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Program Logics via Distributive Monoidal Categories

ANONYMOUS AUTHOR(S)

We derive multiple program logics, including correctness, incorrectness, and relational Hoare logic, from

the axioms of imperative categories: uniformly traced distributive copy-discard categories. We introduce an

internal language for imperative multicategories, on top of which we derive combinators for an adaptation of

Dijkstra’s guarded command language. Rules of program logics are derived from this internal language.
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1 Introduction
Program logics are sets of derivation rules used to reason about program behaviour under input

and output conditions. Statements are written as triples {𝑝} 𝑐 {𝑞} of a command 𝑐 , a precondition 𝑝

and a postcondition 𝑞. The semantics of such a triple, though, depends on the behaviour one is

interested in studying. For program correctness, intuitively, the triple is valid if, starting on input

states that satisfy 𝑝 , the output states of the program satisfy 𝑞. For example, the following rule of

Hoare logic derives a correctness triple for a loop from the correctness triple of its body.

{𝑏 ∧ 𝑝} 𝑐 {𝑝}
{𝑝} while𝑏 do 𝑐 {(¬𝑏) ∧ 𝑝}

(1)

However, correctness is only one of the possible triple interpretations; intensive research has

produced logics for a myriad of triple interpretations, and for multiple program semantics.

Program logics start by fixing a semantics for their commands, an interpretation for their

triples, and derivation rules for its logic. Command semantics can be partial [Hoa69, Ben04],

relational [Win93, O’H19] or stochastic [Kam18, BKOZB12, ZDS23]. Triples can capture program

correctness [Hoa69], incorrectness [dVK11, O’H19] or quantitative aspects of execution [ZDS23,

ABDG25]. After these two choices, the logic is completed with a set of derivation rules that capture

the relevant behaviour and are sound for the intended semantics. While they appear to follow some

general pattern, the rules of program logics are defined on a case-by-case basis.

We propose the algebraic structure of imperative categories—a variant of Elgot distributive

categories—as a foundation for program logics. From the axioms of imperative categories, we derive

the usual rules of various program logics. From the models of imperative categories, we expand the

scope of these rules beyond a fixed semantics. The categorical structure becomes common to the

usual relational, partial, and probabilistic semantics, while remaining more general.

Imperative categories come with an internal language that we develop and employ through the

paper: an internal language that mimics unstructured programming, with arbitrary jumps to labelled

looping points (marked by “looplooploop” followed by a label). Unstructured programming is needed for

full expressivity, but certainly not always desirable [Dij68]; in fact, while unstructured and typed,
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2 Anon.

the internal language is actually inspired by a structured and untyped one: the famous Dijkstra’s

guarded command language [Dij75].

Dijkstra’s command language is recovered from the endomorphisms of imperative categories.

The simplest command combinators of the language—skip and concatenation (;)—feature as the
identity and endomorphism composition. Choice and iteration (if-then-else and while) feature as
a cocartesian and traced monoidal structure. All command combinators are derivable from the

unstructured internal language; for instance, if-then-else and while are defined in these terms.

if 𝑏 then 𝑐1 else 𝑐2 ≡ 𝑏 [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \ 𝑐1, 𝑐2]; (2)

while𝑏 do 𝑐 ≡ loop 𝛼𝛼𝛼 ( ®𝑥){®𝑥 . 𝑏 [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \ 𝑐 [𝜂𝜂𝜂 \ ®𝑥 .𝛼𝛼𝛼 ( ®𝑥)], ®𝑥 .𝜂𝜂𝜂 ( ®𝑥)]}; (3)

These read as follow: to execute “if 𝑏 then 𝑐1 else 𝑐2”, execute 𝑏 but replace each of its two exit

conditions (𝛼𝛼𝛼1 and 𝛼𝛼𝛼2) by the two branches (𝑐1 and 𝑐2); to execute “while𝑏 do 𝑐”, start by labelling a

looping point (𝛼𝛼𝛼) and then execute 𝑏 but replacing its first exit condition (𝛼𝛼𝛼1) with the body of the

loop (𝑐)—while replacing 𝑐’s exit condition (𝜂𝜂𝜂) by the looping label—and its second exit condition

with its, now only, exit condition (𝜂𝜂𝜂).

While less familiar, the internal language derives the usual reasoning principles: for instance,

the previous definitions—together with an auxiliary skip ≡ 𝜂𝜂𝜂 ( ®𝑥)—imply loop unfolding (4).

while𝑏 do 𝑐 ≡ if 𝑏 then (𝑐 ; while𝑏 do 𝑐) else skip; (4)

Around commands, notice how we pass a vector of variables (®𝑥), carrying the state of loops

and choices. This sort of state-passing translation requires a second monoidal—or premonoidal—

structure, with the ability to copy and discard the value of variables. It enables variable assignment:

if both 𝑥𝑖 and 𝑥 𝑗 are variables in the vector that we pass as state, then the following command

stores in 𝑥𝑖 the value of 𝑓𝑓𝑓 (𝑥 𝑗 ).
(𝑥𝑖 ≔ 𝑓𝑓𝑓 (𝑥 𝑗 )) ≡ 𝑓𝑓𝑓 (𝑥 𝑗 ){𝑥𝑖 .𝜂𝜂𝜂 ( ®𝑥)}.

As a side benefit, the second monoidal structure provides the extra expressivity needed to define

couplings of programs, validity in relational Hoare triples, and notions of totality and determinism,

useful in stochastic and partial semantics.

1.1 Interpreting triples
The interpretation of program triples rests on comparing programs: the validity of a Hoare triple

{𝑝} 𝑐 {𝑞} will be defined as an inequality, assert 𝑝 ; 𝑐 ≤ 𝑐 ; assert𝑞. In the category of relations,

where morphisms are ordered by inclusion, we recover the validity of a partial correctness triple: it

compares the subset 𝑐 ; assert𝑞 of possible final states with the subset assert𝑝 ;𝑐 of possible outputs
of 𝑐 on inputs that belong to 𝑝 . In general, we require a poset enrichment on imperative categories,

leading to posetal imperative categories: poset-enriched categories with (i) traced coproducts and a

second (ii) monoidal copy-discard structure, interacting by distributivity.

The most important axiom for this posetal structure is posetal uniformity, which justifies loop

invariants. Intuitively, it says that if a command 𝑐 is invariant under a branch guarded by 𝑏, then

it remains invariant under a loop guarded by 𝑏. That is, 𝑐; L𝑏M{𝑐1}{skip} ≤ L𝑏M{𝑐2; 𝑐0}{𝑐3} implies

𝑐0;while𝑏 do 𝑐1 ≤ while𝑏 do 𝑐2; 𝑐3.
With this interpretation, let us prove validity of the example triple we just introduced.

Proposition 1. The triple in Equation (1) is valid when 𝑏 is deterministic.

Proof. We reason by (i) interchange of predicates and guards, (ii) determinism of the guard 𝑏,

(iii) the definition of conjunction, and (iv) the assumption of the rule, {𝑏 ∧ 𝑝} 𝑐 {𝑝}.
assert 𝑝; L𝑏M{𝑐}{skip} (i)

=
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Program Logics via Distributive Monoidal Categories 3

L𝑏M{assert 𝑝; 𝑐}{assert 𝑝} (ii)

=

L𝑏M{assert𝑏#; assert 𝑝; 𝑐}{assert (¬𝑏)#; assert𝑝} (iii)

=

L𝑏M{assert(𝑏# ∧ 𝑝); 𝑐}{assert((¬𝑏)# ∧ 𝑝)}
(iv)

≤
L𝑏M{𝑐; assert 𝑝}{assert((¬𝑏)# ∧ 𝑝)}.

We conclude, by posetal uniformity, that assert𝑝;while𝑏 do 𝑐 ≤ while𝑏 do 𝑐; assert(¬𝑏 ∧ 𝑝). This
means that {𝑝} while𝑏 do 𝑐 {(¬𝑏) ∧ 𝑝} is valid. □

1.2 Contributions
We introduce imperative multicategories as traced distributive copy-discard multicategories. We

provide an internal language taking sound semantics in imperative categories (Theorem 54), and we

prove it complete by exhibiting a syntactic model (Theorem 56). In terms of this internal language,

we derive combinators for guards, predicates, commands, and states, inspired by Dijkstra’s guarded

command language (Section 3).

Finally, we classify triple shapes from various program logics (Section 5), and we prove the

derivation rules for Hoare logic, incorrectness logic, and an outcome-like logic (Theorems 79, 81

and 83). We extend these to their relational versions, proving the derivation rules for relational

Hoare logic and a relational incorrectness logic (Theorems 88 and 90).

1.3 Synopsis
Section 2 introduces an internal language for imperative multicategories and posetal imperative

multicategories. Section 3 specializes the language for the elements of a generic program triple

and derives a version of Dijkstra’s guarded command language. Section 4 provides categorical

denotational semantics in terms of posetally-enriched traced distributive copy-discard multicategories.

Section 5 derives correctness triples, incorrectness triples, and outcome-like triples in any imperative

multicategory. Section 6 derives relational correctness triples and relational incorrectness triples

again from the axioms of imperative multicategories.

1.4 Related work
Categorical program semantics. Categorical program semantics has a long tradition [LS88, Ole83,

Win93]. In particular, distributive categories are since long used to model both control flow and

data flow of programs [Coc93, CLW93, Wal92]. More specifically, distributive monoidal categories

with copy-discard structure have naturally appeared in non-deterministic, partial, and stochastic

semantics [LCS25, Nes25]. The approach is compatible with the long tradition of using monads for

computations [Mog91, Wad98, BK99, BHM00].

Arbib and Manes employ traced cocartesian categories to express the control flow of pro-

grams [AM80], generalising Elgot’s techniques for the interpretation of iteration and choice in

partial functions [Elg75]; but also apart from their work, categorical semantics for iteration has

been studied extensively [BÉ93, SP00]. Of particular relevance to our work is the metalanguage

for guarded iteration by Goncharov, Rauch and Schröder [GRS21]; and the recent denotational

semantics of static single assingment of Ghalayini and Krishnaswami [GK24]. When reasoning

about the semantics of loops, we employ Hasuo’s generic trace theory [Has06, HJS06], which builds

on Fiore’s work on coinduction [Fio93, Fio96]. Uniform traces need not to exist in cocartesian

categories. In our examples, we ensure the existence of uniform traces by relying on partially

additive monads [Jac10], which ensure a form of iteration in the Kleisli category less restrictive

than additive monads [CJ13] or Kleene monads [Gon10].

, Vol. 1, No. 1, Article . Publication date: July 2025.
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4 Anon.

Categorical logic. The guarded command syntax for programs distinguishes between guards and

commands. We interpret this distinction in the categorical setting following the ideas from effectus

theory [Jac15], where the logic on guards derives from categorical structure.

The structure of hom-sets in imperative categories resembles that of Kleene algebras with

tests [Koz97] and their probabilistic variation [MCM06], and of guarded Kleene algebras with

tests [SFH
+
19, GBG25a] and their probabilistic [RKK

+
23] and approximate variants [GBG25b].

Guards in imperative categories do not in general form a boolean algebra as they are not necessarily

deterministic.

Program logics. Since the work of Floyd [Flo93] and Hoare [Hoa69, CH72] on correctness assertions

about programs, much work on program logics has extended the scope of the original logic.

Separation logic [Rey02, ORY01] considers programs that access globally shared data, incorrectness

logic considers assertions about faults of programs [dVK11, O’H19], and outcome logics [ZDS23,

ZSS24, ZKST25] provide a synthesis of correctness and incorrectness reasoning. Verification of

probabilistic programs is an active research area that takes another view on program logics studying

weakest precondition and strongest postcondition calculi [KK17, Kam18, ZK22].

Relational program logics extend the reasoning of program logics to pairs of programs considering

binary relations between their inputs instead of predicates on the inputs of one program alone.

As in the predicate version, relational program logics can focus on correctness assertions about

deterministic programs [Ben04], or be extended to probabilistic semantics [BGZB09, ABDG25] and

approximate reasoning [Olm14, BKOZB12, Sat16, ABH
+
21].

Categorical approaches to program logics are not new. Manes and Arbib describe the control

flow of Hoare logic with traced cocartesian categories [MA12]. Outcome logic considers a class

of semantic universes given by Kleisli categories of monads with some extra structure [ZDS23].

Program triples can also be seen as fibrations over a category of programs [MZ15, MZ16] or as

functors to monotone relations [AMMO09]. More recently, the structure of distributive categories

as been shown to derive the rules of Hoare logic, restricted to the relational semantics [BDD25].

2 An internal distributive language
Program logics follow simple imperative languages—e.g. Dijkstra’s guarded command language

[Dij75]. These tend to be bad candidates for a categorical internal language: many are untyped, and

many are too redundant to construct free categories. For instance, many have explicit commands

for identity (skip) and composition (#), implicitly blocking categorical cut-elimination; many do

poorly on relevant case-matching, rendering some categorical constructions impossible.

This section introduces the formal internal language we use for the rest of the paper. Next

sections will develop its semantics in terms of imperative categories.

2.1 Signatures: values, generators, and basic types
A distributive signature is a structure apt to represent all the morphisms of a distributive category

without their compositional structure. Instead of nesting sums and tensors, it exploits that every

nesting of sums and tensors can be normalized—not uniquely—into a sum of tensors of basic types.

In other words, all the morphisms of a distributive category can be recovered from those between

sums of tensors,

𝑓 :
∑ℓ

𝑖=1

⊗𝑛𝑖
𝑗=1𝑋

𝑖
𝑗 →

∑𝑝

𝑖=1

⊗𝑚𝑖

𝑗=1 𝑌
𝑖
𝑗 .

And moreover, because of the universal property of coproducts, these correspond uniquely to tuples

of morphisms from a tensor of basic types into a sum of tensors of basic types,(
𝑓𝑖 :

⊗𝑛𝑖
𝑗=1𝑋

𝑖
𝑗 →

∑𝑝

𝑖=1

⊗𝑚𝑖

𝑗=1 𝑌
𝑖
𝑗

) ℓ
𝑖=1

.
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Program Logics via Distributive Monoidal Categories 5

Thus, generators—the elements of a distributive signature—will be interpreted as inducing a mor-

phism from a product,

⊗𝑛

𝑗=1𝑋 𝑗 , to a sum of products,

∑𝑝

𝑖=1

⊗𝑚𝑖

𝑗=1 𝑌
𝑖
𝑗 .

Definition 2 (Distributive signature). A distributive signature, (B,G), is given by a set whose

elements we call basic types, B, and, for each list of basic types {𝑋𝑖 ∈ B}𝑛𝑖=1, and each list of lists of

basic types, {{𝑌 𝑖
𝑗 ∈ B}

𝑚𝑖

𝑗=1
}𝑝
𝑖=1

, a set, G(𝑋1, ..., 𝑋𝑛 ; [𝑌 1

1
, ..., 𝑌 1

𝑚1

], ..., [𝑌 ℓ
1
, ..., 𝑌 ℓ

𝑚1

]), whose elements we

call generators.

All morphisms in a distributive category can be brought to this form: any morphism from a

coproduct is determined by a tuple of generators; morphisms between non-normalized polynomials

correspond bijectively morphisms between any choice of normalizations.

Remark 3. Explicit product and coproduct types will not be needed: primitive types on the language

are normalized polynomials of basic types. This does not mean we cannot include them explicitly—

they are sometimes convenient—but they will be derived notions: we introduce them with bijections

to primitive types, constituting their introduction/elimination pair.

2.2 Language primitives
Let us state the three constructors that form the terms of the formal language that we employ

for traced distributive copy-discard multicategories. The language—in the style of categorical

cut-elimination [Whi41, Joy95, RC01, Shu16]—tries to be as minimalistic as possible, avoiding

redundancy of constructors: ideally, every term would correspond uniquely to a morphism in a free

traced distributive copy-discard multicategory without any extra quotienting. Indeed, we only use

quotienting for 𝛼-equivalence and four axioms, regarding commutativity and loops (in Section 2.4).

Definition 4 (Variables, labels, contexts, and indices). Let V be a countable infinite set whose

elements we call variables. Let A be a countable infinite set whose elements we call labels. A context,

Γ = 𝑥1 : 𝑋1, ..., 𝑥𝑛 : 𝑋𝑛 , is a list of variables and basic types, i.e. Γ ∈ List(V × B). Indices are lists of
labels and contexts, i.e. Idx = List(A × Ctx).
Remark 5. Labels naturally appear when reasoning about jumps in Hoare logic [CH72]; they also

match the exit conditions of incorrectness logic [O’H19].

Axiom 6 (Primitive terms). Terms of the internal language, over a distributive signature (B,G),
are inductively generated by the following rules.

Return

{(𝑥𝑖 : 𝑋𝑖 ) ∈ Γ}𝑛𝑖=1 (𝛼𝛼𝛼 : 𝑋1, ..., 𝑋𝑛) ∈ Δ
Γ ⊢ 𝛼𝛼𝛼 (𝑥1, ..., 𝑥𝑛) : Δ

Generator

𝑓 ∈ G(𝑋1, ..., 𝑋𝑛 ; (𝑌1,1, ..., 𝑌1,𝑚1
), ..., (𝑌ℓ,1, ..., 𝑌ℓ,𝑚ℓ

))
{(𝑥𝑖 : 𝑋𝑖 ) ∈ Γ}𝑛𝑖=1 {(𝑦𝑖,1 : 𝑌𝑖,1), ..., (𝑦𝑖,𝑚𝑖

: 𝑌𝑖,𝑚𝑖
), Γ ⊢ 𝑝𝑖 : Δ}ℓ𝑖=1

Γ ⊢ 𝑓 (𝑥1, ..., 𝑥𝑛){𝑦𝑖,1, ..., 𝑦𝑖,𝑚𝑖
. 𝑝𝑖 }ℓ𝑖=1

Loop

{(𝑥𝑖 : 𝑋𝑖 ) ∈ Γ}𝑛𝑖=1 (𝑢1 : 𝑋1), ..., (𝑢𝑛 : 𝑋𝑛), Γ ⊢ 𝑝 : (𝛼𝛼𝛼 : 𝑋1, ..., 𝑋𝑛),Δ
Γ ⊢ loop 𝛼𝛼𝛼 (𝑥1, ..., 𝑥𝑛){𝑢1, ..., 𝑢𝑛 . 𝑝} : Δ

• The Return rule states that, given an label, (𝛼𝛼𝛼 : 𝑋1, ..., 𝑋𝑛) ∈ Δ, and a well-typed list of

variables in context, {(𝑥𝑖 : 𝑋𝑖 ) ∈ Γ}𝑛𝑖=1, a term may just point to that label.

• The Generator rule states that, given any generator, 𝑓 , with well-typed list of variables,

{(𝑥𝑖 : 𝑋𝑖 ) ∈ Γ}𝑛𝑖=1, and a term for each one of its possible branches, {𝑝𝑖 }ℓ𝑖=1, we can evaluate

the generator and branch according to its result.

, Vol. 1, No. 1, Article . Publication date: July 2025.



246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Anon.

• The Loop rule states that we can introduce a label, 𝛼𝛼𝛼 (𝑥1, ..., 𝑥𝑛), to which the rest of the

term, 𝑝 , may now jump.

From now on, let us use vector notation for lists when convenient: for instance, ®𝑥 : ®𝑋 will mean

𝑥1 : 𝑋1, ..., 𝑥𝑛 : 𝑋𝑛 , and ®𝑦𝑖 will mean 𝑦𝑖
1
, ..., 𝑦𝑖𝑚𝑖

.

Remark 7. We work up to 𝛼-equivalence of both variables and labels. While its formalization is a

routine matter, the interested reader can follow Section A.1.

2.3 Substitution
Substitution appears as a derived rule: it builds terms that, while structurally similar, employ

variables differently. Most derived structural rules (e.g., exchange, contraction, or weakening) will

follow from substitution. In the same way that we substitute variables, we can substitute labels.

The substitution rule for labels is based in the substitution rule of clones (or Lawvere theories).

Definition 8 (Variable substitution). Substitution of a list of variables, ®𝑢 = 𝑢1, ..., 𝑢𝑛 , by a list of

variables, ®𝑣 = 𝑣1, ..., 𝑣𝑛 , is defined by 𝑢𝑖 [®𝑢 \ ®𝑣] = 𝑣𝑖 , and𝑤 [®𝑢 \ ®𝑣] =𝑤 when {𝑤 ≠ 𝑢𝑖 }𝑛𝑖=1. Substitution
extends inductively to terms, as follows.

(𝛼𝛼𝛼 (𝑥1, ..., 𝑥𝑛)) [®𝑢 \ ®𝑣] ≡ 𝛼𝛼𝛼 (𝑥1 [®𝑢 \ ®𝑣], ..., 𝑥𝑛 [®𝑢 \ ®𝑣]);
(loop 𝛼𝛼𝛼 (𝑥1, ..., 𝑥𝑛){𝑦1, ..., 𝑦𝑛 . 𝑝}) [®𝑢 \ ®𝑣] ≡ loop 𝛼𝛼𝛼 (𝑥1, ..., 𝑥𝑛){𝑦1, ..., 𝑦𝑛 . 𝑝 [®𝑢 \ ®𝑣]};
(𝑓 (𝑥1, ..., 𝑥𝑛){𝑦1, ..., 𝑦𝑚 . 𝑝𝑖 }𝑖 ) [®𝑢 \ ®𝑣] ≡ 𝑓 (𝑥1 [®𝑢 \ ®𝑣], ..., 𝑥𝑛 [®𝑢 \ ®𝑣]){𝑦𝑖,1, ..., 𝑦𝑖,𝑚𝑖

. 𝑝𝑖 [®𝑢 \ ®𝑣]}𝑖 ;
For the last two clauses, we must assume—without loss of generality, thanks to 𝛼-equivalence—that

all variables that appear bound, 𝑦1, ..., 𝑦𝑛 and 𝑦𝑖,1, ..., 𝑦𝑖,𝑚𝑖
, are fresh.

