal categories that
do not necessarily have the usual shape of a square box without losing the benefits of the
usual language of monoidal categories. Direct applications seem to be circuit design, see
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[CDP08], or the theory of optics [CEG+20]. This technique is justified by the formalism
of coend calculus [Lor19] and string diagrams for monoidal bicategories [Bar14]. We also
argue that the graphical representation of coend calculus is helpful to its understand-
ing: contrasting with usual presentations of coends that are usually centered around the
Yoneda reductions, the graphical approach seems to put more weight in the non-reversible
transformations while making most applications of Yoneda lemma transparent. Regarding
open diagrams, we can think of many other applications that have not been described in
this text: we could speak of multiple categories at the same time and combine open dia-
grams of any of them using functors and adjunctions. This work has opened many paths
that we aim to further explore.

We have been working in the symmetric monoidal bicategory of profunctors for simplic-
ity, but the same results extend to the symmetric monoidal bicategory of V-profunctors for
V a Bénabou cosmos [Lor19, §5]. We can even consider arbitrary monoidal bicategories and
drop the requirements for symmetry, copying or discarding. Finally, there is an important
shortcoming to this approach that we leave as further work: the present graphical calculus
is an extremely good tool for coend calculus, but it remains to see if it is so for (co)end
calculus. In other words, ends “enter the picture” only as natural transformations (see
[Wil10]), and this can feel limiting even if, after applying Yoneda embeddings, it usually
suffices for most applications. As it happens with diagrammatic presentations of regular
logic [BPS17, FS18], the existential quantifier plays a more prominent role. Diagrammatic
approaches to obtaining the universal quantifier in a situation like this go back to Peirce
and are described by [HS20].
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8. Appendix

8.1. The Monoidal Bicategory of Profunctors.

Definition 8.1. There exists a symmetric monoidal bicategory Prof having as 0-cells the
(small) categories A,B,C, . . .; as 1-cells from A to B, the profunctors Aop × B → Set;
as 2-cells, the natural transformations; and as tensor product, the cartesian product of
categories [Lor19]. Two profunctors P : Aop ×B→ Set and Q : Bop ×C→ Set compose
into the profunctor (P �Q) : Aop ×C→ Set defined by

(P �Q)(A,C) :=

∫ B∈B
P (A,B)×Q(B,C).

The unit of composition in the category A is the hom-profunctor homA : Aop×A→ Set.
Strong unitality, ( P ) ∼= ( P ) ∼= ( P ), is given by the Yoneda isomorphisms.

(homA �P )(A,B) :=

∫ A′∈A
homA(A,A′)× P (A′, B) ∼= P (A,B)

(P � homB)(A,B) :=

∫ B′∈B
P (A,B′)× homB(B′, B) ∼= P (A,B).

Strong associativity ( P1 P2 ) � ( P3 ) ∼= ( P1 ) � ( P2 P3 ) follows from continuity and asso-
ciativity of the cartesian product of sets. The invertible 2-cells that realise unitality and
associativity satisfy the pentagon and triangular equations.

The monoidal product of two profunctors P1 : Aop
1 ×B1 → Set and P2 : Aop

2 ×B2 → Set
is the profunctor (P1 ⊗ P2) : (A1 ×A2)op × (B1 ×B2)→ Set defined by

(P1 ⊗ P2)(A1, A2, B1, B2) := P1(A1, B1)× P2(A2, B2).

The unit of the monoidal structure is the terminal category. Unitality and associativity
follow from those on sets. In the case of profunctors, unitors and associator are not
only equivalences but isomorphisms of categories, with strictly commuting pentagons and
triangles.

An alternative approach is to construct this symmetric monoidal bicategory from the
double symmetric bicategory of profunctors, see [HS19].

Every category has a dual, its opposite category. There are profunctors (Aop×A)×1→
Set and 1op × (Aop × A)op → Set given by variations of the hom-profunctors; these
are represented by caps and cups. Profunctors circulate through the caps and cups as
expected thanks to the Yoneda lemma. See [Sta13] for the description as a compact closed
bicategory.

Definition 8.2 (Yoneda Embedding of Functors). Let F : C→ D be a functor. It can be

embedded as a profunctor ( F ) : Cop×D→ Set or as a profunctor ( F ) : Dop×C→ Set.
Moreover, every functor has an opposite, so it can also be embedded as a profunctor
( F ) : (Dop)op×Cop → Set or as a profunctor ( F ) : (Cop)op×Dop → Set. In particular,

F a G precisely when ( F ) ∼= ( G ).

The suggestive shape of the boxes (from [CK17]) is matched by their semantics. Every
category has a dual (namely, its opposite category) and functors circulate as expected
through the cups and the caps that represent dualities.

F ∼=
F

;
F
∼= F
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Proposition 8.3. Both Yoneda embeddings are strong monoidal pseudofunctors Cat →
Prof , fully faithful on the 2-cells. Pseudofunctoriality gives ( F G ) ∼= ( G ◦ F ) and its
counterpart. Monoidality gives the following isomorphism and its mirrored counterpart.