Definition 9 (Label substitution). Substitution of a label,𝛼𝛼𝛼 , by a term 𝑞 with a list of bound variables

®𝑢, inside a term 𝑝 , is inductively defined as follows.

𝛼𝛼𝛼 ( ®𝑥) [𝛼𝛼𝛼 \ ®𝑢.𝑞] ≡ 𝑞 [®𝑢 \ ®𝑥];
𝜔𝜔𝜔 ( ®𝑥) [𝛼𝛼𝛼 \ ®𝑢.𝑞] ≡ 𝜔𝜔𝜔 ( ®𝑥), when𝜔𝜔𝜔 ≠ 𝛼𝛼𝛼 ;

(loop 𝛽𝛽𝛽 ( ®𝑥){®𝑦. 𝑝}) [𝛼𝛼𝛼 \ ®𝑢.𝑞] ≡ loop 𝛽𝛽𝛽 ( ®𝑥){®𝑦. 𝑝 [𝛼𝛼𝛼 \ ®𝑢.𝑞]};
𝑓 ( ®𝑥){®𝑦𝑖 . 𝑝𝑖 }𝑖 [𝛼𝛼𝛼 \ ®𝑢.𝑞] ≡ 𝑓 ( ®𝑥){®𝑦𝑖 . 𝑝𝑖 [𝛼𝛼𝛼 \ ®𝑢.𝑞]}𝑖 .

Proposition 10 (Substitution rules). The following are derived rules.
variable substitution

Γ1, ( ®𝑥 : ®𝑋 ), Γ2 ⊢ 𝑝 : Δ (®𝑢 : ®𝑋 ) ∈ Γ
Γ1, Γ, Γ2 ⊢ 𝑝 [®𝑥 \ ®𝑢] : Δ

label substitution

Γ ⊢ 𝑝 : (𝛼𝛼𝛼 : ®𝑋 ),Δ (®𝑢 : ®𝑋 ), Γ ⊢ 𝑞 : Δ′,Δ

Γ ⊢ 𝑝 [𝛼𝛼𝛼 \ ®𝑢.𝑞] : Δ′,Δ

2.4 Interchange and Loop axioms
The interchange axiom declares that applying a term 𝑝 and then a term 𝑞 on each of its branches—

and independently of the branch—is the same as applying the term 𝑞 and then the term 𝑝 on each

of its branches, as long as the variables that both generators use and create are separate.

Axiom 11 (Interchange). Terms of the language must satisfy the following axiom, where the first

term have indices Δ1 = (𝛼𝛼𝛼1 :
®𝑈1), ..., (𝛼𝛼𝛼𝑛 : ®𝑈𝑛) and Δ2 = (𝛽𝛽𝛽1 : ®𝑉1), ..., (𝛽𝛽𝛽𝑚 : ®𝑉𝑚), and the resulting

equation uses the tensor of both indices, i.e. Δ1 ⊗ Δ2 = (𝛾𝛾𝛾1,1 : ®𝑈1, ®𝑉1), ..., (𝛾𝛾𝛾𝑛,𝑚 : ®𝑈𝑛, ®𝑉𝑚).
Interchange

Γ1 ⊢ 𝑝 : Δ1 Γ2 ⊢ 𝑞 : Δ2

Γ1, Γ2 ⊢ 𝑝 [𝛼𝛼𝛼𝑖 \ ®𝑢𝑖 .𝑞 [𝛽𝛽𝛽 𝑗 \ ®𝑣 𝑗 .𝛾𝛾𝛾𝑖, 𝑗 (𝑢𝑖 , 𝑣 𝑗 )]]𝑖 ≡ 𝑞 [𝛽𝛽𝛽 𝑗 \ ®𝑣 𝑗 .𝑝 [𝛼𝛼𝛼𝑖 \ ®𝑢𝑖 .𝛾𝛾𝛾𝑖, 𝑗 (𝑢𝑖 , 𝑣 𝑗 )]] 𝑗 : Δ1 ⊗ Δ2
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Remark 12 (Premonoidal and monoidal categories). The interchange axiom distinguishes two

possible semantic universes: premonoidal categories and monoidal categories. In this text, we will

be mostly concerned with monoidal categories (those for which the interchange axiom holds), but

dropping the interchange axiom does recover a language for the premonoidal case.

The following three axioms (Theorem 13) all concern the behaviour of loops. They are inspired

by the axioms of Conway theories ([Has97, SP00], which are traced cartesian multicategories), only

adapted to the distributive setting.

Axiom 13 (Loop axioms). Terms of the language must satisfy the following three axioms.

Dinaturality

( ®𝑥 : ®𝑋 ) ∈ Γ (®𝑢 : ®𝑋 ), Γ ⊢ 𝑝 : (𝛽𝛽𝛽 : ®𝑌 ),Δ (®𝑣 : ®𝑌 ), Γ ⊢ 𝑞 : (𝛼𝛼𝛼 : ®𝑋 ),Δ
Γ ⊢ loop 𝛼𝛼𝛼 ( ®𝑥){®𝑢.𝑝 [𝛽𝛽𝛽 \ ®𝑣 .𝑞]} ≡ 𝑝 [𝛽𝛽𝛽 \ ®𝑦.loop 𝛽 ( ®𝑦){®𝑣 . 𝑞[𝛼𝛼𝛼 \ ®𝑢.𝑝]}]

Diagonal

( ®𝑥 : ®𝑋 ) ∈ Γ (®𝑢 : ®𝑋 ), Γ ⊢ 𝑝 : (𝛽𝛽𝛽 : ®𝑋 ), (𝛼𝛼𝛼 : ®𝑋 ),Δ
Γ ⊢ loop 𝛼𝛼𝛼 ( ®𝑥){®𝑢. loop 𝛽𝛽𝛽 (®𝑢){®𝑢. 𝑝}} ≡ loop 𝛼𝛼𝛼 ( ®𝑥){®𝑢. 𝑝 [𝛽𝛽𝛽 \ ®𝑣 .𝛼𝛼𝛼 (®𝑣)]} : Δ

Uniformity

(®𝑢 : ®𝑋 ), Γ ⊢ ℓ : (𝛽𝛽𝛽1 : ®𝑌1), ..., (𝛽𝛽𝛽𝑚 : ®𝑌𝑚) (®𝑢 : ®𝑋 ), Γ ⊢ 𝑝 : (𝛾𝛾𝛾 : ®𝑋 ),Δ
(®𝑣𝑖 : ®𝑌𝑖 ), ( ®𝑥 : ®𝑋 ), Γ ⊢ 𝑞𝑖 : (𝛿𝛿𝛿𝑖 : ®𝑌𝑖 ),Δ

( ®𝑥 : ®𝑋 ) ∈ Γ (®𝑢 : ®𝑋 ), Γ ⊢ 𝑝 [𝛾𝛾𝛾 \ ®𝑢.ℓ] ≡ ℓ [𝛽𝛽𝛽𝑖 \ ®𝑣𝑖 .𝑞𝑖 ]𝑖 : (𝛽𝛽𝛽1 : ®𝑌1), ..., (𝛽𝛽𝛽𝑚 : ®𝑌𝑚),Δ
Γ ⊢ loop 𝛾𝛾𝛾 ( ®𝑥){®𝑢.𝑝} ≡ ℓ [®𝑢 \ ®𝑥] [𝛽𝛽𝛽𝑖 \ loop 𝛿𝛿𝛿𝑖 ( ®𝑦𝑖 ){ ®𝑣𝑖 .𝑞𝑖 }] : Δ

The main consequence of the previous loop axioms is that loops are fixed points.

Proposition 14 (Fixpoint rule). Looping on a label, loop 𝛼 ( ®𝑥){®𝑢.𝑝}, is a fixed-point for substitution
on that label, 𝑝 [𝛼𝛼𝛼 \ •], for any term 𝑝 . In other words, the following is a derived rule.

Fixpoint

( ®𝑥 : ®𝑋 ) ∈ Γ (®𝑢 : ®𝑋 ), Γ ⊢ 𝑝 : (𝛼𝛼𝛼 : ®𝑋 ),Δ
Γ ⊢ loop 𝛼𝛼𝛼 ( ®𝑥){®𝑢.𝑝} ≡ 𝑝 [®𝑢 \ ®𝑥] [𝛼𝛼𝛼 \ loop 𝛼𝛼𝛼 ( ®𝑥){®𝑢.𝑝}] : Δ

2.5 Derived structural rules
We do not need to impose the usual structural rules: these are consequences of how our terms were

constructed to start with. This has the advantage of simplifying some proofs later, where will not

have to separately check that our constructions preserve structural rules.

Proposition 15 (Label exchange, contraction, and weakening). Exchange, contraction, and weaken-
ing for labels are derivable.

lblExchange

Γ ⊢ 𝑝 : Δ1, (𝛼𝛼𝛼1 : Ψ1), (𝛼𝛼𝛼2 : Ψ2),Δ2

Γ ⊢ 𝑝 : Δ1, (𝛼𝛼𝛼2 : Ψ2), (𝛼𝛼𝛼1 : Ψ1),Δ2

lblContraction

Γ ⊢ 𝑝 : Δ1, (𝛼𝛼𝛼1 : Ψ), (𝛼𝛼𝛼2 : Ψ),Δ2

Γ ⊢ lCntr𝛼𝛼𝛼1,𝛼𝛼𝛼2
(𝑝) : Δ1, (𝛼𝛼𝛼 : Ψ),Δ2

lblWeakening

Γ ⊢ 𝑝 : Δ1,Δ2

Γ ⊢ 𝑝 : Δ1, (𝛼𝛼𝛼 : Ψ),Δ2

Proposition 16 (Index tensor exchange, contraction, weakening). Exchange, copying, and discarding
for variables on the index are derivable.

rExchange

Γ ⊢ 𝑝 : Δ1, (𝛼𝛼𝛼 : Ψ1, 𝑋1, 𝑋2,Ψ2),Δ2

Γ ⊢ rExch(𝑝) : Δ1, (𝛼𝛼𝛼 : Ψ1, 𝑋2, 𝑋1,Ψ2),Δ2

rCopying

Γ ⊢ 𝑝 : Δ1, (: Ψ1, 𝑋,Ψ2),Δ2

Γ ⊢ rCopy(𝑝) : Δ1, (𝛼𝛼𝛼 : Ψ1, 𝑋, 𝑋,Ψ2),Δ2

rDiscarding

Γ ⊢ 𝑝 : Δ1, (𝛼𝛼𝛼 : Ψ1, 𝑋,Ψ2),Δ2

Γ ⊢ rDisc(𝑝) : Δ1, (𝛼𝛼𝛼 : Ψ1,Ψ2),Δ2
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8 Anon.

Proposition 17 (Variable exchange and contraction). Variable exchange, variable contraction, and
variable weakening are derivable.

varExchange

Γ1, (𝑥 : 𝑋 ), (𝑦 : 𝑌 ), Γ2 ⊢ 𝑝 : Δ

Γ1, (𝑦 : 𝑌 ), (𝑥 : 𝑋 ), Γ2 ⊢ 𝑝 : Δ

varContraction

Γ1, (𝑥1 : 𝑋 ), (𝑥2 : 𝑋 ), Γ2 ⊢ 𝑝 : Δ

Γ1, (𝑥 : 𝑋 ), Γ2 ⊢ 𝑝 [𝑥1, 𝑥2 \ 𝑥, 𝑥] : Δ

varWeakening

Γ1, Γ2 ⊢ 𝑝 : Δ

Γ1, (𝑥 : 𝑋 ), Γ2 ⊢ 𝑝 : Δ

2.6 Posetal reasoning
Program logics will require not only that we reason about equality, but also about different notions of

implication and dominance that only share the common structure of partially ordered sets preserved

by the term constructors. For this, it is also convenient to assume a partially ordered set in the

generators of the language. Most of our semantic examples will actually form directed-complete

partial orders (dcpo’s) but, strictly speaking, we do not need them to do so.

Definition 18 (Posetal distributive signature). A posetal distributive signature, (B,G,≤), is a
distributive signature whose sets of generators are endowed with a poset structure.

Axiom 19 (Posetal reasoning). The following are the primitive rules for posetal reasoning.

Return

{(𝑥𝑖 : 𝑋𝑖 ) ∈ Γ}𝑛𝑖=1 (𝛼𝛼𝛼 : 𝑋1, ..., 𝑋𝑛) ∈ Δ
Γ ⊢ 𝛼𝛼𝛼 (𝑥1, ..., 𝑥𝑛) ≤ 𝛼𝛼𝛼 (𝑥1, ..., 𝑥𝑛) : Δ

Loop

{( ®𝑥 : ®𝑋 ) ∈ Γ} Γ ⊢ 𝑝 ≤ 𝑞 : 𝛾𝛾𝛾 (𝑋1, ..., 𝑋𝑛),Δ
Γ ⊢ (loop 𝛼𝛼𝛼 ( ®𝑥){®𝑢.𝑝}) ≤ (loop 𝛼𝛼𝛼 ( ®𝑥){®𝑢.𝑞}) : Δ

Generator (𝑓 )

{(𝑥𝑖 : 𝑋𝑖 ) ∈ Γ}𝑛𝑖=1 {®𝑦𝑖 : ®𝑌𝑖 , Γ ⊢ 𝑝𝑖 ≤ 𝑞𝑖 : Δ}ℓ𝑖=1 𝑓 ≤ 𝑔
Γ ⊢ 𝑓 ( ®𝑥){®𝑦𝑖 .𝑝𝑖 }ℓ𝑖=1 ≤ 𝑔( ®𝑥){®𝑦𝑖 .𝑞𝑖 }ℓ𝑖=1 : Δ

We ask for two additional conditions—inspired by our intended semantics—declaring the top

and bottom elements of this preorder to be the empty return and the diverging loop, respectively.

Top

Γ ⊢ 𝑝 : (𝛼𝛼𝛼 : ())
Γ ⊢ 𝑝 ≤ 𝛼𝛼𝛼 () : (𝛼𝛼𝛼 : ())

Bottom

Γ ⊢ 𝑝 : Δ

Γ ⊢ loop 𝛼𝛼𝛼 (){𝛼𝛼𝛼 ()} ≤ 𝑝 : Δ

The final ingredient is for loops to be considered not only up to uniformity but up to both posetal

translations of the uniformity rule. This is captured by the following posetal uniformity axioms.

Axiom 20 (Posetal uniformity). Posetal uniformity consists of the following pair of axioms.

Backward posetal uniformity

(®𝑢 : ®𝑋 ), Γ ⊢ 𝑝 [𝛾𝛾𝛾 \ ®𝑢.ℓ] ≤ ℓ [𝛽𝛽𝛽𝑖 \ ®𝑣𝑖 .𝑞𝑖 ]𝑖 : (𝛽𝛽𝛽1 : ®𝑌1), ..., (𝛽𝛽𝛽𝑚 : ®𝑌𝑚),Δ
Γ ⊢ loop 𝛾𝛾𝛾 ( ®𝑥){®𝑢.𝑝} ≤ ℓ [®𝑢 \ ®𝑥] [𝛽𝛽𝛽𝑖 \ loop 𝛿𝛿𝛿𝑖 ( ®𝑦𝑖 ){ ®𝑣𝑖 .𝑞𝑖 }] : Δ

Forward posetal uniformity

(®𝑢 : ®𝑋 ), Γ ⊢ ℓ [𝛽𝛽𝛽𝑖 \ ®𝑣𝑖 .𝑞𝑖 ]𝑖 ≤ 𝑝 [𝛾𝛾𝛾 \ ®𝑢.ℓ] : (𝛽𝛽𝛽1 : ®𝑌1), ..., (𝛽𝛽𝛽𝑚 : ®𝑌𝑚),Δ
Γ ⊢ ℓ [®𝑢 \ ®𝑥] [𝛽𝛽𝛽𝑖 \ loop 𝛿𝛿𝛿𝑖 ( ®𝑦𝑖 ){ ®𝑣𝑖 .𝑞𝑖 }] ≤ loop 𝛾𝛾𝛾 ( ®𝑥){®𝑢.𝑝} : Δ

3 Guards, predicates and commands
Program triples, {𝑝} 𝑐 {𝑞}, contain three elements, but of different nature. To start with, while the

middle element, 𝑐 , is a command modifying a state of the program, both 𝑝 and 𝑞 are conditions that

do not produce new values. In terms of categories, commands are endomorphisms 𝑐 : 𝑋 → 𝑋 on a
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fixed type 𝑋 of program states, while conditions will be—depending on the logic—either predicates,

𝑝, 𝑞 : 𝑋 → 𝐼 , or states, 𝑝, 𝑞 : 𝐼 → 𝑋 .

It is tempting to conflate predicates and states. In non-deterministic semantics, for instance, they

coincide: a function from 𝑋 to P(1) is the same as a function from 1 to P(𝑋 ). We must resist this

temptation. Already in the stochastic case, a function 𝑝 : 𝑋 → D(1) assigns a number in the unit

interval to each element, 𝑝 (𝑥) ∈ [0, 1], representing the probability that 𝑥 satisfies the property 𝑝 ;

on the other hand, a function 𝑠 : 1→ D(𝑋 ) is a distribution: it not only assigns an number to each

element, but explicitly asks them to add up to 1, as they represent the probability that the different

events in 𝑋 happen.

The second temptation is to conflate predicates with the conditions that commands use in their

“if-else” clauses: what we call guards. Guards, however, are morphisms 𝑏 : 𝑋 → 1 + 1. They do not

deal only with choosing whether some condition holds or not, but must decide on which of the

branches to follow.

In many models, guards and predicates can be confused. For instance, a partial function 𝑋 → 1

is the same thing as a total function 𝑋 → 1 + 1; the first has the form of a predicate, the second

that of a guard. However, this is not true in general [Jac18, Proposition 11 and Lemma 14] and it is

by carefully distinguishing them that we get a consistent algebra that works across probabilistic,

partial, or relational models.

3.1 Guards
Definition 21 (Guard combinators). Guards are terms of the form Γ ⊢ 𝑏 : Ω, for an arbitrary

context Γ = (𝑥1 : 𝑋1, ..., 𝑥𝑛 : 𝑋𝑛) and an index of the form Ω = (𝛼𝛼𝛼1 : (),𝛼𝛼𝛼2 : ()). We introduce the

following guard combinators.

Left

Γ ⊢ LLL : Ω

Right

Γ ⊢ RRR : Ω

And

Γ ⊢ 𝑏1 : Ω Γ ⊢ 𝑏2 : Ω
Γ ⊢ 𝑏1∧𝑏2 : Ω

Or

Γ ⊢ 𝑏1 : Ω Γ ⊢ 𝑏2 : Ω
Γ ⊢ 𝑏1∨𝑏2 : Ω

Not

Γ ⊢ 𝑏 : Ω
Γ ⊢ (¬𝑏) : Ω

Pick

Γ ⊢ 𝑏 : Ω Γ ⊢ 𝑡1 : Δ Γ ⊢ 𝑡2 : Δ
Γ ⊢ [𝑏]{𝑡1}{𝑡2} : Δ

Proposition 22. Guard combinators are derived constructs, defined as follows.

[𝑏]{𝑡1}{𝑡2} ≡ 𝑏 [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \ 𝑡1, 𝑡2];
LLL ≡ 𝛼𝛼𝛼1 (); RRR ≡ 𝛼𝛼𝛼2 (); (¬𝑏) ≡ 𝑏 [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \𝛼𝛼𝛼2,𝛼𝛼𝛼1];

(𝑏1∧𝑏2) ≡ 𝑏1 [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \ 𝑏2, 𝑏2 [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \𝛼𝛼𝛼2,𝛼𝛼𝛼2]]; (𝑏1∨𝑏2) ≡ 𝑏1 [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \ 𝑏2 [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \𝛼𝛼𝛼1,𝛼𝛼𝛼1], 𝑏2];

Proposition 23. Guards form a pair of commutative monoids, and negation is an involutive homo-

morphism between them.

𝑏1∧𝑏2 ≡ 𝑏2∧𝑏1; (𝑏1∧𝑏2)∧𝑏3 ≡ 𝑏1∧(𝑏2∧𝑏3); 𝑏∧LLL ≡ 𝑏;
𝑏1∨𝑏2 ≡ 𝑏2∨𝑏1; (𝑏1∨𝑏2)∨𝑏3 ≡ 𝑏1∨(𝑏2∨𝑏3); 𝑏∨RRR ≡ 𝑏;

¬(𝑏1∧𝑏2) ≡ ¬𝑏2∨¬𝑏1; ¬(¬𝑏) ≡ 𝑏.

For any total guard, Γ ⊢ 𝑏𝑡 : Ω, we additionally have the annihilator rules, 𝑏𝑡∧RRR ≡ RRR and 𝑏𝑡∨LLL ≡ LLL.
For any deterministic guard, Γ ⊢ 𝑏𝑑 : Ω, we additionally have the idempotency rules. 𝑏𝑑∧𝑏𝑑 ≡ 𝑏𝑑 and

𝑏𝑑∨𝑏𝑑 ≡ 𝑏𝑑 .
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3.2 Predicates
Definition 24 (Predicate combinators). Predicates are terms of the form Γ ⊢ 𝑝 : Υ, for an arbitrary

context Γ = (𝑥1 : 𝑋1, ..., 𝑥𝑛 : 𝑋𝑛) and an index of the form Υ = (𝜐𝜐𝜐 : ()). We introduce the following

predicate combinators.

Top

Γ ⊢ ⊤ : Υ

Bot

Γ ⊢ ⊥ : Υ

And

Γ ⊢ 𝑝 : Υ Γ ⊢ 𝑞 : Υ

Γ ⊢ 𝑝 ∧ 𝑞 : Υ

Conditional

Γ ⊢ 𝑝 : Υ Γ ⊢ 𝑞 : Υ

Γ ⊢ 𝑝 +𝑏 𝑞 : Υ

Guard

Γ ⊢ 𝑏 : Ω

Γ ⊢ 𝑏# : Υ

Substitution

Γ ⊢ 𝑝 : Υ Γ ⊢ 𝑒 : (𝜀 : 𝑋𝑖 ) (𝑥𝑖 : 𝑋𝑖 ) ∈ Υ
Γ ⊢ 𝑝 [𝑥𝑖 \ 𝑒] : Υ

Proposition 25. Predicate combinators are derived constructs, defined as follows.

⊤ ≡ 𝜐𝜐𝜐 (); ⊥ ≡ loop𝜔𝜔𝜔 (){𝜔𝜔𝜔 ()}; (𝑝 ∧ 𝑞) ≡ 𝑝 [𝜈𝜈𝜈 \ 𝑞]; (𝑝 +𝑏 𝑞) ≡ [𝑏]{𝑝}{𝑞};
𝑏# ≡ [𝑏]{⊤}{⊥}; 𝑝 [𝑥𝑖 \ 𝑒] ≡ 𝑒 [𝜀 \ 𝑥𝑖 .𝑝] .

Proposition 26. The following equations hold for predicate combinators: predicates form a commu-

tative monoid with conjunction and truth, with falsehood as an absorbing element, that distributes

over choices.

𝑝 ∧ 𝑞 ≡ 𝑞 ∧ 𝑝; 𝑝 ∧ (𝑞 ∧ 𝑟 ) ≡ (𝑝 ∧ 𝑞) ∧ 𝑟 ; 𝑝 ∧ ⊤ ≡ 𝑝; 𝑝 ∧ ⊥ ≡ ⊥;
𝑝 ∧ (𝑞 +𝑏 𝑟 ) ≡ (𝑝 ∧ 𝑞) +𝑏 (𝑝 ∧ 𝑟 ).

For any total predicate, Γ ⊢ 𝑝𝑡 : Υ, we have it collapse, 𝑝 ≡ ⊤. For any deterministic predicate,

Γ ⊢ 𝑝𝑑 : Υ, we have the idempotency rule, 𝑝𝑑 ∧ 𝑝𝑑 ≡ 𝑝𝑑 .

3.3 Commands
Definition 27 (Command combinators). Commands are terms of the form Γ ⊢ 𝑐 : Ψ, for an
arbitrary context Γ = (𝑥1 : 𝑋1, ..., 𝑥𝑛 : 𝑋𝑛) and an index of the form Ψ = (𝜂𝜂𝜂 : (𝑋1, ..., 𝑋𝑛)). We

introduce the following command combinators, inspired by Winskel’s IMP language [Win93].

Skip

Γ ⊢ skip : Ψ

Abort

Γ ⊢ abort : Ψ

While

Γ ⊢ 𝑏 : Ω Γ ⊢ 𝑐 : Ψ
Γ ⊢ while𝑏 do 𝑐 : Ψ

IfElse

Γ ⊢ 𝑏 : Ω Γ ⊢ 𝑐1 : Ψ Γ ⊢ 𝑐2 : Ψ
Γ ⊢ if 𝑏 then 𝑐1 else 𝑐2 : Ψ

Concatenate

Γ ⊢ 𝑐1 : Ψ Γ ⊢ 𝑐2 : Ψ
Γ ⊢ (𝑐1; 𝑐2) : Ψ

Assert

Γ ⊢ 𝑝 : Υ

Γ ⊢ assert𝑝 : Γ

Variable Assignment

{(𝑢𝑖 : 𝐴𝑖 ) ∈ Γ}𝑛𝑖=1 {(𝑣𝑖 : 𝐴𝑖 ) ∈ Γ}𝑛𝑖=1
Γ ⊢ 𝑢1, ..., 𝑢𝑛 ≔ 𝑣1, ..., 𝑣𝑚 : Ψ

Generator Assignment

{(𝑢𝑖 : 𝐴𝑖 ) ∈ Γ}𝑛𝑖=1 {(𝑣 𝑗 : 𝐵 𝑗 ) ∈ Γ}𝑚𝑗=1 𝑓 ∈ Σ(𝐴1, ..., 𝐴𝑛 ;𝐵1, ..., 𝐵𝑚)
Γ ⊢ 𝑢1, ..., 𝑢𝑛 ≔ 𝑓 (𝑣1, ..., 𝑣𝑚) : Ψ

Proposition 28. Command combinators are derived constructors, defined as follows.

skip ≡ 𝜂𝜂𝜂 ( ®𝑥); (𝑐1 ; 𝑐2) ≡ 𝑐1 [𝜂𝜂𝜂 \ ®𝑥 .𝑐2]; assert𝑝 ≡ 𝑝 [𝑣𝑣𝑣 \𝜂𝜂𝜂 ( ®𝑥)] abort ≡ assert⊥;
(®𝑢 ≔ ®𝑣) = 𝜂𝜂𝜂 ( ®𝑥) [®𝑢 \ ®𝑣]; (®𝑢 ≔ 𝑓 (®𝑣)) = 𝑓 (®𝑣){®𝑢.𝜂𝜂𝜂 ( ®𝑥)}; if 𝑏 then 𝑐1 else 𝑐2 ≡ [𝑏]{𝑐1}{𝑐2};

while𝑏 do 𝑐 ≡ loop 𝛼𝛼𝛼 ( ®𝑥){if 𝑏 then 𝑐 [𝜂𝜂𝜂 \ ®𝑥 .𝛼𝛼𝛼 ( ®𝑥)] else skip};

Proposition 29. The following equations hold for command combinators. In particular, commands

form a monoid, with composition and skip.

(𝑐1 ; 𝑐2) ; 𝑐3 ≡ 𝑐1 ; (𝑐2 ; 𝑐3); (𝑐 ; skip) ≡ 𝑐 ≡ (skip ;𝑐); abort; 𝑐 ≡ abort ≡ 𝑐 ; abort;
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if LLL then 𝑐1 else 𝑐2 ≡ 𝑐1; if RRR then 𝑐1 else 𝑐2 ≡ 𝑐2; if (¬𝑏) then 𝑐1 else 𝑐2 ≡ if 𝑏 then 𝑐2 else 𝑐1;

while𝑏 do 𝑐 ≡ if 𝑏 then(𝑐 ; while𝑏 do 𝑐) else skip; while𝑏 do abort ≡ assert (¬𝑏)#;
if 𝑏 then 𝑐1 else 𝑐2 ; 𝑑 ≡ if 𝑏 then(𝑐1;𝑑) else(𝑐2;𝑑);

assert 𝑝; assert𝑞 ≡ assert(𝑝 ∧ 𝑞); assert𝑏# ≡ if 𝑏 then skip else abort;

assert⊤ ≡ skip; assert⊥ ≡ abort; assert(𝑝 +𝑏 𝑞) = if 𝑏 then(assert𝑝) else(assert𝑞)

We define a combinator that does not yield an endomorphism but that will be useful in the proofs

that employ uniformity.

Definition 30. For a guard 𝑏 and two arbitrary terms 𝑡1 and 𝑡2, the branch combinator is defined

as L𝑏M{𝑡1}{𝑡2} ≡ 𝑏 [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \ 𝑡1, 𝑡2]. Its typing rule is below.
Branch

Γ ⊢ 𝑏 : Ω Γ ⊢ 𝑡1 : Δ1 Γ ⊢ 𝑡2 : Δ2

Γ ⊢ L𝑏M{𝑐1}{𝑐2} : Δ1,Δ2

3.4 States
Definition 31 (States). States are terms of the form ⊢ 𝑠 : Ψ, implicitly fixing an arbitrary context

Γ = (𝑥1 : 𝑋1, ..., 𝑥𝑛 : 𝑋𝑛) and taking an index of the form Ψ = (𝜂𝜂𝜂 : (𝑋1, ..., 𝑋𝑛)). We introduce the

following state combinators.

abort

⊢ ⊥ : Ψ

observe

⊢ 𝑠 : Ψ Γ ⊢ 𝑝 : Υ

⊢ 𝑠 ⇂ 𝑝 : Ψ

choice

⊢ 𝑠 : Ψ ⊢ 𝑡 : Ψ ⊢ 𝑏 : Ω

⊢ 𝑠 +𝑏 𝑡 : Ψ

sample

⊢ 𝑠 : Ψ (𝑥 : 𝑋 ) ∈ Γ
⊢ (𝑥 ← 𝑠) : Ψ

cosubstitution

(𝑥 : 𝑋 ) ∈ Γ (𝑢 : 𝑋 ) ∈ Γ
⊢ 𝑠 (𝑢 \ 𝑥) : Ψ

mute

⊢ 𝑠 : Ψ ⊢ 𝑠𝑖 : (𝛼𝑖 : 𝑋𝑖 ) (𝑥𝑖 : 𝑋𝑖 ) ∈ Γ
⊢∐𝑥𝑖

𝑠 · 𝑠𝑖 : Ψ

Proposition 32. State combinators are derived rules, defined as follows.

⊥ ≡ loop 𝛼𝛼𝛼 (){𝛼𝛼𝛼 ()}; 𝑠 ⇂ 𝑝 ≡ (𝑠; assert𝑝); 𝑠 +𝑏 𝑡 ≡ 𝑏 [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \ 𝑠, 𝑡];
(𝑥𝑖 ← 𝑠) ≡ (𝑥𝑖 ≔ 𝑠𝑖 ()); 𝑠 (𝑢 \ 𝑥) ≡ 𝑠 [𝜂𝜂𝜂 \ 𝑥 ≔ 𝑢]; ∐

𝑥1
𝑠 · 𝑠𝑖 ≡ 𝑠 [𝜂𝜂𝜂 \ 𝑥𝑖 ≔ 𝑠𝑖 ()];

4 Categorical semantics
After having finally introduced all the components of program logics, this section provides their

categorical semantics.

4.1 Premonoidal copy-discard categories
Premonoidal categories [PT97, PR97, Jef97] provide denotational semantics to process theories

where the order of execution matters, as it usually does in impure imperative programming. Our

multiplicative fragment semantics is inspired by the theory of Freyd categories [PT97, Lev22, HJ06],

but instead of allowing a distinguished class of cartesian values, we simply ask for the ability

to copy and discard variables: those providing this ability are called copy-discard premonoidal

categories (see also [Fü99]).

Definition 33 (Premonoidal category). A (strict) premonoidal category is a category, C, endowed
with a sesquifunctor (⊗) : (C,C) → C and an object 𝐼 ∈ C, that are associative and unital on objects,
satisfying 𝐴 ⊗ (𝐵 ⊗ 𝐶) = (𝐴 ⊗ 𝐵) ⊗ 𝐶 and 𝐴 ⊗ 𝐼 = 𝐴 = 𝐼 ⊗ 𝐴, and separately associative and unital

on morphisms, satisfying: (i) (𝑓 ⊗ id𝐵) ⊗ id𝐶 = 𝑓 ⊗ (id𝐵 ⊗ id𝐶 ); (ii) (id𝐴 ⊗𝑔) ⊗ id𝐶 = id𝐴 ⊗ (𝑔 ⊗ id𝐶 );
(iii) id𝐴 ⊗ (id𝐵 ⊗ ℎ) = (id𝐴 ⊗ id𝐵) ⊗ ℎ; and (iv) id𝐼 ⊗ 𝑓 = 𝑓 = 𝑓 ⊗ id𝐼 .
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Crucially, a premonoidal category does not necessarily satisfy the following interchange axiom.

We say that a morphism, 𝑓 : 𝐴 → 𝐴′, is central whenever, for any morphism 𝑔 : 𝐵 → 𝐵′, the
interchange axiom holds:

(𝑓 ⊗ id𝐵) # (id𝐴′ ⊗ 𝑔) = (id𝐴′ ⊗ 𝑔) # (𝑓 ⊗ id𝐵′ ).
A monoidal category is a premonoidal category where all morphisms are central.

Definition 34 (Copy-discard premonoidal category). A copy-discard premonoidal category is a

symmetric premonoidal category where each object,𝑋 , has a compatible and central cocommutative

comonoid structure: a copy morphism 𝜈𝑋 : 𝑋 → 𝑋 ⊗ 𝑋 and a discard morphism 𝜀𝑋 : 𝑋 → 𝐼 , that

are associative, 𝜈𝑋 # (𝜈𝑋 ⊗ id𝑋 ) = 𝜈𝑋 # (id𝑋 ⊗ 𝜈𝑋 ), unital, 𝜈𝑋 # (𝜀𝑋 ⊗ id𝑋 ) = id𝑋 , commutative,

𝜈𝑋 # 𝜎𝑋,𝑋 = 𝜈𝑋 , and compatible with tensor and unit, 𝜈𝑋⊗𝑌 = (𝜈𝑋 ⊗ 𝜈𝑌 ) # (id𝑋 ⊗ 𝜎𝑋,𝑌 ⊗ id𝑌 ) and
𝜀𝑋⊗𝑌 = (𝜀𝑋 ⊗ 𝜀𝑌 ), and 𝜈𝐼 = id𝐼 and 𝜀𝐼 = id𝐼 . A copy-discard monoidal category is a copy-discard

premonoidal category where all morphisms are central.

Definition 35 (Deterministic and total morphisms). In a copy-discard category, a morphism

𝑓 : 𝑋 → 𝑌 is deterministic if it preserves copying, 𝑓 # 𝜈𝑌 = 𝜈𝑋 # (𝑓 ⊗ 𝑓 ); it is total if it preserves
discarding, 𝑓 # 𝜀𝑌 = 𝜀𝑋 .

Proposition 36 (Grandis [Gra01, Theorem 4.1], Lack [Lac04, §5.1]). Each copy-discard category,

(C, ⊗, 𝐼 ), is endowed with a (non-natural) family of morphisms for each opposite function between

finite sets,

𝑓 ★𝑋 : C(𝑋1, ..., 𝑋𝑛 ;𝑋𝑓 (1) , ..., 𝑋𝑓 (𝑚) ), for each 𝑓 ∈ FinSet(𝑚;𝑛);
these additionally satisfy (i) 𝑓 ★

𝑋
⊗ 𝑔★

𝑌
= (𝑓 + 𝑔)★

𝑋⊗𝑌 , (ii) 𝑓
★
𝑋

# 𝑔★
𝑋 (𝑓 ) = (𝑔 # 𝑓 )★

𝑋
, and (iii) id

★
𝑋 = id𝑋 .

Remark 37 (Values and computations). The language here proposed does not define values separately

from statements: it is not possible to substitute values for variables. Instead, it is possible to substitute

variables, generators by terms, and labels by terms. Nothing—but minimalism—prevents us from

adding this distinction; but let us note that it is not necessary for our development.

Example 38. Copy-discard premonoidal categories provide a less expressive but more general

alternative to Moggi’s monadic metalanguage [Mog91]: the Kleisli category of every strong monad,

comonad, or distributive law over a cartesian category forms a copy-discard premonoidal category.

Copy-discard monoidal categories have encountered applications in probability theory, at the base

of Markov categories.

However, they lack both iteration and choice, which makes them too restrictive for fully-fledged

imperative programming. We now add choice in the form of cocartesian products: not via co-

cartesian monoidal categories (which would introduce further redundancy) but via cocartesian

multicategories, which reformulate clones and Lawvere theories.

4.2 Cocartesian multicategories
Multicategories are well-known algebraic structures for the modelling of sequent logic [Her00,

Lam68]; their cartesian version, cartesian multicategories, is the multi-sorted version of clones. We

will employ cartesian multicategories with a twist: their intended semantics is not in categories we

would think of as cartesian, but on the “opposite to a cocartesian category”. To emphasize this, we

call them cocartesian multicategories.

The structure of copy-discard premonoidal category we just detailed will still be present, but now

as an operation on multimorphisms. Cocartesian multicategories that are, at the same time—and

in a compatible way—copy-discard premonoidal categories form predistributive multicategories;
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respectively, cocartesian multicategories that are at the same time—and in a compatible way—copy-

discard categories form distributive multicategories. While these are less studied in the literature,

their representable counterparts distributive categories are well-known; we extract coherence

results from this literature [Lap06].

Definition 39 (Multicategory). A multicategory (or, equivalently, a comulticategory), M, is a collec-

tion of objects, M𝑜𝑏 𝑗 , together with a collection of multimorphisms, M(𝑋 ;𝑌1, ..., 𝑌𝑛), for each object,

𝑋 ∈ M𝑜𝑏 𝑗 , and each list of objects, 𝑌1, ..., 𝑌𝑛 ∈ M𝑜𝑏 𝑗 .

For each object, 𝑋 ∈ M𝑜𝑏 𝑗 , there must exist an identity morphism, id𝑋 : 𝑋 → 𝑋 ; and for each

object, 𝑋 ∈ M𝑜𝑏 𝑗 , each 𝑛-list of objects, 𝑌1, ..., 𝑌𝑛 ∈ M𝑜𝑏 𝑗 , and each 𝑛 lists of objects, 𝑍𝑖,1, ..., 𝑍𝑖,𝑚𝑖
∈

M𝑜𝑏 𝑗 , there exists a composition operation,

(#) : M(𝑋 ;𝑌1, ..., 𝑌𝑛) ×
𝑛∏
𝑖=0

M(𝑌𝑖 ;𝑍𝑖,1, ..., 𝑍𝑖,𝑚𝑖
) → M(𝑋 ;𝑍1,1, ..., 𝑍𝑛,𝑚𝑛

).

Composition and identities must satisfy the unitality axiom, stating that id # 𝑓 = 𝑓 = 𝑓 # (id, ..., id);
and the associativity axiom, stating that

𝑓 # (𝑔1 # (ℎ1,1, ..., ℎ1,𝑚1
), ..., 𝑔𝑛 # (ℎ𝑛,1, ..., ℎ𝑛,𝑚𝑛

)) =

𝑓 # (𝑔1#, ..., 𝑔𝑛) # (ℎ1,1, ..., ℎ1,𝑚1
, ..., ℎ𝑛,1, ..., ℎ𝑛,𝑚𝑛

).

Remark 40. Multicategories can be also axiomatized in terms of a composition operation on a

single index, which is sometimes more comfortable. We write the single composition operation

as 𝑓 #𝑖 𝑔 = 𝑓 # (id, ..., 𝑔 (𝑖 ) , ..., id). It must satisfy (i) that (𝑓 #𝑖 𝑔) #𝑗 ℎ = 𝑓 #𝑖 (𝑔 #𝑗−𝑖+1 ℎ) whenever
𝑖 ≤ 𝑗 ≤ 𝑖 +𝑚 − 1 where 𝑔 has𝑚 outputs, and that (ii) that (𝑓 #𝑖 𝑔) #𝑗 ℎ = (𝑓 #𝑗−𝑖+1 ℎ) #𝑖 𝑔 whenever

𝑖 +𝑚 − 1 < 𝑗 .

Lemma 41 (Terms form a multicategory). Terms, with composition, form a multicategory. The

composition of two terms with appropriately matching types, Γ ⊢ 𝑝 : Δ1, (𝜔𝜔𝜔 : 𝑌1, ..., 𝑌𝑚),Δ2 and

(𝑦1 : 𝑌1), ..., (𝑦𝑚 : 𝑌𝑚) ⊢ 𝑞 : Δ, along the label 𝜔𝜔𝜔 , yields a term, Γ ⊢ (𝑝 #𝜔 𝑞) : Δ1,Δ,Δ2, inductively

defined as follows.

𝜔𝜔𝜔 ( ®𝑥) #𝜔 𝑞 ≡ 𝑞 [®𝑦 \ ®𝑥];
𝛼𝛼𝛼 ( ®𝑥) #𝜔 𝑞 ≡ 𝛼𝛼𝛼 ( ®𝑥), for 𝛼𝛼𝛼 ≠ 𝜔𝜔𝜔 ;

(loop 𝛼𝛼𝛼 ( ®𝑥){®𝑢.𝑝}) #𝜔 𝑞 ≡ loop 𝛼𝛼𝛼 ( ®𝑥){®𝑢.(𝑝 #𝜔 𝑞)};
(𝑓 ( ®𝑥){®𝑦𝑖 .𝑝𝑖 }) #𝜔 𝑞 ≡ 𝑓 ( ®𝑥){®𝑦𝑖 .(𝑝𝑖 #𝜔 𝑞)}.

The identity term, ®𝑥 : ®𝑋 ⊢ id : (𝛼𝛼𝛼 : ®𝑋 ), is defined by id = 𝛼𝛼𝛼 ( ®𝑥).