F1

C1

F2

F1 × F2
∼=

C2

D1

D2

C1

C2

D1

D2

Proposition 8.4 (Functors are Left Adjoints). In the category of profunctors, functors

are left adjoints, in the sense that there exist morphisms ηF : ( ) → ( F F ) and

εF : ( F F ) → ( ) and they verify the zig-zag identities. Moreover, every natural
transformation commutes with these dualities in the sense that the following are two com-
mutative squares.2

( ) ( F F ) ( F G ) ( F F )

( G G ) ( F G ) ( G G ) ( )

ηF

ηG α α

α

εF

α εG

A partial converse holds: a left adjoint profunctor is representable when its codomain is
Cauchy complete; see [Bor94].

Proposition 8.5. Every object A of the category of profunctors has already a canonical
pseudocomonoid structure lifted from Cat and given by ( ) := A(−0,−1)×A(−0,−2) and
( ) := 1; but also a pseudomonoid structure given by ( ) := A(−1,−0)×A(−2,−0), and
( ) := 1. These structures copy and discard representable and corepresentable functors,
respectively; but they also laxly copy and discard arbitrary profunctors.

Proof. This is a consequence of the fact the diagonal and discard functors (∆): A→ A×A
and (!) : A → 1 copy and discard functors in Cat. Pseudofunctoriality of both Yoneda
embeddings sends them to the profunctors we are describing in Prof .

On the other hand, arbitrary profunctors are laxly copied and discarded. For instance,
the following coend derivation shows that a profunctor P : Aop×B→ Set is laxly copied.
In the case of representable profunctors, this is an isomorphism.∫ X

P (A,X)× homA(X,Y1)× homB(X,Y2)

→
P (A, Y1)× P (A, Y2)
∼=∫ X1,X2

homA(A,X1)× homA(A,X2)× P (X1, Y1)× P (X2, Y2). �

8.2. The Monoidal Bicategory of Pointed Profunctors.

Definition 8.6. A pointed category (A, X) is a category A equipped with a chosen object
X, which can be regarded as a functor from the terminal category. There exists a symmet-
ric monoidal bicategory Prof∗ having as 0-cells pairs (A, X) where A is a (small) category
and X ∈ A is an object of that category; 1-cells from (A, X)→ (B, Y ) pairs (P, p) given
by a profunctor P : Aop ×B→ Set and a point p ∈ P (X,Y ); 2-cells from (P, p)→ (Q, q)

2The graphical calculus of the bicategory makes these equations much clearer. We are emphasizing the
monoidal bicategory structure here only for the sake of coherence.
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are natural transformations η : P → Q such that ηX,Y (p) = q. Composition of 1-cells
(P, p) : (A, X) → (B, Y ) and (Q, q) : (B, Y ) → (C, Z) is given by (Q � P, 〈q, p〉), where
〈q, p〉 ∈ (Q � P )(X,Z) is the equivalence class under the coend of the pair (q, p). The
identity 1-cell in (A, X) is (homA, idX) : (1, 1)→ (A, X).

Strong unitality `(P,p) : (homA �P, 〈idX , p〉) → (P, p) and %(P,p) : (P � homA, 〈p, idX〉) ∼=
(P, p) is given by the Yoneda isomorphisms.

`P :

∫ Z∈A
homA(X,Z)× P (Z, Y ) ∼= P (X,Y )

%P :

∫ Z∈A
P (X,Z)× homA(Z, Y ) ∼= P (X,Y )

The Yoneda isomorphisms are such that `P 〈idX , p〉 = idX ◦ p = p and %P 〈p, idY 〉 =
p ◦ idY = p. This confirms they are valid 2-cells of Prof∗.

Strong associativity a(P,p,Q,q,R,r) : ((P � Q) � R, 〈〈p, q〉 , r〉) → (P � (Q � R), 〈p, 〈q, r〉〉)
is given by the isomorphism described by continuity and associativity of the cartesian
product.∫ V (∫ U

P (X,U)×Q(U, V )

)
×R(V, Y ) ∼=

∫ U

P (X,U)×
(∫ V

Q(U, V )×R(V, Y )

)
.

It is defined by a(〈〈p, q〉 , r〉) = 〈p, 〈q, r〉〉, proving that it is a valid 2-cell of Prof∗.

We will show now it is also symmetric monoidal. There is a distinguished object (1, 1),
given by the terminal category and its only object. There is a pseudofunctor (⊗) : Prof∗×
Prof∗ → Prof∗ defined

• on 0-cells by (A, X)⊗ (B, Y ) := (A×B, (X,Y ));
• on 1-cells by (P, p)⊗ (Q, q) := (P ⊗Q, (p, q));
• on 2-cells by (γ ⊗ δ) : P �Q→ P ′ �Q′ the transformation that applies γ : P → P ′

and δ : Q→ Q′ to both factors of the coend,(∫ Z

P (X,Z)×Q(Z, Y )

)
→
(∫ Z

P ′(X,Z)×Q′(Z, Y )

)
;

• natural isomorphisms ((P � Q) ⊗ (P ′ � Q′), (〈p, q〉 , 〈p′, q′〉)) ∼= ((P ⊗ P ′) � (Q ⊗
Q′), 〈(p, p′), (q, q′)〉) and (homA×B, idA×B) ∼= (homA×homB, (idA, idB)).