Proposition 42 (Cut-elimination). The following cut is a derived rule.
Cut

Γ ⊢ 𝑝 : Δ1, (𝜔𝜔𝜔 : 𝑌1, ..., 𝑌𝑚),Δ2 (𝑦1 : 𝑌1), ..., (𝑦𝑚 : 𝑌𝑚) ⊢ 𝑞 : Δ
Γ ⊢ (𝑝 #𝜔 𝑞) : Δ1,Δ,Δ2

By only considering labels – and forgetting about the variable structure – terms follow the

structure of a cocartesian multicategory. This is the equivalent opposite of a cartesian multicategory

(a clone, or a colored Lawvere theory). In particular, a cocartesian multicategory is a symmetric

multicategory.

Definition 43 (Cocartesian multicategory). A cocartesian multicategory is a multicategory M with,

for each finite function, 𝜎 : 𝑚 → 𝑛, an action, (•) · 𝜎∗ : M(𝑋 ;𝑌𝜎 (1) , ..., 𝑌𝜎 (𝑚) ) → M(𝑋 ;𝑌1, ..., 𝑌𝑛),
satisfying axioms,
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(1) 𝑓 · id∗ = 𝑓 , and 𝑓 · 𝜎∗ · 𝜏∗ = 𝑓 · (𝜎 # 𝜏)∗;
(2) 𝑔 # (𝑓1 · 𝜎∗1 , ..., 𝑓𝑛 · 𝜎∗𝑛) = (𝑔 # (𝑓1, ..., 𝑓𝑛)) · (𝜎1 + ... + 𝜎𝑛)∗;
(3) 𝑔 · 𝜎∗ # (𝑓1, ..., 𝑓𝑛) = (𝑔 # (𝑓𝜎 (1) , ..., 𝑓𝜎 (𝑚) )) · (𝜎 (𝑘1, ..., 𝑘𝑚))∗.

Here, by 𝜎 (𝑘1, ..., 𝑘𝑛) : 𝑘𝜎 (1) + ... + 𝑘𝜎 (𝑚) → 𝑘1 + ... + 𝑘𝑛 , we denote the block function that acts

as the identity on each one of the blocks, and as 𝜎 : 𝑚 → 𝑛 among them [Shu16]. By 𝜎1 + ... +
𝜎𝑛 : 𝑘1 + ... + 𝑘𝑛 → 𝑘 ′

1
+ ... + 𝑘 ′𝑛 we denote the coproduct of finite functions. Later, we will use

[𝜎1, ..., 𝜎𝑛] : 𝑘1 + ... + 𝑘𝑛 → 𝑘 to denote the cotupling of functions sharing a codomain.

Proposition 44 (Terms form a cocartesian multicategory). Terms form a cocartesian multicategory

with label substitution. The following rule is derivable and satisfies the axioms in Theorem 43.

Label coaction

Γ ⊢ 𝑝 : (𝛼𝛼𝛼1 : Ψ𝜎 (1) ), ..., (𝛼𝛼𝛼𝑚 : Ψ𝜎 (𝑚) )
Γ ⊢ 𝑝 [𝛼𝛼𝛼1, ...,𝛼𝛼𝛼𝑚 \ 𝛽𝛽𝛽𝜎 (1) , ..., 𝛽𝛽𝛽𝜎 (𝑚) ] : (𝛽𝛽𝛽1 : Ψ1), ..., (𝛽𝛽𝛽𝑛 : Ψ𝑛)

4.3 Distributive copy-discard multicategories
Definition 45 (Predistributive multicategory). A (strict) predistributive multicategory is a cocarte-

sian multicategory, (M, ∗), with a monoid on objects, (M𝑜𝑏 𝑗 , ⊗, 1), and, additionally, operations
(• ⋊𝑈 ) : M(𝑋 ;𝑌1, ..., 𝑌𝑛) → M(𝑋 ⊗ 𝑈 ;𝑌1 ⊗ 𝑈 , ..., 𝑌𝑛 ⊗ 𝑈 ),
(𝑈 ⋉ •) : M(𝑋 ;𝑌1, ..., 𝑌𝑛) → M(𝑈 ⊗ 𝑋 ;𝑈 ⊗ 𝑌1, ...,𝑈 ⊗ 𝑌𝑛),

that must satisfy (i) left unitality, (𝐼 ⋉ 𝑓 ) = 𝑓 , (ii) left associativity,𝑈 ⋉ (𝑉 ⋉ 𝑓 ) = (𝑈 ⊗ 𝑉 ) ⋉ 𝑓 , (iii)

right unitality, (𝑓 ⋊ 𝐼 ) = 𝑓 , (iv) right associativity, 𝑓 ⋊ (𝑈 ⋊𝑉 ) = (𝑓 ⋊𝑈 ) ⋊𝑉 , and (v) compatibility,

(𝑈 ⋉ 𝑓 ) ⋊𝑉 =𝑈 ⋉ (𝑓 ⋊𝑉 ).

Definition 46 (Predistributive copy-discard multicategory). A predistributive copy-discard multi-

category is a predistributive multicategory moreover endowed with the structure of a premonoidal

copy-discard category on its unary morphisms.

Lemma 47 (Terms form a predistributive copy-discard multicategory). Terms form a predistributive

copy-discard multicategory. Variable multiwhiskering (multiWhisk-r and multiWhisk-l), where we

add the same type to the premises and to each one of the conclusions, are derivable.

multiWhisk-l

Γ ⊢ 𝑝 : (𝛼𝛼𝛼1 : Ψ1), ..., (𝛼𝛼𝛼𝑛 : Ψ𝑛)
Γ, (𝑤 : 𝑋 ) ⊢ 𝑋 ⋉ 𝑝 : (𝛼𝛼𝛼1 : 𝑋,Ψ1), ..., (𝛼𝛼𝛼𝑛 : 𝑋,Ψ𝑛)

multiWhisk-r

Γ ⊢ 𝑝 : (𝛼𝛼𝛼1 : Ψ1), ..., (𝛼𝛼𝛼𝑛 : Ψ𝑛)
Γ, (𝑤 : 𝑋 ) ⊢ 𝑝 ⋊ 𝑋 : (𝛼𝛼𝛼1 : Ψ1, 𝑋 ), ..., (𝛼𝛼𝛼𝑛 : Ψ𝑛, 𝑋 )

The copy-discard category structure follows from the rest of the structural rules (Theorem 16).

Predistributive multicategories, in particular, can compose two morphisms 𝑓 ∈ M(𝑋 ;𝑌1, ..., 𝑌𝑛)
and 𝑓 ′ ∈ M(𝑋 ′;𝑌 ′

1
, ..., 𝑌 ′𝑚) in two different ways: either as (𝑓 ⊗ 𝑋 ′) # (𝑋 ⊗ 𝑓 ′, ..., 𝑋 ⊗ 𝑓 ′), or as

(𝑋 ⊗ 𝑓 ′) # (𝑓 ⊗ 𝑋, ..., 𝑓 ⊗ 𝑋 ). These two cannot coincide; their types do not even match. However,

they coincide up to a symmetry: this constitutes the interchange axiom.

Definition 48 (Distributive multicategory). A (strict) distributive multicategory is a cocartesian

multicategory, (M, ∗), with a monoid on objects, (M𝑜𝑏 𝑗 , ⊗, 1), and a tensor operation, (⊗), taking
an 𝑛-multimorphism and an𝑚-multimorphism, and yielding an (𝑛 ·𝑚)-multimorphism,

M(𝑋 ;𝑌1, ..., 𝑌𝑛) × M(𝑋 ′;𝑌 ′
1
, ..., 𝑌 ′𝑚) → M(𝑋 ⊗ 𝑋 ′;𝑌1 ⊗ 𝑌 ′1 , ..., 𝑌1 ⊗ 𝑌 ′𝑚, ..., 𝑌𝑛 ⊗ 𝑌 ′1 , ..., 𝑌𝑛 ⊗ 𝑌 ′𝑚),

that satisfies the following axioms: (i) associativity, 𝑓 ⊗ (𝑔 ⊗ ℎ) = (𝑓 ⊗ 𝑔) ⊗ ℎ, (ii) unitality,

𝑓 ⊗ id = 𝑓 = id ⊗ 𝑓 , (iii) interchange,

(𝑓 # (𝑔1, ..., 𝑔𝑛)) ⊗ (𝑓 ′ # (𝑔′1, ..., 𝑔′𝑚)) = (𝑓 ⊗ 𝑓 ′) # (𝑔1 ⊗ 𝑔′1, ..., 𝑔1 ⊗ 𝑔′𝑚, ..., 𝑔𝑛 ⊗ 𝑔′1, ..., 𝑔𝑛 ⊗ 𝑔′𝑚).
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Remark 49. In this definition, we choose to order pairs lexicographically—so that 𝑌1 ⊗ 𝑌 ′𝑚 appears

before 𝑌𝑛 ⊗ 𝑌 ′𝑚—but we could have chosen to order pairs antilexicographically. This convention

corresponds to choosing left-sesquistrict over right-sesquistrict distributive categories [Lap06].

4.4 Traced distributive multicategories
Definition 50 (Traced distributive multicategory). A traced distributive multicategory is a dis-

tributive multicategory endowed with a fixpoint operator, fix : M(𝑋 ;𝑋,𝑌1, ..., 𝑌𝑛) → M(𝑋 ;𝑌1, ..., 𝑌𝑛),
satisfying the following axioms:

• morphism naturality, fix(𝑓 ) # (𝑎1, ..., 𝑎𝑛) = fix(𝑓 # (𝑎1, ..., 𝑎𝑛));
• action naturality, fix(𝑓 ) · 𝜎∗ = fix(𝑓 · id1 + 𝜎∗);
• strength, fix(𝑓 ⋊ 𝑋 ) = fix(𝑓 ) ⋊ 𝑋 and fix(𝑋 ⋉ 𝑓 ) = 𝑋 ⋉ fix(𝑓 );
• duplication, fix(fix(𝑓 )) = fix(𝑓 · [id1, id1] + id∗𝑛);
• dinaturality, fix(𝑓 #

1
𝑔 · [id𝑛, id𝑛]∗) = 𝑔 #

1
fix(𝑓 #

1
𝑔 · [id𝑛, id𝑛, id𝑛]∗).

Respectively, a traced distributive copy-discard multicategory is a traced distributive multicategory

endowed with the structure of a copy-discard category on its unary morphisms.

Remark 51 (Terms form a traced multicategory). As expected, terms form a traced distributive

copy-discard multicategorywith looping. We additionally imposed on them the following uniformity

axiom: the last ingredient to an imperative multicategory.

Definition 52 (Uniform trace). A uniformly traced distributive multicategory (or, Elgot multicate-

gory), is a traced distributive multicategory additionally satisfying the following uniformity axiom:

for any appropriately typed multimorphisms, the equality

ℎ # (𝑓1, ..., 𝑓𝑛) · (𝜈𝑛 + id𝑚)∗ = 𝑔 # (id, 𝑛. . ., id, ℎ, 𝑚..., ℎ) · (id𝑛 + 𝜈𝑚)∗;
implies the following equality of traces, ℎ # (fix(𝑓1), ..., fix(𝑓𝑛)) · 𝜈∗𝑛 = fix(𝑔 · 𝜈∗𝑚), where we write 𝜈𝑘
for the 𝑘-cotupling of the identity.

4.5 Imperative multicategories
We can finally introduce the definition of imperative multicategory and immediately employ it to

realize the denotational sound and complete semantics of its internal language.

Definition 53 (Imperative multicategory). An imperative multicategory is a uniformly traced

distributive multicategory, endowed with copy-discard category structure on its unary morphisms.

Theorem 54 (Denotational semantics). Consider an assignment from a distributive signature

(B,G) to the underlying distributive signature of an imperative multicategory, (C𝑜𝑏 𝑗 ,C), given
by an assignment on objects, L•M𝑜𝑏 𝑗 : B → C𝑜𝑏 𝑗—which extends to an assignment on lists of types,

J•K⊗ : List(B) → C𝑜𝑏 𝑗 , defined inductively by JK⊗ = 𝐼 and J𝑋, ®𝑋 K⊗ = J𝑋 K⊗J ®𝑋 K⊗—and an assignment

on generators preserving their type,

L•M : G( ®𝑋 ; ®𝑌1, ..., ®𝑌𝑛) → C(L ®𝑋 M; L®𝑌1M + ... + L®𝑌𝑛M).
It extends to an assignment, J•K : ( ®𝑥 : ®𝑋 ⊢ (𝛼𝛼𝛼1 :

®𝑌1), ..., (𝛼𝛼𝛼1 :
®𝑌𝑛)) → C(J ®𝑋 K⊗ ; J®𝑌1K⊗ + ... + J®𝑌𝑛K⊗),

from terms to morphisms of the multicategory C.

Remark 55. Regarding the coproduct, we essentially use the translation between clones and cartesian

multicategories [Sze86, Cur12]. Regarding the tensor, we are essentially using the translation from

arrow do-notation to copy-discard categories.

Theorem 56 (Soundness and completeness). The denotational semantics is sound and complete for

imperative multicategories.
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16 Anon.

J𝛼𝑖 ( ®𝑥𝜎 )K

J ®𝑋K

J ®𝑌1K J ®𝑌𝑙 KJ ®𝑋𝜎 K

𝜎★

J ®𝑋K

J ®𝑋𝜎 KJ ®𝑌1K J ®𝑌𝑙 K

Jloop 𝛼𝑖 ( ®𝑥 ) { ®𝑢.𝑝 }K
J𝑝K ⊗ 𝑖𝑑

[𝜎, 𝑖𝑑 ]★

𝜈

J ®𝑋K

J ®𝑋𝜎 K ⊗ J ®𝑋K
=

=

𝑖★
𝑘𝑙

𝑖★
𝑘
1

J ®𝑌1K J ®𝑌𝑙 K

J ®𝑋𝜎 K ⊗ J ®𝑋K ⊗ J ®𝑋K

J ®𝑌1K ⊗ J ®𝑋KJ ®𝑌1K J ®𝑌𝑙 K

J ®𝑋K

J𝑓 ( ®𝑥𝜎 ) { ®𝑢.𝑝𝑖 }K

;

J ®𝑋K

J ®𝑌1K J ®𝑌𝑙 K

𝜈 ; (J𝑓 K ⊗ 𝑖𝑑 )

J𝑝1K J𝑝ℓ K

J ®𝑌1K J ®𝑌𝑙 K

J𝑝𝑖K=

;

;

J ®𝑋K

Fig. 1. String diagrams for the semantics of the internal language.

4.6 Posetal imperative multicategories
Reasoning requires an order on morphisms; an order that is respected by all of the operations of

the category. We model this by enriching our categories on partially ordered sets.

Definition 57 (Posetal distributive copy-discard multicategory). A posetal distributive copy-discard

multicategory is a distributive copy-discard multicategory where every set of multimorphisms

has a poset structure compatible with composition, tensor, and coproduct actions: for all 𝑓 , 𝑓 ′ ∈
M(𝑋 ;𝑌1, ..., 𝑌𝑛) with 𝑓 ≤ 𝑓 ′, we have 𝑓 · 𝜎∗ ≤ 𝑓 ′ · 𝜎∗; for all 𝑔𝑖 , 𝑔′𝑖 ∈ M(𝑌𝑖 ;𝑍𝑖,1, ..., 𝑍𝑖,𝑚𝑖

) with 𝑔𝑖 ≤ 𝑔′𝑖 ,
we additionally have 𝑓 # (𝑔1, ..., 𝑔𝑛) ≤ 𝑓 ′ # (𝑔′

1
, ..., 𝑔′𝑛); for all ℎ,ℎ′ ∈ M(𝑋 ′;𝑌 ′

1
, ..., 𝑌 ′𝑛) with ℎ ≤ ℎ′, we

additionally have 𝑓 ⊗ ℎ ≤ 𝑓 ⊗ ℎ′.

Definition 58 (Posetal uniform trace, cf. Hasegawa [Has02]). A posetal uniform traced distributive

multicategory is a traced distributive multicategory whose underlying multicategory is posetally-

enriched and whose fixpoint, additionally, satisfies the posetal uniformity axiom: for any appropri-

ately typed multimorphisms, the inequalities

ℎ # (𝑓1, ..., 𝑓𝑛) · (𝜈𝑛 + id𝑚)∗ ≤ 𝑔 # (id, 𝑛. . ., id, ℎ, 𝑚..., ℎ) · (id𝑛 + 𝜈𝑚)∗;
ℎ # (𝑓1, ..., 𝑓𝑛) · (𝜈𝑛 + id𝑚)∗ ≥ 𝑔 # (id, 𝑛. . ., id, ℎ, 𝑚..., ℎ) · (id𝑛 + 𝜈𝑚)∗;

imply, respectively, the following inequalities of traces,

ℎ # (fix(𝑓1), ..., fix(𝑓𝑛)) · 𝜈∗𝑛 ≤ fix(𝑔 · 𝜈∗𝑚), and ℎ # (fix(𝑓1), ..., fix(𝑓𝑛)) · 𝜈∗𝑛 ≥ fix(𝑔 · 𝜈∗𝑚).

Finally, let us introduce the structure we use for program logics: posetal imperative categories.

These express all the constructs of imperative programs but also the logical operations of program

logics.

Definition 59 (Posetal imperative multicategory). A posetal imperative multicategory is a posetal

distributive copy-discard multicategory with posetal uniform trace, and additionally satisfying: (i)

that its zero map is the least element of any set of multimorphisms, and (ii) the discarding map is

the top element any set of unary morphisms to the monoidal unit.

4.7 Examples, and representability
Most of our examples have still an extra property: the multicategory is representable, meaning

that multimorphisms correspond to morphisms to a tensor object (the coproduct). Formally, a

multicategory is representable when it has, for every list of objects, 𝑌1, ..., 𝑌𝑛 ∈ M𝑜𝑏 𝑗 , an object

𝑌1 + ... + 𝑌𝑛 ∈ M𝑜𝑏 𝑗 , and a family of morphisms case𝑛 : 𝑌1 + ... + 𝑌𝑛 → 𝑌1, ..., 𝑌𝑛 closed under
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composition and inducing an isomorphism M(𝑋 ;𝑌1 + ... + 𝑌𝑛) � M(𝑋 ;𝑌1, ..., 𝑌𝑛) [Her00, §7]. In a

cocartesian multicategory, under this isomorphism, we obtain maps inj𝑖,𝑛 : 𝑌𝑖 → 𝑌1 + ... + 𝑌𝑛 .
We may explicitly impose this property by asking for two families of generators, case𝑛 ∈
G(𝑌1 + ... + 𝑌𝑛 ;𝑌1, ..., 𝑌𝑛) and inj𝑖,𝑛 ∈ G(𝑌𝑖 ;𝑌1 + ... + 𝑌𝑛), which must be total, deterministic, and

central, and moreover satisfy the following equations [Her00, Definition 8.1].

• case𝑛 (𝑢){𝑦𝑖 .inj𝑖,𝑛 (𝑦𝑖 ){𝑢.𝛼𝛼𝛼 (𝑢)}}𝑛𝑖=0 ≡ 𝛼𝛼𝛼 (𝑢);
• inj𝑖,𝑛 (𝑥𝑖 ){𝑢.case𝑛 (𝑢){𝑦𝑖 .𝛼𝛼𝛼𝑖 (𝑦𝑖 )}} ≡ 𝛼𝛼𝛼𝑖 (𝑥𝑖 );
• case1 (𝑢){𝑢.𝛼𝛼𝛼 (𝑢)} ≡ 𝛼𝛼𝛼 (𝑢);
• case𝑛 (𝑢){𝑥𝑖 .case𝑚 (𝑥𝑖 ){𝑦𝑖, 𝑗 .𝛼𝛼𝛼𝑖, 𝑗 (𝑦𝑖, 𝑗 )}} ≡ case𝑛 ·𝑚 (𝑢){𝑦𝑖, 𝑗 .𝛼𝛼𝛼𝑖, 𝑗 (𝑦𝑖, 𝑗 )};

Definition 60 (Imperative category). An imperative category is an imperative multicategory with

representable coproducts.

Remark 61. Every multicategory freely induces a representable multicategory; every imperative

multicategory freely induces an imperative category. The rest of this section looks at some examples

of posetal imperative categories. As common in program semantics, these are Kleisli categories of

commutative monads.

Lemma 62. In a distributive copy-discard category, the structure morphisms of coproducts, 𝜇 and 𝜁 ,

are total and deterministic.

Definition 63. A monad on a category C is a triple (𝑇, 𝜂, (−)>) of a functor 𝑇 : C → C, a fam-

ily of morphisms 𝜂𝑋 : 𝑋 → 𝑇 (𝑋 ) indexed by objects 𝑋 of C, and an operation on hom-sets

(−)> : C(𝑋,𝑇𝑌 ) → C(𝑇𝑋,𝑇𝑌 ) satisfying (i) 𝜂>
𝑋
= id𝑇𝑋 , (ii) 𝜂𝑋 # 𝑓 > = 𝑓 , and (iii) 𝑓 > #𝑔> = (𝑓 # 𝑔>)> .

The Kleisli category of a monad 𝑇 : C→ C commonly serves as semantics for computations in

C with 𝑇 -effects [Mog91].

Definition 64. For a monad 𝑇 on a category C, its Kleisli category, kl(𝑇 ), has the same objects

as C and the morphisms 𝑋 → 𝑌 are the morphisms 𝑋 → 𝑇 (𝑌 ) in C. Identities are given by the

monad unit, 𝜂𝑋 , and the composition is defined with Kleisli extensions, 𝑓 # 𝑔> .

We introduce the monads whose Kleisli categories will be our running examples. This section

shows that they do indeed have the structure of a posetal imperative category.

Example 65. Consider the category Set of sets and functions. The maybe monad on Set acts on
objects as L(𝑋 ) = 𝑋 + 1; its unit is the inclusion 𝜂𝑋 : 𝑋 → 𝑋 + 1; and the Kleisli extension of a

function 𝑓 : 𝑋 → 𝑌 + 1 is 𝑓 > (𝑥) = 𝑓 (𝑥) for 𝑥 ∈ 𝑋 , and 𝑓 > (∗) = ∗, where ∗ denotes the element of

1. Morphisms in its Kleisli category, Par, specify partial functions.

Example 66. Consider the powerset monad on Set. Its action on objects is P(𝑋 ) = {𝐸 ⊆ 𝑋 }; its unit
𝜂𝑋 (𝑥) = {𝑥} maps each element 𝑥 ∈ 𝑋 to the singleton {𝑥}; and the Kleisli extension of a function

𝑓 : 𝑋 → P(𝑌 ) is 𝑓 > (𝐸) = {𝑓 (𝑥) ∈ 𝑌 | 𝑥 ∈ 𝐸}. Morphisms in its Kleisli category, Rel, are relations.

Example 67. Consider the subdistribution monad on Set. We will consider countably supported

subdistributions [Jac10, BGL25]. For a set 𝑋 , these are functions 𝜎 : 𝑋 → [0, 1] whose support,
supp(𝜎) = {𝑥 ∈ 𝑋 | 𝜎 (𝑥) > 0}, is countable and whose total probability mass is at most 1, i.e.∑

𝑥∈𝑋 𝜎 (𝑥) ≤ 1. The subdistribution monad maps a set 𝑋 to the set D(𝑋 ) of countably supported

subdistributions on 𝑋 ; its unit 𝜂𝑋 (𝑥) = 𝛿𝑥 maps each element 𝑥 ∈ 𝑋 to the Dirac distribution at

point 𝑥 ; and the Kleisli extension of a function 𝑓 : 𝑋 → D(𝑌 ) is 𝑓 > (𝜎) (𝑦) = ∑
𝑥 𝜎 (𝑥) · 𝑓 (𝑥) (𝑦).

Morphisms in its Kleisli category, Stoch, are discrete stochastic channels.

Example 68. Consider the category StdBorel of standard Borel spaces and measurable functions

between them. A subdistribution on a standard Borel space (𝑋,A𝑋 ) is a measurable function
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𝜎 : (𝑋,A𝑋 ) → ([0, 1],B) whose total probability mass 𝜎 (𝑋 ) is at most 1, where B is the Borel

𝜎-algebra on the interval [0, 1]. The subdistribution monad on StdBorel [Gir82, Pan99] maps a

standard Borel space 𝑋 to the standard Borel space G(𝑋 ) of subdistributions on it with the 𝜎-

algebra generated by the set of evaluation maps ev𝑈 : G(𝑋 ) → [0, 1] for all the measurable subsets

𝑈 of 𝑋 .

When the base category has a monoidal structure, we may ask that the monad interacts well

with it to ensure that the monoidal structure lifts to the Kleisli category.

Definition 69. Amonad𝑇 on a symmetric monoidal category (𝐶, ⊕, 𝐼 ) is strong if there is a natural
transformation 𝑡𝑋,𝑌 : 𝑋 ⊕𝑇 (𝑌 ) → 𝑇 (𝑋 ⊕ 𝑌 ), the left strength, that is compatible with the monoidal

structure and with the monad structure: (i) 𝜆𝑇𝑋 # 𝑡𝐼 ,𝑋 = 𝑇 (𝜆𝑋 ), (ii) 𝑡𝑋⊗𝑌,𝑍 #𝑇 (𝛼𝑋,𝑌,𝑍 ) = 𝛼𝑋,𝑌,𝑇𝑍 #
(id𝑋 ⊗ 𝑡𝑌,𝑍 ) # 𝑡𝑋,𝑌⊗𝑍 , (iii) (id𝑋 ⊗𝜂𝑌 ) # 𝑡𝑋,𝑌 = 𝜂𝑋⊗𝑌 , and (iv) (id𝑋 ⊗ 𝜇𝑌 ) # 𝑡𝑋,𝑌 = 𝑡𝑋,𝑇𝑌 #𝑇 (𝑡𝑋,𝑌 ) # 𝜇𝑋⊗𝑌 ,
where 𝛼 , 𝜆 and 𝜌 denote the associator, and left and right unitors, and 𝜇 denotes the monad

multiplication, 𝜇𝑋 = id
>
𝑇𝑋 .

A strong monad is commutative if the two morphism of type 𝑇𝑋 ⊗ 𝑇𝑌 → 𝑇 (𝑋 ⊗ 𝑌 ) obtained
by composing strengths and symmetries coincide: 𝑡𝑇𝑋,𝑌 #𝑇 (𝑡 ′

𝑋,𝑌
) # 𝜇𝑋⊗𝑌 = 𝑡 ′

𝑋,𝑇𝑌
#𝑇 (𝑡𝑋,𝑌 ) # 𝜇𝑋⊗𝑌 ,

where 𝑡 ′
𝑋,𝑌

= 𝜎 # 𝑡 #𝑇 (𝜎) is the right strength obtained by composing the left strength 𝑡 with the

symmetry 𝜎 .

All the examples of monads in this section are known to be commutative with respect to the

cartesian product in their base categories. Any monad is commutative with respect to coproducts.

Thus, all their Kleisli categories are distributive copy-discard categories, as the next proposition

shows.

Proposition 70. The Kleisli category of a strong monad 𝑇 : C→ C on a distributive copy-discard

category C is also a distributive premonoidal copy-discard category. If the monad 𝑇 is commutative,

then its Kleisli category is a distributive copy-discard category.

Posetal imperative categories also require a trace for the coproducts. We apply a result that con-

structs such trace for monads satisfying a condition called partial additivity [Jac10]. The conditions

for partial additivity are rather technical and we recall them below.

Definition 71 ([Jac10, Definition 4.2]). A monad 𝑇 on a category C with countable coproducts

and products is partially additive if its Kleisli category is poset-enriched with a zero object and the

morphisms 𝛽𝑋 : 𝑇 (∐𝑛 𝑋𝑛) →
∏

𝑛𝑇 (𝑋𝑛), defined by pairing the canonical maps

∐
𝑛 𝑋𝑛 → 𝑇 (𝑋𝑖 ),

are monic and form a cartesian natural transformation.

Proposition 72 ([Jac10, Example 4.4] and [Jac16, Section 7]). The maybe monad, powerset monad,

and subdistributions monad on the distributive category of sets and functions, Set, are partially additive.
The subdistributions monad on the distributive category StdBorel is a partially additive monad.

While the law of uniformity is well known since at least Hasegawa’s work [Has02], the one of

posetal uniformity received far less attention (to the best of our knowledge only [BDD25]). We

illustrate a result that allows to prove posetal uniformity for a large variety of example, in particular,

all those considered in this text. Recall that a Dcpo⊥-enriched category is a category where each

homset has countable directed joins and a bottom element that are both preserved by composition.

Our starting point is the following result that ensures the existence of a uniform coproduct

trace [Jac10].

Theorem 73. [Jac10, Theorem 5.2] Let C be a category with countable coproducts and a monad,

𝑇 : C→ C, such that
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• it is a partially additive monad;

• its Kleisli category, kl(𝑇 ), is Dcpo⊥-enriched;
• and its Kleisli category, kl(𝑇 ), has monotone cotuplings;

then, this Kleisli category is partially additive and has a uniform trace, (kl(𝑇 ),+, 0, tr).

Putting together Theorem 73 and Theorem 70, we obtain that these Kleisli categories have almost

all the structure that we need.

Corollary 74. The Kleisli category of a partially additive monad on a distributive category satisfying

the assumptions of Theorem 73 is an imperative category.

With Theorem 74, we are only left to prove posetal uniformity. Starting from Theorem 73, and

exploiting a result by Hasuo [Has06] that generalises forward and backward simulations as lax and

oplax coalgebra morphisms, we can prove that the monoidal trace of the theorem above is not just

a uniform trace but, crucially for our developement, a posetal uniform trace.

Proposition 75. Under the conditions of Theorem 73, the Kleisli category of a monad, kl(𝑇 ), has a
posetal uniform trace.

Corollary 76. The Kleisli categories of the maybe monad, powerset monad, and subdistributions

monad on the distributive category Set, and of the subdistributions monad on the distributive category

StdBorel are posetal imperative categories.

5 Distributive program logics
Program triples are tuples containing a precondition predicate, a command and a postcondition

predicate. Program logics are concerned with proving the validity of a triple, but what validity

means depends on the program logic in question and the properties it is concerned with.

For instance, the program triples {𝑝} 𝑐 {𝑞} and {𝑠} 𝑐 {𝑡} may mean any of the inequalities in

Figure 2, for a command 𝑐 , predicates 𝑝 and 𝑞, and states 𝑠 and 𝑡 .

State Predicate Assertion

Correctness 𝑠 # 𝑐 ≤ 𝑡 𝑝 ≤ 𝑐 # 𝑞 assert𝑝 # 𝑐 ≤ 𝑐 # assert𝑞
Incorrectness 𝑠 # 𝑐 ≥ 𝑡 𝑝 ≥ 𝑐 # 𝑞 assert𝑝 # 𝑐 ≥ 𝑐 # assert𝑞

Fig. 2. Inequalities that define validity of program triples {𝑝} 𝑐 {𝑞} or {𝑠} 𝑐 {𝑡}.

This section expresses program logics in the language of imperative categories. The next section

introduces couplings to cover relational program logics in a similar fashion. This level of generality

allows us to instantiate the rules that we prove here in all the examples of Section 4.7.

Each program logic defines validity of triples with one of the inequalities above. Hoare logic [Hoa69]

uses assert 𝑝 # 𝑐 ≤ 𝑐 # assert𝑞, incorrectness logic [dVK11, O’H19] uses 𝑠 # 𝑐 ≥ 𝑡 , and outcome

logic [ZDS23] uses 𝑝 ≤ 𝑐 # 𝑞. These are only three of the possibilities outlined above, but nothing

prevents us from considering the other ones as well.

The structure of imperative categories allows us to derive rules for any chosen triple shape: the

posetal enrichment is crucial for interpreting validity of triples; the categorical structure ensures

the skip and comp rules; the monoidal copy-discard structure gives the assign and sample rules;

the distributive coproducts give the rules for choice; the posetal-uniform trace gives the rules for

loops.
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5.1 Correctness triples
This section considers assertion-correctness triples. In the category Rel of sets and relations, these

are known as Hoare triples [Hoa69].

Definition 77 (Assertion-correctness triple). In a posetal imperative category, an assertion-

correctness triple, {𝑝} 𝑐 {𝑞}, consists of a morphism 𝑐 : 𝑋 → 𝑌 , a predicate on the input, 𝑝 : 𝑋 → 1,

and a predicate on the output, 𝑞 : 𝑌 → 1, satisfying assert𝑝 # 𝑐 ≤ 𝑐 # assert𝑞.

Remark 78. In the imperative category Rel of sets and relations, assertion-correctness triples are

equivalent to state-correctness triples: assert 𝑝 #𝑐 ≤ 𝑐 #assert𝑞 if and only if 𝑝op #𝑐 ≤ 𝑞op. Predicates
have, in general, a richer logic compared to states. Therefore, we choose the former triple shape.

We derive the rules of Hoare logic [Hoa69] as presented by Winskel’s reference book [Win93].

Additionally, we include rules for nondeterministic choice and iteration that accommodate examples

outside of the category of relations.

Theorem 79. The following are valid assertion-correctness triples in any posetal imperative category

where abort ≤ 𝑓 and 𝑓 # ⊤ ≤ ⊤ for all morphisms 𝑓 .

skip

{𝑝} skip {𝑝}

comp

{𝑝} 𝑐1 {𝑞} {𝑞} 𝑐2 {𝑟 }
{𝑝} 𝑐1 ; 𝑐2 {𝑟 }

assign

𝑒 deterministic and total

{𝑝 [𝑢 \ 𝑒]}𝑢 := 𝑒 {𝑝}
choice

{𝑝} 𝑐1 {𝑞} {𝑝} 𝑐2 {𝑞}
{𝑝} if 𝑏 then 𝑐1 else 𝑐2 {𝑞}

loop

{𝑝} 𝑐 {𝑝}
{𝑝} while𝑏 do 𝑐 {𝑝}

unroll

{𝑝} if 𝑏 then(𝑐 ; while𝑏 do 𝑐) else skip {𝑞}
{𝑝} while𝑏 do 𝑐 {𝑞}

ifelse

{𝑝 ∧ 𝑏#} 𝑐1 {𝑞} {𝑝 ∧ (¬𝑏)#} 𝑐2 {𝑞} 𝑏 deterministic

{𝑝} if 𝑏 then 𝑐1 else 𝑐2 {𝑞}

while

{𝑏# ∧ 𝑝} 𝑐 {𝑝} 𝑏 deterministic

{𝑝} while𝑏 do 𝑐 {𝑝 ∧ (¬𝑏)#}

monotone

𝑝1 ≤ 𝑝2 {𝑝2} 𝑐 {𝑞2} 𝑞2 ≤ 𝑞1
{𝑝1} 𝑐 {𝑞1}

and

{𝑝1} 𝑐 {𝑞1} {𝑝2} 𝑐 {𝑞2}
{𝑝1 ∧ 𝑝2} 𝑐 {𝑞1 ∧ 𝑞2}

fail

{𝑝} abort {𝑞}
assert

𝑞 ∧ 𝑟 ≤ ⊥
{𝑝 +𝑏 𝑞} assert 𝑟 {𝑝 ∧ 𝑏#}

top

{𝑝} 𝑐 {⊤}

bot

{⊥} 𝑐 {𝑞}

5.2 Incorrectness triples
This section considers state-incorrectness triples. In the category Rel of sets and relations, these

are known as reverse Hoare triples [dVK11] or incorrectness triples [O’H19].

Definition 80 (State-incorrectness triple). In a posetal imperative category, a state-incorrectness

triple, {𝑠} 𝑐 {𝑡}, consists of a morphism, 𝑐 : 𝑋 → 𝑌 , a state on the input, 𝑠 : 1→ 𝑋 , and a state on

the output, 𝑡 : 1→ 𝑌 , satisfying 𝑠 # 𝑐 ≥ 𝑡 .

We derive the rules of incorrectness logic [O’H19] in the more general setting of posetal im-

perative categories. The original incorrectness rules for choices and loops are a particular case

of the ones below. They are obtained by setting the guard 𝑏 : 𝑋 → 1 + 1 to be the relation

◀= {(𝑥, 0) | 𝑥 ∈ 𝑋 } ∪ {(𝑥, 1) | 𝑥 ∈ 𝑋 }, where 0 and 1 denote the two elements of 1 + 1. Similarly,

the nondeterministic assignment rule of incorrectness logic [O’H19] is a particular case of the

sample rule when the state 𝑠0 is chosen to be ⊤op, the opposite relation of the true predicate. The

guard ◀ and the state ⊤op do not exist in general posetal imperative categories, so we present the
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rules with a generic guard 𝑏 and a generic state 𝑠0. The rules that we present hold, in particular, for

probabilistic examples like Stoch.
We omit the substitution rules in incorrectness logic [O’H19] because they follow from alpha

equivalence. We omit the local variable rule because it relies on the existence of the state ⊤op,
which does not exist in general. The constancy rule of incorrectness logic [O’H19] requires the

conjunction of preconditions. In copy-discard categories, conjunction of predicates always exists,

but not conjunction of states. Thus, we omit this rule. Similarly, the command assume(𝑝) does not
necessarily exist in posetal imperative categories. Thus, we substitute the assume rule with the

assert rule. The backward variant rule for loops relies on Kleene’s theorem for fixpoints. This

seems to require more assumptions on the categorical structure, so we decided to omit the rule.

Theorem 81. The following are valid state-incorrectness triples in any posetal imperative category

where abort ≤ 𝑓 for all morphisms 𝑓 .

skip

{𝑠} skip {𝑠}

comp

{𝑠} 𝑐1 {𝑡} {𝑡} 𝑐2 {𝑟 }
{𝑠} 𝑐1 ; 𝑐2 {𝑟 }

comp (error)

{𝑠} 𝑐1 {⊥}
{𝑠} 𝑐1 ; 𝑐2 {⊥}

assign

{𝑠} 𝑥 := 𝑦 {𝑠 (𝑥 \ 𝑦)}

sample

{𝑠} 𝑥 ← 𝑠0 {
∐

𝑥𝑠 · 𝑠0}
choice (left)

{𝑠 ⇂ 𝑏#} 𝑐1 {𝑡}
{𝑠} if 𝑏 then 𝑐1 else 𝑐2 {𝑡}

choice (right)

{𝑠 ⇂ (¬𝑏)#} 𝑐2 {𝑡}
{𝑠} if 𝑏 then 𝑐1 else 𝑐2 {𝑡}

convex

{𝑠1} 𝑐 {𝑡1} {𝑠2} 𝑐 {𝑡2} 𝑏 constant

{𝑠1 +𝑏 𝑠2} 𝑐 {𝑡1 +𝑏 𝑡2}
iter zero

{𝑠} while𝑏 do 𝑐 {𝑠 ⇂ (¬𝑏)#}

iter

{𝑠 ⇂ 𝑏#} 𝑐 ; while𝑏 do 𝑐 {𝑡}
{𝑠} while𝑏 do 𝑐 {𝑡}

monotone

𝑠1 ≥ 𝑠2 {𝑠2} 𝑐 {𝑡2} 𝑡2 ≥ 𝑡1
{𝑠1} 𝑐 {𝑡1}

assert

{𝑠} assert 𝑝 {𝑠 ⇂ 𝑝}

fail

{𝑠} abort {⊥}

bot

{𝑠} 𝑐 {⊥}

5.3 Outcome-like triples
This section considers predicate-correctness triples. In Kleisli categories of Set-monads𝑇 satisfying

some assumptions, these correspond to outcome triples [ZDS23].

Definition 82 (Predicate-correctness triples). In a posetal imperative category, a predicate-correctness

triple, {𝑝} 𝑐 {𝑞}, consists of a morphism 𝑐 : 𝑋 → 𝑌 , a predicate on the input, 𝑝 : 𝑋 → 1, and a

predicate on the output, 𝑞 : 𝑌 → 1, satisfying 𝑝 ≤ 𝑐 # 𝑞.

The logic for assertions in outcome logic is richer than the one we consider here: we restrict to

the combinators for predicates that come from the categorical structure so that we can interpret

the triples and prove their rules in any posetal imperative category. As a consequence, our rules

slightly differ from the ones for outcome logic [ZDS23]. As for incorrectness logic, we present

the rules with generic guards 𝑏 as we do not assume the existence of the guard ◀. The choice
rule below needs equal postconditions, contrary to that of outcome logic. The structure of posetal

imperative categories does not ensure the existence of a predicate⊤⊕ that is satisfied by all elements

of𝑇 (𝑋 ), including failure. Thus, this structure cannot express the empty and zero rules of outcome

logic [ZDS23] and implies a different assert rule. We omit the for rule as it follows by induction

from the rule for compositions and add the sample rule for nondeterministic assignment.
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Theorem 83. The following are valid predicate-correctness triples in any posetal imperative category

where abort ≤ 𝑓 for all morphisms 𝑓 .

skip

{𝑝} skip {𝑝}

comp

{𝑝} 𝑐1 {𝑞} {𝑞} 𝑐2 {𝑟 }
{𝑝} 𝑐1 ; 𝑐2 {𝑟 }

assign

𝑒 deterministic

{𝑝 [𝑢 \ 𝑒]}𝑢 := 𝑒 {𝑝}

sample

{𝑝 [𝑢 \ 𝑠]}𝑢 ← 𝑠 {𝑝}
unroll

{𝑝} if 𝑏 then(𝑐 ; while𝑏 do 𝑐) else skip {𝑞}
{𝑝} while𝑏 do 𝑐 {𝑞}

choice

{𝑝} 𝑐1 {𝑞} {𝑝} 𝑐2 {𝑞} 𝑏 total

{𝑝} if 𝑏 then 𝑐1 else 𝑐2 {𝑞}
ifelse

{𝑏# ∧ 𝑝} 𝑐1 {𝑞} {(¬𝑏)# ∧ 𝑝} 𝑐2 {𝑞} 𝑏 total and deterministic

{𝑝} if 𝑏 then 𝑐1 else 𝑐2 {𝑞}

assert

(¬𝑏)# ∧ 𝑞 = ⊥ 𝑏 deterministic

{𝑝 +𝑏 𝑞} assert𝑏# {𝑝}

convex

{𝑝1} 𝑐 {𝑞1} {𝑝2} 𝑐 {𝑞2} 𝑏 constant

{𝑝1 +𝑏 𝑝2} 𝑐 {𝑞1 +𝑏 𝑞2}
monotone

𝑝1 ≤ 𝑝2 {𝑝2} 𝑐 {𝑞2} 𝑞2 ≤ 𝑞1
{𝑝1} 𝑐 {𝑞1}

bot

{⊥} 𝑐 {𝑞}

6 Distributive relational program logics
Relational program triples compare pairs of programs in a shared context. They are a tuple of two

commands, a precondition on the product of the input types and a postcondition on the product of

the output types. As for (not relational) program triples, the validity of relational program triples

can be defined in terms of any of the inequalities in Figure 3. This time, 𝑝 and 𝑞 are predicates on a

product type, 𝑠 and 𝑡 are states on a product type, and the commands need to be replaced by couplings

of commands as one cannot assume that their effects are independent [BGZB09, BEH
+
19, ABDG25].