The symmetric monoidal structure requires the following natural transformations.

• the left unitor λ⊗P : (id1⊗P, (id∗, p))→ (P, p) and right unitor ρ⊗P : (P⊗id1, (p, id∗))→
(P, p);
• the associator α⊗P,Q,R : ((P ⊗Q)⊗R, ((p, q), r))→ (P ⊗ (Q⊗R), (p, (q, r))), given

by the associator of the cartesian category of sets;
• the braiding β : (P ⊗Q, (p, q))→ (Q⊗ P, (q, p));
• such that the two relevant squares and the relevant hexagon commute, making it

a syllepsis and a symmetry.

8.3. Pseudofunctor box.

Proposition 8.7. Let A be a small category. There exists a pseudofunctor A → Prof∗
sending every object A ∈ A to the 0-cell pair (A, A) and every morphism f ∈ homA(A,B)
to the 1-cell pair (homA, f). Moreover, when (A,⊗, I) is monoidal, the pseudofunctor is
lax and oplax monoidal (weak pseudofunctor in [MV18], with oplaxators being left adjoint
to laxators). This would be an op-ajax monoidal pseudofunctor, following the notion of
ajax monoidal functor from [FS18].
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We only sketch the construction. The invertible 2-cells witnessing pseudofunctoriality
use the fact that the Yoneda isomorphisms (unitors and associators) send pairs of points
to their composition, coinciding with the composition on the base category A.

The following natural transformations make the functor lax monoidal.  := (hom(−,−⊗−), idA⊗B) : (A×A, (A,B))→ (A, A⊗B)

( )
:= (hom(I,−), idI) : (1, ∗)→ (A, I)

The following natural transformations make the functor oplax monoidal.  := (hom(−⊗−,−), idA⊗B) : (A, A⊗B)→ (A×A, (A,B))

( )
:= (hom(−, I), idI) : (A, I)→ (1, ∗)

Composition and identities give the counits and units of the adjunctions. The fact that
identity is the unit for composition makes the following transformations be 2-cells of Prof∗.

εµ→ ηu→

ηµ→ εu→

The following morphisms follow the cups, caps, splitting and merging structure from
Prof in Prof∗. Morphisms circulate through them as expected: turning to morphisms in
the opposite category, being copied and discarded.  := (hom(−,−), idA) : (A×Aop, (A,A))→ (1, 1),

  := (hom(−,−), idA) : (1, 1)→ (A×Aop, (A,A)),

( )
:= (hom(−0,−1)× hom(−0,−2), (idA, idA)) : (A, A)→ (A×A, (A,A)),( )
:= (hom(−1,−0)× hom(−2,−0), (idA, idA)) : (A×A, (A,A))→ (A, A),( )

:= (1, ∗) : (1, 1)→ (A, A);
( )

:= (1, ∗) : (A, A)→ (1, 1).

Proposition 8.8. Let A be a category. For every A ∈ A, there exist 1-cells

(homA(A,−), idA) : (1, 1)→ (A, A) and (homA(−, A), idA) : (A, A)→ (1, 1)

given by the Yoneda embeddings of A and the identity morphism. Composition and iden-
tities define an adjunction.

idA→ A A AA
◦→
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8.4. Example: Learners. A learner [FST19, Definition 4.1] in a cartesian category is
given by a parameters object P ∈ C, an implementation morphism i : P × A → B, and
update morphism u : P × A × B → P , and a request morphism r : P × A × B → A. A
monoidal generalization, dinatural on the parameters object, has been proposed in [Ril18,
Definition 6.4.1]; the following derivation shows how it particularizes into the cartesian
case.

A B B A

∫ P,Q

C(P ×A,Q×B)×C(Q×B,P ×A)

∼= {( ) ∼= ( )} ∼= {Universal property of the product}

A B B A

∫ P,Q

C(P ×A,Q)×C(P ×A,B)×C(Q×B,P ×A)

∼= {( ) copies} ∼= {Yoneda lemma}

A
B A×B A

∫ P

C(P ×A,B)×C(P ×A×B,P ×A)

∼= {( ) copies} ∼= {Universal property of the product}

A
B

A×B A

A×B
∫ P

C(P ×A,B)×C(P ×A×B,A)×C(P ×A×B,P )

Figure 13. From monoidal to cartesian learners.

Proposition 8.9. A pair of lenses (U, V )→ (A,A) and (V,U)→ (B,B) define a learner.

V
B B

U

U
A A

V

∫ M,N

C(U,M⊗A)×C(M⊗A, V )×C(V,N⊗B)×C(N⊗B,U)

→ {εU , εV } → {Composition along U and V }

A B B A

∫ P

C(P ×A,B)×C(P ×A×B,A)×C(P ×A×B,P )

Figure 14. From lenses to learners.
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