State Predicate Assertion

Relational correctness 𝑠 # ℎ= ≤ 𝑡 𝑝 ≤ ℎ= # 𝑞 assert𝑝 # ℎ= ≤ ℎ= # assert𝑞
Relational incorrectness 𝑠 # ℎ= ≥ 𝑡 𝑝 ≥ ℎ= # 𝑞 assert𝑝 # ℎ= ≥ ℎ= # assert𝑞

Fig. 3. Inequalities that define validity of relational program triples {𝑝} 𝑐 ∼ 𝑑 {𝑞} or {𝑠} 𝑐 ∼ 𝑑 {𝑡}, where
ℎ ⊲ 𝑐 & 𝑑 is a coupling of the commands 𝑐 and 𝑑 , and ℎ= = ℎ # 𝜋+

𝑋⊗𝑌 .

Definition 84. A coupling of two morphisms, 𝑓1 : 𝑋1 → 𝑌1 and 𝑓2 : 𝑋2 → 𝑌2 in an imperative

category, is a morphism ℎ : 𝑋1 ⊗ 𝑋2 → 𝑌1 ⊗ 𝑌2 + 𝑌1 + 𝑌2 such that ℎ # [𝜋1, id, 0] = 𝜋1 # 𝑓1 and
ℎ#[𝜋2, 0, id] = 𝜋2#𝑓2, where [𝜋1, id, 0] indicates the copairing of the first projection 𝜋1 : 𝑋1⊗𝑋2 → 𝑋1,

the identity id𝑋1
and the zero morphism 0 : 𝑋2 → 𝑋1. A strong coupling is a coupling of the form

ℎ # 𝜄𝑌1⊗𝑌2 , where 𝜄𝑌1⊗𝑌2 : 𝑌1 ⊗ 𝑌2 → 𝑌1 ⊗ 𝑌2 + 𝑌1 + 𝑌2 denotes the coproduct injection.
Wewrite thatℎ is a coupling of 𝑓1 and 𝑓2 asℎ⊲𝑓1&𝑓2. Given a couplingℎ : 𝑋1⊗𝑋2 → 𝑌1⊗𝑌2+𝑌1+𝑌2,

define ℎ= : 𝑋1 ⊗ 𝑋2 → 𝑌1 ⊗ 𝑌2 by postcomposing with the maps to the zero object, ℎ= = ℎ # 𝜋+
𝑌1⊗𝑌2 .

Remark 85. We spell out the definition of coupling for states in Stoch to show that, in this case, our

definition of coupling coincides with the definition of ★-coupling for subdistributions [ABDG25].

Two states 𝑠 : 1→ 𝑋 and 𝑡 : 1→ 𝑌 in Stoch are two subdistributions 𝑠 ∈ D(𝑋 ) and 𝑡 ∈ D(𝑌 ). A
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coupling of 𝑠 and 𝑡 is a subdistribution𝑢 : 1→ 𝑋 ×𝑌 +𝑋 +𝑌 such that 𝑠 (𝑥) =∑
𝑦∈𝑌 𝑢 (𝑥,𝑦) +𝑢 (𝑥,★)

and 𝑡 (𝑥) = ∑
𝑥∈𝑋 𝑢 (𝑥,𝑦) + 𝑢 (★, 𝑦), where (𝑥,★) denotes the element 𝑥 in the second component

of the coproduct, and (★, 𝑦) denotes the element 𝑦 in the third component of the coproduct. A

subdistribution on𝑋 ×𝑌 +𝑋 +𝑌 is the same as a distribution on𝑋 ×𝑌 +𝑋 +𝑌 +1, thus couplings of
states in Stoch coincide with★-couplings of subdistributions [ABDG25]. Similarly, strong couplings

coincide with (total) couplings of subdistributions [BGZB09, ABDG25].

Strong couplings enforce the same termination behaviour as total couplings of subdistributions

do [ABDG25]. If ℎ ⊲ 𝑓1 & 𝑓2 is a strong coupling, (𝑓1 # 𝜀) ⊗ 𝜀 = ℎ # (𝜀 ⊗ 𝜀) = 𝜀 ⊗ (𝑓2 # 𝜀), where 𝑓𝑖 # 𝜀
gives the termination predicate of 𝑓𝑖 .

Remark 86. When all morphisms are deterministic, then strong couplings trivialise: all strong

couplings of 𝑓 and 𝑔 need to be 𝑓 ⊗ 𝑔. This is the case of the category Par of sets and partial

functions.

6.1 Relational correctness triples
This section considers relational assertion-correctness triples. In the category Par of sets and partial
functions, these correspond to relational Hoare triples [Ben04].

Definition 87 (Relational assertion-correctness triples). In a posetal imperative category, a re-

lational assertion-correctness triple, {𝑝} 𝑐 ∼ 𝑐′ {𝑞}, consists of two morphisms, 𝑐 : 𝑋 → 𝑌 and

𝑐′ : 𝑋 ′ → 𝑌 ′, a predicate on the product of the inputs, 𝑝 : 𝑋 ⊗ 𝑋 ′ → 1, and a predicate on the

product of the outputs, 𝑞 : 𝑌 ⊗ 𝑌 ′ → 1, such that there exist a coupling, ℎ ⊲ 𝑐 & 𝑐′, satisfying
assert 𝑝 # ℎ= ≤ ℎ= # assert𝑞.

Benton’s work [Ben04] restricts to strong couplings, which simplify in the case of partial functions

(Theorem 86). The validity condition of a triple {𝑝} 𝑐 ∼ 𝑐′ {𝑞}, thus, simplifies to assert𝑝 # (𝑐 ⊗ 𝑐′) ≤
(𝑐 ⊗ 𝑐′) # assert𝑞. We present the rules in the general case to allow semantics different from partial

functions.

Theorem 88. The following are valid relational assertion-correctness triples in any posetal imperative

category where abort ≤ 𝑓 for all morphisms 𝑓 .

skip

{𝑝} skip ∼ skip {𝑝}

comp

{𝑝} 𝑐1 ∼ 𝑑1 {𝑞} {𝑞} 𝑐2 ∼ 𝑑2 {𝑟 }
{𝑝} (𝑐1 ; 𝑐2) ∼ (𝑑1 ; 𝑑2) {𝑟 }

assign

𝑒1, 𝑒2 total and deterministic

{𝑝 [(𝑢1, 𝑢2) \ (𝑒1, 𝑒2)]} (𝑢1 := 𝑒1) ∼ (𝑢2 := 𝑒2) {𝑝}
choice

{𝑝} 𝑐1 ∼ 𝑐2 {𝑞} {𝑝} 𝑐1 ∼ 𝑑2 {𝑞} {𝑝}𝑑1 ∼ 𝑐2 {𝑞} {𝑝}𝑑1 ∼ 𝑑2 {𝑞} 𝑏1, 𝑏2 total

{𝑝} (if 𝑏1 then 𝑐1 else𝑑1) ∼ (if 𝑏2 then 𝑐2 else𝑑2) {𝑞}
ifelse

{(𝑏1# ⊗ 𝑏2#) ∧ 𝑝} 𝑐1 ∼ 𝑐2 {𝑞}
{((¬𝑏1)# ⊗ (¬𝑏2)#) ∧ 𝑝}𝑑1 ∼ 𝑑2 {𝑞} 𝑏1, 𝑏2 total and deterministic

{(𝑏1 = 𝑏2) ∧ 𝑝} (if 𝑏1 then 𝑐1 else𝑑1) ∼ (if 𝑏2 then 𝑐2 else𝑑2) {𝑞}
loop

{𝑝} 𝑐1 ∼ 𝑐2 {𝑝} {𝑝} 𝑐1 ∼ skip {𝑝} {𝑝} skip ∼ 𝑐2 {𝑝} 𝑏1, 𝑏2 total

{𝑝} (while𝑏1 do 𝑐1) ∼ (while𝑏2 do 𝑐2) {𝑝}
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while

{(𝑏1# ⊗ 𝑏2#) ∧ 𝑝} 𝑐1 ∼ 𝑐2 {(𝑏1 = 𝑏2) ∧ 𝑝} 𝑏1, 𝑏2 total and deterministic

{(𝑏1 = 𝑏2) ∧ 𝑝} (while𝑏1 do 𝑐1) ∼ (while𝑏2 do 𝑐2) {((¬𝑏1)# ⊗ (¬𝑏2)#) ∧ 𝑝}

monotone

𝑝1 ≤ 𝑝2 {𝑝2} 𝑐 ∼ 𝑑 {𝑞2} 𝑞2 ≤ 𝑞1
{𝑝1} 𝑐 ∼ 𝑑 {𝑞1}

symm

{𝑝} 𝑐 ∼ 𝑑 {𝑞}
{𝜎 ; 𝑝}𝑑 ∼ 𝑐 {𝜎 ; 𝑞}

assign-L

𝑒 total and deterministic

{𝑝 [𝑥 \ 𝑒]} (𝑥 := 𝑒) ∼ skip {𝑝}

choice-L

{𝑝} 𝑐 ∼ skip {𝑞} {𝑝}𝑑 ∼ skip {𝑞} 𝑏 total

{𝑝} (if 𝑏 then 𝑐 else𝑑) ∼ skip {𝑞}
ifelse-L

{(𝑏# ⊗ ⊤) ∧ 𝑝} 𝑐 ∼ skip {𝑞} {((¬𝑏1)# ⊗ ⊤) ∧ 𝑝}𝑑 ∼ skip {𝑞} 𝑏 total and deterministic

{𝑝} (if 𝑏 then 𝑐 else𝑑) ∼ skip {𝑞}
loop-L

{𝑝} 𝑐 ∼ skip {𝑝} 𝑏 total

{𝑝} (while𝑏 do 𝑐) ∼ skip {𝑝}

while-L

{(𝑏# ⊗ ⊤) ∧ 𝑝} 𝑐 ∼ skip {𝑝} 𝑏 total and deterministic

{𝑝} (while𝑏 do 𝑐) ∼ skip {((¬𝑏)# ⊗ ⊤) ∧ 𝑝}

6.2 Relational incorrectness triples
This section considers relational predicate-incorrectness triples. In the category Stoch of sets

and partial stochastic functions, these correspond to quantitative probabilistic relational Hoare

triples [ABDG25].

Definition 89 (Relational predicate-incorrectness triples). In a posetal imperative category, a

relational predicate-incorrectness triple, {𝑝} 𝑐 ∼ 𝑐′ {𝑞}, consists of two morphisms, 𝑐 : 𝑋 → 𝑌 and

𝑐′ : 𝑋 ′ → 𝑌 ′, a predicate on the product of the inputs, 𝑝 : 𝑋 ⊗ 𝑋 ′ → 1, and a predicate on the

product of the outputs, 𝑞 : 𝑌 ⊗𝑌 ′ → 1, such that there exist a coupling, ℎ ⊲𝑐&𝑐′, satisfying 𝑝 ≥ ℎ= #𝑞.

We derive the rules of relational predicate-incorrectness logic. Compared to the rules of quantita-

tive probabilistic relational Hoare logic [ABDG25], we do not assume that guards are deterministic,

so we derive additional rules for nondeterministic choice and iteration. The strassen rule of

quantitative probabilistic relational Hoare logic [ABDG25] is missing as it is a consequence of

Strassen’s theorem, a characterisation of couplings particular to subdistributions.

For two guards, 𝑏1 : 𝑋1 → 1 + 1 and 𝑏2 : 𝑋2 → 1 + 1, we denote with 𝑏1 = 𝑏2 the predicate on

𝑋1 ⊗ 𝑋2 that succeeds when 𝑏1 and 𝑏2 are both true or both false, and fails otherwise. We use

𝑏1
# ⊗ 𝑏2# to denote the predicate on 𝑋1 ⊗ 𝑋2 obtained as the monoidal product of 𝑏1

#

: 𝑋1 → 1 and

𝑏2
#

: 𝑋2 → 1. For a predicate 𝑝 : 𝑋1 ⊗ 𝑋2 → 1, we indicate with 𝜎 ; 𝑝 : 𝑋2 ⊗ 𝑋1 → 1 the predicate

obtained by permuting the inputs.

Theorem 90. The following are valid relational predicate-incorrectness triples in any posetal impera-

tive category where abort ≤ 𝑓 and 𝑓 # ⊤ ≤ ⊤ for all morphisms 𝑓 .

skip

{𝑝} skip ∼ skip {𝑝}

comp

{𝑝} 𝑐1 ∼ 𝑑1 {𝑞} {𝑞} 𝑐2 ∼ 𝑑2 {𝑟 }
{𝑝} (𝑐1 ; 𝑐2) ∼ (𝑑1 ∼ 𝑑2) {𝑟 }

assign

{𝑝 [(𝑢1, 𝑢2) \ (𝑣1, 𝑣2)]} (𝑢1 := 𝑣1) ∼ (𝑢2 := 𝑣2) {𝑝}

sample

ℎ ⊲ 𝑐1 & 𝑐2

{𝑝 [(𝑢1, 𝑢2) \ ℎ=]} (𝑢1 ← 𝑐1) ∼ (𝑢2 ← 𝑐2) {𝑝}
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choice

{𝑝} 𝑐1 ∼ 𝑐2 {𝑞} {𝑝} 𝑐1 ∼ 𝑑2 {𝑞} {𝑝}𝑑1 ∼ 𝑐2 {𝑞} {𝑝}𝑑1 ∼ 𝑑2 {𝑞} 𝑏1, 𝑏2 total

{𝑝} (if 𝑏1 then 𝑐1 else𝑑1) ∼ (if 𝑏2 then 𝑐2 else𝑑2) {𝑞}
ifelse

{(𝑏1# ⊗ 𝑏2#) ∧ 𝑝} 𝑐1 ∼ 𝑐2 {𝑞}
{((¬𝑏1)# ⊗ (¬𝑏2)#) ∧ 𝑝}𝑑1 ∼ 𝑑2 {𝑞} 𝑏1, 𝑏2 total and deterministic

{(𝑏1 = 𝑏2) ∧ 𝑝} (if 𝑏1 then 𝑐1 else𝑑1) ∼ (if 𝑏2 then 𝑐2 else𝑑2) {𝑞}
loop

{𝑝} 𝑐1 ∼ 𝑐2 {𝑝} {𝑝} 𝑐1 ∼ skip {𝑝} {𝑝} skip ∼ 𝑐2 {𝑝} 𝑏1, 𝑏2 total

{𝑝} (while𝑏1 do 𝑐1) ∼ (while𝑏2 do 𝑐2) {𝑝}
while

{(𝑏1# ⊗ 𝑏2#) ∧ 𝑝} 𝑐1 ∼ 𝑐2 {(𝑏1 = 𝑏2) ∧ 𝑝} 𝑏1, 𝑏2 total and deterministic

{(𝑏1 = 𝑏2) ∧ 𝑝} (while𝑏1 do 𝑐1) ∼ (while𝑏2 do 𝑐2) {((¬𝑏1)# ⊗ (¬𝑏2)#) ∧ 𝑝}

monotone

𝑝1 ≥ 𝑝2 {𝑝2} 𝑐 ∼ 𝑑 {𝑞2} 𝑞2 ≥ 𝑞1
{𝑝1} 𝑐 ∼ 𝑑 {𝑞1}

choice-L

{𝑝} 𝑐 ∼ skip {𝑞} {𝑝}𝑑 ∼ skip {𝑞} 𝑏 total

{𝑝} (if 𝑏 then 𝑐 else𝑑) ∼ skip {𝑞}
symm

{𝑝} 𝑐 ∼ 𝑑 {𝑞}
{𝜎 ; 𝑝}𝑑 ∼ 𝑐 {𝜎 ; 𝑞}

assign-L

{𝑝 [𝑥 \ 𝑣]} (𝑥 := 𝑣) ∼ skip {𝑝}

sample-L

𝑐 total

{𝑝 [𝑢 \ 𝑐]} (𝑢 ← 𝑐) ∼ skip {𝑝}
ifelse-L

{(𝑏# ⊗ ⊤) ∧ 𝑝} 𝑐 ∼ skip {𝑞} {((¬𝑏1)# ⊗ ⊤) ∧ 𝑝}𝑑 ∼ skip {𝑞} 𝑏 total and deterministic

{𝑝} (if 𝑏 then 𝑐 else𝑑) ∼ skip {𝑞}
loop-L

{𝑝} 𝑐 ∼ skip {𝑝} 𝑏 total

{𝑝} (while𝑏 do 𝑐) ∼ skip {𝑝}

while-L

{(𝑏# ⊗ ⊤) ∧ 𝑝} 𝑐 ∼ skip {𝑝} 𝑏 total and deterministic

{𝑝} (while𝑏 do 𝑐) ∼ skip {((¬𝑏)# ⊗ ⊤) ∧ 𝑝}

7 Conclusions and future work
We have introduced posetal imperative categories as a principled approach to program logics

(Section 4). We have defined a sound and complete syntax for them (Section 2), which allowed us to

derive the rules of various existing program logics and relational program logics (Sections 5 and 6).

7.1 Further work
External logic, fibrations, and enrichment. While we focused on the logics given by the internal

structure of the category, we could derive more variants if we accept the logic to be external (e.g. the

extra operation ⊕ of outcome logic). In particular, a fibrationwould structure the use of two different

categories: one for predicates and one for commands. We considered poset-enriched categories to

express program triples. We could extend the treatment to metric-enriched categories to express

quantitative properties of program behaviour.

Separation logic and premonoidal semantics. The logic of bunched implications has semantics in

categories that are both cartesian closed and monoidal closed with a second tensor; additional

distributivity with coproducts is admissible [OP99]. We believe a careful adaptation of our tech-

niques could derive separation logic from categorical first principles: this could account for its

probabilistic versions [BHL19], or be extended to higher-order versions [BTSY06]. The condition

that modules have restricted access to some parts of memory [OYR04] may be modelled with

premonoidal categories and their internal language [Jef97].
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30 Anon.

A Proofs for Section 2 (An internal distributive language)
Let us restate the rules of the lanugage in a more compact way, using vectors instead of lists.

Return

( ®𝑥 : ®𝑋 ) ∈ Γ (𝛼𝛼𝛼 : ®𝑋 ) ∈ Δ
Γ ⊢ 𝛼𝛼𝛼 ( ®𝑥) : Δ

Generator

𝑓 ∈ G( ®𝑋 ; ®𝑌1, ..., ®𝑌ℓ ) ( ®𝑥 : ®𝑋 ) ∈ Γ {(®𝑦𝑖 : ®𝑌𝑖 ), Γ ⊢ 𝑝𝑖 : Δ}ℓ𝑖=1
Γ ⊢ 𝑓 ( ®𝑥){®𝑦𝑖 ⇒ 𝑝𝑖 }ℓ𝑖=1

Loop

{(𝑥𝑖 : 𝑋𝑖 ) ∈ Γ}𝑛𝑖=1 (®𝑢 : ®𝑋 ), Γ ⊢ 𝑝 : (𝛼𝛼𝛼 : ®𝑋 ),Δ
Γ ⊢ loop 𝛼𝛼𝛼 ( ®𝑥){®𝑢 ⇒ 𝑝} : Δ

A.1 Alpha equivalence
We work up to 𝛼-equivalence of variables and labels, formalized by nominal techniques and variable

permutations [GP99, GP02, Cro12]: essentially, the groups of automorphisms of both variables and

labels, Aut(V) and Aut(A), act on terms by structural induction (Theorems 91 and 92) and bound

variables are quotiented accordingly (Theorem 94). Because we ask the sets of variables and labels,

V and A, to be countably infinite sets—and because any term contains always a finite number of

variables and labels—there are always variables and labels that do not appear in any finite collection

of terms: these are called fresh.

Definition 91 (Label automorphisms on terms). Automorphisms of labels, 𝜏 ∈ Aut(A), act on a

term, 𝑡 , yielding a new term, 𝜏 · 𝑡 , inductively defined as follows.

𝜏 · (𝛼𝛼𝛼 ( ®𝑥)) = (𝜏𝛼𝛼𝛼) ( ®𝑥);
𝜏 · (loop 𝛼𝛼𝛼 ( ®𝑥){®𝑢.𝑝}) = loop (𝜏𝛼𝛼𝛼) ( ®𝑥){®𝑢.(𝜏 · 𝑝)};

𝜏 · (𝑓 ( ®𝑥){®𝑦𝑖 .𝑝𝑖 }) = 𝑓 ( ®𝑥){®𝑦𝑖 .(𝜏 · 𝑝𝑖 )}.

Definition 92 (Variable automorphisms on indexed terms). Automorphisms of variables, 𝜎 ∈
Aut(V) act on a term, 𝑝 , under an index, yielding a new term, 𝜎 · 𝑝 , inductively defined as follows.

𝜎 · (𝛼𝛼𝛼 ( ®𝑥)) = 𝛼𝛼𝛼 (𝜎 ®𝑥);
𝜎 · (loop 𝛼𝛼𝛼 ( ®𝑥){®𝑢.𝑝}) = loop 𝛼𝛼𝛼 (𝜎 ®𝑥){𝜎 ®𝑢.(𝜎 · 𝑝)};

𝜎 · (𝑓 ( ®𝑥){®𝑦𝑖 .𝑝𝑖 }) = 𝑓 (𝜎 ®𝑥){𝜎 ®𝑦𝑖 .(𝜎 · 𝑝𝑖 )}.
Note how automorphisms act on both bound and free variables; the distinction between bound and

free variables only becomes apparent when discussing alpha-equivalence (Theorem 94).

Remark 93 (Simple permutations, and shadowing). From now on, we write (𝑥 𝑦) to refer to the

permutation that exchanges 𝑥 by𝑦 and viceversa. We also write (®𝑢 ®𝑥) for the composite permutation

(𝑢𝑛 𝑥𝑛) . . . (𝑢1 𝑥1). Importantly for shadowing, this is different from (𝑢1 𝑥1) . . . (𝑢𝑛 𝑥𝑛): while both
permutations coincide whenever the variables are different, the first permutation decides that 𝑢𝑖
will shadow 𝑢 𝑗 whenever 𝑖 < 𝑗 for 𝑥𝑖 = 𝑥 𝑗 .

Axiom 94 (Alpha-equivalence of terms). Two terms, under the same context and index, Γ ⊢ 𝑝 : Δ
and Γ ⊢ 𝑞 : Δ, are 𝛼-equivalent when they are related inductively by the following rules.

Return

{(𝑥𝑖 : 𝑋𝑖 ) ∈ Γ}𝑛𝑖=1 (𝛼𝛼𝛼 : 𝑋1, ..., 𝑋𝑛) ∈ Δ
Γ ⊢ 𝛼𝛼𝛼 (𝑥1, ..., 𝑥𝑛) ≡ 𝛼𝛼𝛼 (𝑥1, ..., 𝑥𝑛) : Δ
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Loop

{( ®𝑥 : ®𝑋 ) ∈ Γ} 𝛾𝛾𝛾 fresh ( ®𝑦 : ®𝑌 ) fresh
Γ ⊢ ((®𝑦 ®𝑢) · (𝛾𝛾𝛾 𝛼𝛼𝛼) · 𝑝) ≡ ((®𝑦 ®𝑣) · (𝛾𝛾𝛾 𝛽𝛽𝛽) · 𝑞) : 𝛾𝛾𝛾 (𝑋1, ..., 𝑋𝑛),Δ

Γ ⊢ (loop 𝛼𝛼𝛼 ( ®𝑥){®𝑢.𝑝}) ≡ (loop 𝛽𝛽𝛽 ( ®𝑥){®𝑣 .𝑞}) : Δ
Generator (𝑓 )

{(𝑥𝑖 : 𝑋𝑖 ) ∈ Γ}𝑛𝑖=1 {(®𝑦𝑖 : ®𝑌𝑖 ) fresh}𝑛𝑖=1 {®𝑦𝑖 : ®𝑌𝑖 , Γ ⊢ ((®𝑦𝑖 ®𝑢𝑖 ) · 𝑝𝑖 ) ≡ ((®𝑦𝑖 ®𝑣𝑖 ) · 𝑞𝑖 ) : Δ}ℓ𝑖=1
Γ ⊢ 𝑓 ( ®𝑥){®𝑢𝑖 .𝑝𝑖 }ℓ𝑖=1 ≡ 𝑓 ( ®𝑥){®𝑣𝑖 .𝑞𝑖 }ℓ𝑖=1 : Δ

Definition 95 (Alpha-equivalence of derivations). Two derivations are 𝛼-equivalent if, after

refreshing the variables on their contexts and the labels on their indices, their terms are 𝛼-equivalent

under the same context and labels. That is, we say that ( ®𝑥 : ®𝑋 ) ⊢ 𝑝 : (®𝛼𝛼𝛼 : ®Ψ) and ( ®𝑦 : ®𝑋 ) ⊢ 𝑞 : (®𝛽𝛽𝛽 : ®Ψ)
are 𝛼-equivalent their substitutions with fresh variables and labels coincide.

®𝑧 : ®𝑋 ⊢ (®𝑧 ®𝑥) · (( ®𝜔𝜔𝜔 ®𝛼𝛼𝛼) · 𝑝) ≡ (®𝑧 ®𝑦) · (( ®𝜔𝜔𝜔 ®𝛽𝛽𝛽) · 𝑞) : ( ®𝜔𝜔𝜔 : ®Ψ).

Proposition 15 (Label exchange, contraction, and weakening). Exchange, contraction, and
weakening for labels are derivable.

lblExchange

Γ ⊢ 𝑝 : Δ1, (𝛼𝛼𝛼1 : Ψ1), (𝛼𝛼𝛼2 : Ψ2),Δ2

Γ ⊢ 𝑝 : Δ1, (𝛼𝛼𝛼2 : Ψ2), (𝛼𝛼𝛼1 : Ψ1),Δ2

lblContraction

Γ ⊢ 𝑝 : Δ1, (𝛼𝛼𝛼1 : Ψ), (𝛼𝛼𝛼2 : Ψ),Δ2

Γ ⊢ lCntr𝛼𝛼𝛼1,𝛼𝛼𝛼2
(𝑝) : Δ1, (𝛼𝛼𝛼 : Ψ),Δ2

lblWeakening

Γ ⊢ 𝑝 : Δ1,Δ2

Γ ⊢ 𝑝 : Δ1, (𝛼𝛼𝛼 : Ψ),Δ2

Proof. In order to derive lblExchange, we proceed by structural induction on terms: (i) if the

term is a return statement, we simply notice that membership to the set of labels has not been

altered; (ii) if the term is a loop, we apply the induction hypothesis to the body of the loop, which,

from (𝜔𝜔𝜔 : Ψ),Δ1, (𝛼𝛼𝛼1 : Ψ1), (𝛼𝛼𝛼2 : Ψ2),Δ2, becomes (𝜔𝜔𝜔 : Ψ),Δ1, (𝛼𝛼𝛼2 : Ψ2), (𝛼𝛼𝛼1 : Ψ1),Δ2; and (iii) if the

term is a generator statement, we apply the induction hypothesis to each one of its branches.

In order to derive lblContraction, we proceed by structural induction on terms: (i) we apply

𝛼𝛼𝛼 , whenever we find 𝛼𝛼𝛼1 or 𝛼𝛼𝛼2, and leave the rest of the term unchanged. We may assume that any

label𝜔𝜔𝜔 that we find at the head of a loop is fresh.

lCntr𝛼𝛼𝛼1,𝛼𝛼𝛼2
(𝛼𝛼𝛼1 (𝑥1, ..., 𝑥𝑛)) = 𝛼𝛼𝛼 (𝑥1, ..., 𝑥𝑛);

lCntr𝛼𝛼𝛼1,𝛼𝛼𝛼2
(𝛼𝛼𝛼2 (𝑥1, ..., 𝑥𝑛)) = 𝛼𝛼𝛼 (𝑥1, ..., 𝑥𝑛);

lCntr𝛼𝛼𝛼1,𝛼𝛼𝛼2
(𝜔𝜔𝜔 (𝑥1, ..., 𝑥𝑛)) =𝜔𝜔𝜔 (𝑥1, ..., 𝑥𝑛), for 𝜔 ≠ 𝛼1, 𝜔 ≠ 𝛼2

lCntr𝛼𝛼𝛼1,𝛼𝛼𝛼2
(loop𝜔𝜔𝜔 (𝑥1, ..., 𝑥𝑛){𝑝}) = loop𝜔𝜔𝜔 (𝑥1, ..., 𝑥𝑛){lCntr𝛼𝛼𝛼1,𝛼𝛼𝛼2

(𝑝)};
lCntr𝛼𝛼𝛼1,𝛼𝛼𝛼2

(𝑓 ( ®𝑥){®𝑦𝑖 ⇒ 𝑝𝑖 }) = 𝑓 ( ®𝑥){®𝑦𝑖 ⇒ lCntr𝛼𝛼𝛼1,𝛼𝛼𝛼2
(𝑝𝑖 )}.

Finally, in order to derive lblWeak, we proceed by structural induction on terms: (i) if the term

is a return statement, we simply notice that membership to the set of labels has not been altered;

(ii) if the term is a loop, we apply the induction hypothesis to the body of the loop; and (iii) if the

term is a generator statement, we apply the induction hypothesis to each one of its branches. □

Proposition 16 (Index tensor exchange, contraction, weakening). Exchange, copying, and
discarding for variables on the index are derivable.

rExchange

Γ ⊢ 𝑝 : Δ1, (𝛼𝛼𝛼 : Ψ1, 𝑋1, 𝑋2,Ψ2),Δ2

Γ ⊢ rExch(𝑝) : Δ1, (𝛼𝛼𝛼 : Ψ1, 𝑋2, 𝑋1,Ψ2),Δ2

rCopying

Γ ⊢ 𝑝 : Δ1, (: Ψ1, 𝑋,Ψ2),Δ2

Γ ⊢ rCopy(𝑝) : Δ1, (𝛼𝛼𝛼 : Ψ1, 𝑋, 𝑋,Ψ2),Δ2

rDiscarding

Γ ⊢ 𝑝 : Δ1, (𝛼𝛼𝛼 : Ψ1, 𝑋,Ψ2),Δ2

Γ ⊢ rDisc(𝑝) : Δ1, (𝛼𝛼𝛼 : Ψ1,Ψ2),Δ2
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32 Anon.

Proof. In order to derive rExchange, we proceed by structural induction on terms.We exchange

two variables each time we find the right label, 𝛼𝛼𝛼 ; and we leave the rest of the term unchanged.

rExch(𝛼𝛼𝛼 (𝑦1, ..., 𝑥1, 𝑥2, ..., 𝑦𝑛)) = 𝛼𝛼𝛼 (𝑦1, ..., 𝑥2, 𝑥1, ..., 𝑦𝑛);
rExch(𝜔𝜔𝜔 (𝑧1, ..., 𝑧𝑚)) =𝜔𝜔𝜔 (𝑧1, ..., 𝑧𝑚), when𝜔𝜔𝜔 ≠ 𝛼𝛼𝛼 ;

rExch(loop𝜔𝜔𝜔 (𝑥1, ..., 𝑥𝑛){𝑝}) = loop𝜔𝜔𝜔 (𝑥1, ..., 𝑥𝑛){rExch(𝑝)};
rExch(𝑓 ( ®𝑥){®𝑦𝑖 ⇒ 𝑝𝑖, 𝑗 }) = 𝑓 ( ®𝑥){®𝑦𝑖 ⇒ rExch(𝑝𝑖, 𝑗 )}.

In order to derive rCopying, we proceed by structural induction on terms. We return twice the

variable we are duplicating; and we leave the rest of the term unchanged.

rCopy(𝛼𝛼𝛼 (𝑦1, ..., 𝑥, ..., 𝑦𝑛)) = 𝛼𝛼𝛼 (𝑦1, ..., 𝑥, 𝑥, ..., 𝑦𝑛);
rCopy(𝜔𝜔𝜔 (𝑧1, ..., 𝑧𝑚)) =𝜔𝜔𝜔 (𝑧1, ..., 𝑧𝑚), when𝜔𝜔𝜔 ≠ 𝛼𝛼𝛼 ;

rCopy(loop 𝜔 (𝑥1, ..., 𝑥𝑛){𝑝}) = loop 𝜔 (𝑥1, ..., 𝑥𝑛){rCopy(𝑝)};
rCopy(𝑓 ( ®𝑥){®𝑦𝑖 ⇒ 𝑝𝑖, 𝑗 }) = 𝑓 ( ®𝑥){®𝑦𝑖 ⇒ rCopy(𝑝𝑖, 𝑗 )}.

In order to derive rDiscard, we proceed by structural induction on terms. We avoid returning

the variable we are discarding; and we leave the rest of the term unchanged.

rDisc(𝛼𝛼𝛼 (𝑦1, ..., 𝑥, ..., 𝑦𝑛)) = 𝛼𝛼𝛼 (𝑦1, ..., ..., 𝑦𝑛);
rDisc(𝜔𝜔𝜔 (𝑧1, ..., 𝑧𝑚)) =𝜔𝜔𝜔 (𝑧1, ..., 𝑧𝑚), when𝜔𝜔𝜔 ≠ 𝛼𝛼𝛼 ;

rDisc(loop 𝜔 (𝑥1, ..., 𝑥𝑛){𝑝}) = loop 𝜔 (𝑥1, ..., 𝑥𝑛){rDisc(𝑝)};
rDisc(𝑓 ( ®𝑥){®𝑦𝑖 ⇒ 𝑝𝑖, 𝑗 }) = 𝑓 ( ®𝑥){®𝑦𝑖 ⇒ rDisc(𝑝𝑖, 𝑗 )}.

□

Proposition 17 (Variable exchange and contraction). Variable exchange, variable contraction,
and variable weakening are derivable.

varExchange

Γ1, (𝑥 : 𝑋 ), (𝑦 : 𝑌 ), Γ2 ⊢ 𝑝 : Δ

Γ1, (𝑦 : 𝑌 ), (𝑥 : 𝑋 ), Γ2 ⊢ 𝑝 : Δ

varContraction

Γ1, (𝑥1 : 𝑋 ), (𝑥2 : 𝑋 ), Γ2 ⊢ 𝑝 : Δ

Γ1, (𝑥 : 𝑋 ), Γ2 ⊢ 𝑝 [𝑥1, 𝑥2 \ 𝑥, 𝑥] : Δ

varWeakening

Γ1, Γ2 ⊢ 𝑝 : Δ

Γ1, (𝑥 : 𝑋 ), Γ2 ⊢ 𝑝 : Δ

Proof. We derive varExchange by structural induction: (i) if the term is a return statement,

variable membership has is not altered and it can be constructed in the same way; (ii) if the term is

a loop, we apply the induction hypothesis to its body; and (iii) if the term is a generator, we apply

structural induction on each one of the branches.

We derive varContraction by structural induction: (i) if the term is a return statement, it now

contains 𝑥 in place of 𝑥1 and 𝑥2, so it can be derived with the new context; (ii) if the term is a loop,

we apply substitution to its variables and the induction hypothesis to its body; and (iii) if the term

is a generator, we apply structural induction on each one of the branches.

We derive varWeakening by structural induction: the whole term is left unchanged. □

B Proofs for Section 3 (Guards, predicates and commands)
Proposition 23. Guards form a pair of commutative monoids, and negation is an involutive homo-

morphism between them.

𝑏1∧𝑏2 ≡ 𝑏2∧𝑏1; (𝑏1∧𝑏2)∧𝑏3 ≡ 𝑏1∧(𝑏2∧𝑏3); 𝑏∧LLL ≡ 𝑏;
𝑏1∨𝑏2 ≡ 𝑏2∨𝑏1; (𝑏1∨𝑏2)∨𝑏3 ≡ 𝑏1∨(𝑏2∨𝑏3); 𝑏∨RRR ≡ 𝑏;

¬(𝑏1∧𝑏2) ≡ ¬𝑏2∨¬𝑏1; ¬(¬𝑏) ≡ 𝑏.

, Vol. 1, No. 1, Article . Publication date: July 2025.



1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

Program Logics via Distributive Monoidal Categories 33

For any total guard, Γ ⊢ 𝑏𝑡 : Ω, we additionally have the annihilator rules, 𝑏𝑡∧RRR ≡ RRR and 𝑏𝑡∨LLL ≡ LLL.
For any deterministic guard, Γ ⊢ 𝑏𝑑 : Ω, we additionally have the idempotency rules. 𝑏𝑑∧𝑏𝑑 ≡ 𝑏𝑑 and

𝑏𝑑∨𝑏𝑑 ≡ 𝑏𝑑 .

Proof. Let us prove 𝑏1∧𝑏2 ≡ 𝑏2∧𝑏1. We reason by (i) the definition of conjunction, (ii) the

interchange axiom, and (iii) the definition of conjunction.

𝑏1∧𝑏2
(i)

≡
𝑏1 [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \ 𝑏2, 𝑏2 [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \𝛼𝛼𝛼2,𝛼𝛼𝛼2]]

(ii)

≡
𝑏2 [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \ 𝑏1, 𝑏1 [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \𝛼𝛼𝛼2,𝛼𝛼𝛼2]]

(iii)

≡
𝑏1∧𝑏2.

Proving 𝑏1∨𝑏2 ≡ 𝑏2∨𝑏1 is analogous.
Let us prove ¬(𝑏1∧𝑏2) ≡ ¬𝑏2∧¬𝑏1. We reason by (i) definition of conjunction and negation, (ii)

the identity substitution, (iii) composing substitutions, (iv) the definition of negation, again, (v) the

definition of negation, and (vi) the definition of disjunction.

¬(𝑏1∧𝑏2)
(i)

≡
𝑏1 [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \ 𝑏2, 𝑏2 [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \𝛼𝛼𝛼2,𝛼𝛼𝛼2]] [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \𝛼𝛼𝛼2,𝛼𝛼𝛼1]

(ii)

≡
𝑏1 [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \ 𝑏2 [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \𝛼𝛼𝛼1,𝛼𝛼𝛼2], 𝑏2 [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \𝛼𝛼𝛼2,𝛼𝛼𝛼2]] [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \𝛼𝛼𝛼2,𝛼𝛼𝛼1]

(iii)

≡
𝑏1 [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \ 𝑏2 [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \𝛼𝛼𝛼2,𝛼𝛼𝛼1], 𝑏2 [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \𝛼𝛼𝛼1,𝛼𝛼𝛼1]]

(iv)

≡
(¬𝑏1) [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \ 𝑏2 [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \𝛼𝛼𝛼1,𝛼𝛼𝛼1], 𝑏2 [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \𝛼𝛼𝛼2,𝛼𝛼𝛼1]]

(v)

≡
(¬𝑏1) [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \ (¬𝑏2) [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \𝛼𝛼𝛼1,𝛼𝛼𝛼1], (¬𝑏2) [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \𝛼𝛼𝛼1,𝛼𝛼𝛼2]]

(vi)

≡
¬𝑏1∨¬𝑏2.

The rest of the proofs are analogous. □

Proposition 26. The following equations hold for predicate combinators: predicates form a commu-

tative monoid with conjunction and truth, with falsehood as an absorbing element, that distributes

over choices.

𝑝 ∧ 𝑞 ≡ 𝑞 ∧ 𝑝; 𝑝 ∧ (𝑞 ∧ 𝑟 ) ≡ (𝑝 ∧ 𝑞) ∧ 𝑟 ; 𝑝 ∧ ⊤ ≡ 𝑝; 𝑝 ∧ ⊥ ≡ ⊥;
𝑝 ∧ (𝑞 +𝑏 𝑟 ) ≡ (𝑝 ∧ 𝑞) +𝑏 (𝑝 ∧ 𝑟 ).

For any total predicate, Γ ⊢ 𝑝𝑡 : Υ, we have it collapse, 𝑝 ≡ ⊤. For any deterministic predicate,

Γ ⊢ 𝑝𝑑 : Υ, we have the idempotency rule, 𝑝𝑑 ∧ 𝑝𝑑 ≡ 𝑝𝑑 .

Proof. Let us prove, for instance, that 𝑝 ∧ (𝑞 +𝑏 𝑟 ) ≡ (𝑝 ∧ 𝑞) +𝑏 (𝑝 ∧ 𝑟 ). We reason by (i) the

definition of conjunction, (ii) the definition of conditional, (iii) the interchange axiom, and (iv) the

definitions of conditional and conjunction again.

𝑝 ∧ 𝑞 +𝑏 𝑟
(i)

≡
𝑝 [𝜈𝜈𝜈 \ 𝑞 +𝑏 𝑟 ]

(ii)

≡
𝑝 [𝜈𝜈𝜈 \ 𝑏 [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \ 𝑞, 𝑟 ]]

(iii)

≡
𝑏 [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \ 𝑝 [𝜈𝜈𝜈 \ 𝑞], 𝑝 [𝜈𝜈𝜈 \ 𝑟 ]]

(iv)

≡
(𝑝 ∧ 𝑞) +𝑏 (𝑝 ∧ 𝑟 ).

The rest of the proofs are analogous and follow from computing substitutions. □
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34 Anon.

Proposition 29. The following equations hold for command combinators. In particular, commands

form a monoid, with composition and skip.

(𝑐1 ; 𝑐2) ; 𝑐3 ≡ 𝑐1 ; (𝑐2 ; 𝑐3); (𝑐 ; skip) ≡ 𝑐 ≡ (skip ;𝑐); abort; 𝑐 ≡ abort ≡ 𝑐 ; abort;
if LLL then 𝑐1 else 𝑐2 ≡ 𝑐1; if RRR then 𝑐1 else 𝑐2 ≡ 𝑐2; if (¬𝑏) then 𝑐1 else 𝑐2 ≡ if 𝑏 then 𝑐2 else 𝑐1;

while𝑏 do 𝑐 ≡ if 𝑏 then(𝑐 ; while𝑏 do 𝑐) else skip; while𝑏 do abort ≡ assert (¬𝑏)#;
if 𝑏 then 𝑐1 else 𝑐2 ; 𝑑 ≡ if 𝑏 then(𝑐1;𝑑) else(𝑐2;𝑑);

assert 𝑝; assert𝑞 ≡ assert(𝑝 ∧ 𝑞); assert𝑏# ≡ if 𝑏 then skip else abort;

assert⊤ ≡ skip; assert⊥ ≡ abort; assert(𝑝 +𝑏 𝑞) = if 𝑏 then(assert𝑝) else(assert𝑞)

Proof. Let us prove, for instance, that while𝑏 do 𝑐 ≡ if 𝑏 then(𝑐 ; while𝑏 do 𝑐) else skip. We

reason by (i) the definition of while, (ii) the fixpoint rule (Theorem 14), (iii) the definition of while,
and (iv) the definition of command concatenation.

while𝑏 do 𝑐
(i)

≡
loop 𝛼𝛼𝛼 ( ®𝑥){if 𝑏 then 𝑐 [𝜂𝜂𝜂 \ ®𝑥 .𝛼𝛼𝛼 ( ®𝑥)] else skip}

(ii)

≡
if 𝑏 then 𝑐 [𝜂𝜂𝜂 \ ®𝑥 .loop 𝛼𝛼𝛼 ( ®𝑥){if 𝑏 then 𝑐 [𝜂𝜂𝜂 \ ®𝑥 .𝛼𝛼𝛼 ( ®𝑥)] else skip}] else skip

(iii)

≡
if 𝑏 then 𝑐 [𝜂𝜂𝜂 \ ®𝑥 .while𝑏 do 𝑐] else skip

(iv)

≡
if 𝑏 then(𝑐;while𝑏 do 𝑐) else skip .

The rest of the equations follow from similar principles. □

Lemma 96.
𝑙 ; L𝑏1M{𝑐1}{𝑐2} ≤ L𝑏2M{𝑑1 ; 𝑙}{𝑑2}

𝑙 ; (while𝑏1 do 𝑐1) ; 𝑐2 ≤ (while𝑏2 do𝑑1) ; 𝑑2
Proposition 97. The following equations hold for deterministic guards.

L𝑏M{skip}{skip} ≡ L𝑏M{assert𝑏#}{assert (¬𝑏)#}
if 𝑏 then 𝑐1 else 𝑐2 ≡ if 𝑏 then(assert𝑏# ; 𝑐1) else(assert (¬𝑏)# ; 𝑐2).

Lemma 98. For a total guard 𝑏 : 𝑋 → 1 + 1, then if 𝑏𝑡 then skip else skip ≡ skip.

Lemma 99. In a commutative imperative category, predicates and guards interchange: for a predicate

𝑝 : 𝑋 → 1 and a guard 𝑏 : 𝑋 → 1 + 1, then assert 𝑝 ; L𝑏M{skip}{skip} = L𝑏M{assert𝑝}{assert𝑝}.

Lemma 100. In a commutative imperative category, constant guards interchange with anything: for

a guard 𝑏 : 1→ 1 + 1 and a morphism 𝑓 : 𝑋 → 𝑌 , then 𝑓 ; L𝑏𝑌 M{skip}{skip} = L𝑏𝑋 M{𝑓 }{𝑓 }, where
𝑏𝑋 = 𝜀𝑋 # 𝑏 is the guard on 𝑋 associated to 𝑏.

C Proofs for Section 4 (Categorical semantics)
Definition 101 (Sesquifunctor). A (two-variable) sesquifunctor, 𝐹 : (A,B) → C, consists of an
assignment on objects, 𝐹 (𝐴, 𝐵) ∈ C𝑜𝑏 𝑗 for 𝐴 ∈ A𝑜𝑏 𝑗 and 𝐵 ∈ B𝑜𝑏 𝑗 , and two assignments on

morphisms,

𝐹 (𝑓 ; id𝐵) : 𝐹 (𝐴;𝐵) → 𝐹 (𝐴′;𝐵), for each 𝑓 : 𝐴→ 𝐴′; and

𝐹 (id𝐴;𝑔) : 𝐹 (𝐴;𝐵) → 𝐹 (𝐴;𝐵′), for each 𝑔 : 𝐵 → 𝐵′;

satisfying the sesquifunctoriality axioms,

(1) 𝐹 (𝑓 # 𝑓 ′; id𝐵) = 𝐹 (𝑓 , id𝐵) # 𝐹 (𝑓 ′; id𝐵),
(2) 𝐹 (id𝐴;𝑔 # 𝑔′) = 𝐹 (id𝐴, 𝑔) # 𝐹 (id𝐴;𝑔′), and
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(3) 𝐹 (id𝐴; id𝐵) = id𝐴⊗𝐵 .

Crucially, a sesquifunctor does not necessarily satisfy the bifunctoriality axiom,

𝐹 (𝑓 ; id𝐵) # 𝐹 (id𝐴′ ;𝑔) ≠ 𝐹 (id𝐴;𝑔) # 𝐹 (𝑓 ; id𝐵′ ).

Definition 102 (Symmetric premonoidal category). A symmetric premonoidal category—precisely,

a symmetric strict premonoidal category, or permutative premonoidal category—consists of a (strict)

premonoidal category endowed with a family of morphisms, 𝜎𝐴,𝐵 : 𝐴 ⊗ 𝐵 → 𝐵 ⊗ 𝐴, satisfying all
formal distinctly typed equations.

Lemma 47 (Terms form a predistributive copy-discard multicategory). Terms form a predis-

tributive copy-discard multicategory. Variable multiwhiskering (multiWhisk-r and multiWhisk-l),

where we add the same type to the premises and to each one of the conclusions, are derivable.

multiWhisk-l

Γ ⊢ 𝑝 : (𝛼𝛼𝛼1 : Ψ1), ..., (𝛼𝛼𝛼𝑛 : Ψ𝑛)
Γ, (𝑤 : 𝑋 ) ⊢ 𝑋 ⋉ 𝑝 : (𝛼𝛼𝛼1 : 𝑋,Ψ1), ..., (𝛼𝛼𝛼𝑛 : 𝑋,Ψ𝑛)

multiWhisk-r

Γ ⊢ 𝑝 : (𝛼𝛼𝛼1 : Ψ1), ..., (𝛼𝛼𝛼𝑛 : Ψ𝑛)
Γ, (𝑤 : 𝑋 ) ⊢ 𝑝 ⋊ 𝑋 : (𝛼𝛼𝛼1 : Ψ1, 𝑋 ), ..., (𝛼𝛼𝛼𝑛 : Ψ𝑛, 𝑋 )

The copy-discard category structure follows from the rest of the structural rules (Theorem 16).

Proof. In order to derive multiWhisk-r, we proceed by structural induction on the term: (i)

if the term is a return statement, we add the extra variable; (ii) if the term is a loop, we apply

the induction hypothesis to the body of the loop; (iii) if the term is a generator, we apply the

induction hypothesis to each one of its branches. In order to deriveWhiskering, we first apply

multiWhiskering and then rDiscarding.

𝛼𝛼𝛼 ( ®𝑥) ⋊ 𝑋 ≡ 𝛼𝛼𝛼 ( ®𝑥,𝑤);
loop 𝛼𝛼𝛼 ( ®𝑥){®𝑢.𝑝} ⋊ 𝑋 ≡ loop 𝛼𝛼𝛼 ( ®𝑥,𝑤){®𝑢, 𝑣 .𝑝 ⋊ 𝑋 [𝑤 \ 𝑣]};
(𝑓 ( ®𝑥){®𝑢𝑖 .𝑝𝑖 }𝑖 ) ⋊ 𝑋 ≡ 𝑓 ( ®𝑥){®𝑢𝑖 .(𝑝𝑖 ⋊ 𝑋 )}.

In order to derive multiWhisk-l, we can use multiWhisk-r and the variable exchange rule

(Theorem 16). □

Remark 103. Variable whiskering (whisk), where we add the same type to the premises and to one

of the conclusions, is also derivable by weakening.

Whiskering

Γ ⊢ 𝑝 : (𝛼𝛼𝛼1 : Ψ1), ..., (𝛼𝛼𝛼𝑛 : Ψ𝑛)
Γ, (𝑥 : 𝑋 ) ⊢ whisk(𝑝) : (𝛼𝛼𝛼1 : Ψ1, 𝑋 ), (𝛼𝛼𝛼2 : Ψ2), ..., (𝛼𝛼𝛼𝑛 : Ψ𝑛)

Theorem 54 (Denotational semantics). Consider an assignment from a distributive signature

(B,G) to the underlying distributive signature of an imperative multicategory, (C𝑜𝑏 𝑗 ,C), given
by an assignment on objects, L•M𝑜𝑏 𝑗 : B → C𝑜𝑏 𝑗—which extends to an assignment on lists of types,

J•K⊗ : List(B) → C𝑜𝑏 𝑗 , defined inductively by JK⊗ = 𝐼 and J𝑋, ®𝑋 K⊗ = J𝑋 K⊗J ®𝑋 K⊗—and an assignment

on generators preserving their type,

L•M : G( ®𝑋 ; ®𝑌1, ..., ®𝑌𝑛) → C(L ®𝑋 M; L®𝑌1M + ... + L®𝑌𝑛M).
It extends to an assignment, J•K : ( ®𝑥 : ®𝑋 ⊢ (𝛼𝛼𝛼1 :

®𝑌1), ..., (𝛼𝛼𝛼1 :
®𝑌𝑛)) → C(J ®𝑋 K⊗ ; J®𝑌1K⊗ + ... + J®𝑌𝑛K⊗),

from terms to morphisms of the multicategory C.

Proof. Let context and index be Γ = (𝑥1 : 𝑋1, ..., 𝑥𝑛 : 𝑋𝑛) and Δ = (𝛼𝛼𝛼1 : (𝑌1, ..., 𝑌𝑘1 )), ..., (𝛼𝛼𝛼𝑙 :
(𝑌1, ..., 𝑌𝑘𝑙 )). We proceed by structural induction on terms.

Let us define the interpretation of the return statement. Given any finite function 𝜎 : 𝑚 → 𝑛, we

write ®𝑥𝜎 for the list of𝑚 variables that we pick according to the function, ®𝑥𝜎 = 𝑥𝜎 (1) , ..., 𝑥𝜎 (𝑚) . Recall
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36 Anon.

that, in any copy-discard category, we have a morphism 𝜎★ ∈ C(𝑋1 ⊗ ... ⊗ 𝑋𝑛 ;𝑋𝜎 (1) ⊗ ... ⊗ 𝑋𝜎 (𝑛) ).
Recall, moreover, that in any cocartesian multicategory, given any index 𝑖 , we have an action

(•) · 𝑖∗ : C(𝐴;𝐵) → C(𝐴;𝐶1, ..., 𝐵
(𝑖 ) , ...,𝐶𝑙 ). We define the interpretation of a return statement as

follows.

JΓ ⊢ 𝛼𝛼𝛼𝑖 ( ®𝑥𝜎 ) : ΔK = (𝜎★) · 𝑖∗ .
Let us define the interpretation of the loop statement. The difficulty of this case is that we

want to allow two classes of variables: those that get updated by the loop and those that do not.

Categorically, there is no such distinction, and all variables must be copied to each iteration of

the loop to be discarded at the end. Given two finite functions, 𝜎 : 𝑚1 → 𝑛 and 𝜏 : 𝑚2 → 𝑛, we

write their copairing—the function that acts as 𝜎 on the first 𝑚1 elements and as 𝜏 on the last

𝑚2—as [𝜎, 𝜏] : 𝑚1 +𝑚2 → 𝑛. In the following formula, the morphism [𝜎, id𝑛]★ : 𝑋1 ⊗ ... ⊗ 𝑋𝑛 →
𝑋𝜎 (1) ⊗ ... ⊗ 𝑋𝜎 (𝑚) ⊗ 𝑋1 ⊗ ... ⊗ 𝑋𝑛 picks apart the variables that will be updated by the body of

the loop; the morphism 𝜈 = (id𝑚 + [id𝑛, id𝑛])★ : 𝑋𝜎 (1) ⊗ ... ⊗ 𝑋𝜎 (𝑚) ⊗ 𝑋1 ⊗ ... ⊗ 𝑋𝑛 → 𝑋𝜎 (1) ⊗ ... ⊗
𝑋𝜎 (𝑚) ⊗𝑋1 ⊗ ...⊗𝑋𝑛 ⊗𝑋1 ⊗ ...⊗𝑋𝑛 passes a copy of the non-updated variables to the next iteration;

and the inclusions 𝑖𝑘 𝑗
: 𝑘 𝑗 → 𝑘 𝑗 + 𝑛 are used as 𝑖★

𝑘 𝑗
: 𝑌1 ⊗ ... ⊗ 𝑌𝑘 𝑗

⊗ 𝑋1 ⊗ ... ⊗ 𝑋𝑛 → 𝑌1 ⊗ ... ⊗ 𝑌𝑘 𝑗
to

project the relevant variables. We define the interpretation of a loop statement as follows.

JΓ ⊢ loop 𝛼𝛼𝛼 ( ®𝑥𝜎 ){®𝑢.𝑝} : ΔK = [𝜎, id𝑛]★ # fix(𝜈 # (J®𝑢 : ®𝑋𝜎 , Γ ⊢ 𝑝 : ΔK ⊗ id𝑛)) # (𝑖★𝑘1 , ..., 𝑖
★
𝑘𝑙
).

Let us define the interpretation a generator statement, where we are given a generator of the

form 𝑓 ∈ G( ®𝑋 ; ®𝑌1, ..., ®𝑌ℓ ). Given a list of finite functions, 𝜎1 : 𝑚1 → 𝑛, ..., 𝜎𝑙 : 𝑚𝑙 → 𝑛, we write

[𝜎1, ..., 𝜎𝑙 ] : 𝑚1 + ... + 𝑚𝑙 → 𝑛 for its pairing. In the following formula, 𝜈 = [id𝑛, id𝑛]★ copies

the input and (•) · [id𝑙 , ..., id𝑙 ]∗ merges the ℓ groups of outputs into a single one. We define the

interpretation of a generator statement as follows.

JΓ ⊢ 𝑓 ( ®𝑥){ ®𝑦𝑖 .𝑝𝑖 }𝑖 : ΔK = (𝜈 # (L𝑓 M⊗ id𝑛)) # (J®𝑦1:®𝑌1, Γ ⊢ 𝑝1 : Δ1K, ..., J®𝑦ℓ :®𝑌ℓ , Γ ⊢ 𝑝ℓ : ΔℓK) · [id𝑙 , ..., id𝑙 ]∗ .

We provide auxiliary string diagrams in Figure 1. □

Theorem 56 (Soundness and completeness). The denotational semantics is sound and complete

for imperative multicategories.

Proof sketch. Regarding soundness, it remains to show that the definition in Theorem 54 is

well-defined with respect to the axioms of the language: interchange and loop axioms in Section 2.4.

Fortunately, the axioms have been chosen so as to correspond to existing axioms of traced distribu-

tive copy-discard multicategories. Indeed, the language’s interchange axiom has been picked to

reflect the interchange axiom of distributive multicategories; and the loop axioms (dinaturality,

diagonal, uniformity) have been picked to reflect the axioms of the trace. It only remains to

formally track this correspondence by structural induction in the rules.

Regarding completeness, we have been building the syntactic model of the theory as we have been

introducing the structure. We have already shown that terms form a multicategory (Theorem 41),

that it is a cocartesian multicategory (Theorem 44), and that it is a predistributive copy-discard

category (Theorem 47). This syntactic model means that any equation that holds for any traced

distributive copy-discard multicategory holds for the syntax. □

Definition 104 (Posetal distributive copy-discard category). A posetal distributive copy-discard cat-

egory is a distributive copy-discard category where every hom-set has a poset structure compatible

with composition, tensors and coproducts: for all 𝑓 , 𝑓 ′ : 𝑋 → 𝑌 , 𝑔,𝑔′ : 𝑌 → 𝑍 and ℎ,ℎ′ : 𝑉 →𝑊 , if

𝑓 ≤ 𝑓 ′, 𝑔 ≤ 𝑔′ and ℎ ≤ ℎ′, then 𝑓 # 𝑔 ≤ 𝑓 ′ # 𝑔′, 𝑓 ⊗ ℎ ≤ 𝑓 ′ ⊗ ℎ′ and 𝑓 + ℎ ≤ 𝑓 ′ + ℎ′.
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Definition 105 (Posetal uniform trace, cf. Hasegawa [Has02]). A posetal uniform traced monoidal

category is a traced monoidal category (C, ⊕, 𝑍 ) whose underlying monoidal category is posetally-

enriched and whose trace, additionally, satisfies the posetal uniformity axiom: the existence of

𝑢 : 𝑈 → 𝑉 such that 𝑓 # (𝑢⊕ id𝑌 ) ≤ (𝑢⊕ id𝑋 ) #𝑔 implies that tr(𝑓 ) ≤ tr(𝑔), for any 𝑓 : 𝑈 ⊕𝑋 → 𝑈 ⊕𝑌
and 𝑔 : 𝑉 ⊕ 𝑋 → 𝑉 ⊕ 𝑌 ; similarly, the existence of 𝑣 : 𝑉 → 𝑈 such that (𝑣 ⊕ id𝑋 ) # 𝑓 ≤ 𝑔 # (𝑣 ⊕ id𝑌 )
implies that tr(𝑓 ) ≤ tr(𝑔).
Definition 106 (Posetal imperative category). A posetal imperative category is a posetal distributive

copy-discard category whose coproduct has a posetal uniform trace.

Definition 107 (Copy-discard coproducts). A copy-discard category has copy-discard coproducts if

it has coproducts and the coproduct injections are total and deterministic. We will denote unbiased

finite coproducts with

∑
, binary coproducts with + and the initial object with 0.

Definition 108 (Distributive monoidal category). A distributive monoidal category is a finitely-

cocomplete monoidal category such that the canonical morphisms 𝛿−L
𝑋 ;𝑌1,...𝑌𝑛

:

∑𝑛
𝑖=1𝑋 ⊗ 𝑌𝑖 →

𝑋 ⊗ ∑𝑛
𝑖=1 𝑌𝑖 and 𝛿

−R
𝑋1,...𝑋𝑛 ;𝑌

:

∑𝑛
𝑖=1𝑋𝑖 ⊗ 𝑌 →

(∑𝑛
𝑖=1𝑋𝑖

)
⊗ 𝑌 are isomorphisms.

Definition 109 (Distributive copy-discard category). A distributive copy-discard category is a

copy-discard category (C, ⊗, 𝐼 ) with chosen finite copy-discard coproducts such that the canonical

distributors

𝛿−𝐿
𝑋 ;𝑌1,...𝑌𝑛

:

∑𝑛
𝑖=1𝑋 ⊗ 𝑌𝑖 → 𝑋 ⊗ ∑𝑛

𝑖=1 𝑌𝑖 , and 𝛿−𝑅
𝑋1,...𝑋𝑛 ;𝑌

:

∑𝑛
𝑖=1𝑋𝑖 ⊗ 𝑌 →

(∑𝑛
𝑖=1𝑋𝑖

)
⊗ 𝑌,

are natural isomorphisms. In particular, there are binary distributors,

𝛿𝐿
𝑋 ;𝑌,𝑍

: 𝑋 ⊗ (𝑌 + 𝑍 ) → 𝑋 ⊗ 𝑌 + 𝑋 ⊗ 𝑍 and 𝛿𝑅
𝑋,𝑌 ;𝑍

: (𝑋 + 𝑌 ) ⊗ 𝑍 → 𝑋 ⊗ 𝑍 + 𝑌 ⊗ 𝑍 .
Lemma 110. The following holds in any distributive category.

𝜄𝑋𝑋 # (𝜄𝑋𝑋 + 𝜄𝑌𝑌 ) # (𝛿−L𝑋 ;𝑋,𝑌 + 𝛿−L𝑌 ;𝑋,𝑌 ) # 𝛿−R𝑋,𝑌 ;𝑋+𝑌 = 𝜄𝑋 ⊗ 𝜄𝑋
Proof. The distributors are the canonical coproduct maps below.

𝑋𝑌 𝑋𝑌 + 𝑋𝑍 𝑋𝑍

𝑋 (𝑌 + 𝑍 )

𝜄

id⊗𝜄 𝛿−L

𝜄

id⊗𝜄

𝑋𝑍 𝑋𝑍 + 𝑌𝑍 𝑌𝑍

(𝑋 + 𝑌 )𝑍

𝜄

𝜄⊗id 𝛿−R

𝜄

𝜄⊗id

We rewrite the left-hand side using (5, 8) that the distributors are the canonical ones, (6, 9) the

properties of coproducts, and (7) naturality of injections.

𝜄𝑋𝑋 # (𝜄𝑋𝑋 + 𝜄𝑌𝑌 ) # (𝛿−L𝑋 ;𝑋,𝑌 + 𝛿−L𝑌 ;𝑋,𝑌 ) # 𝛿−R𝑋,𝑌 ;𝑋+𝑌

= 𝜄𝑋𝑋 # ((𝜄𝑋𝑋 # [id𝑋 ⊗ 𝜄𝑋 , id𝑋 ⊗ 𝜄𝑌 ]) + (𝜄𝑌𝑌 # [id𝑌 ⊗ 𝜄𝑋 , id𝑌 ⊗ 𝜄𝑌 ])) # 𝛿−R𝑋,𝑌 ;𝑋+𝑌 (5)

= 𝜄𝑋𝑋 # ((id𝑋 ⊗ 𝜄𝑋 ) + (id𝑌 ⊗ 𝜄𝑌 )) # 𝛿−R𝑋,𝑌 ;𝑋+𝑌 (6)

= (id𝑋 ⊗ 𝜄𝑋 ) # 𝜄𝑋 (𝑋+𝑌 ) # 𝛿−R𝑋,𝑌 ;𝑋+𝑌 (7)

= (id𝑋 ⊗ 𝜄𝑋 ) # 𝜄𝑋 (𝑋+𝑌 ) # [𝜄𝑋 ⊗ id𝑋+𝑌 , 𝜄𝑌 ⊗ id𝑋+𝑌 ] (8)

= (id𝑋 ⊗ 𝜄𝑋 ) # (𝜄𝑋 ⊗ id𝑋+𝑌 ) (9)

= 𝜄𝑋 ⊗ 𝜄𝑋 .
This concludes the proof. □

Proposition 111. Let C be a copy-discard category that is also distributive monoidal. Then, it is a

distributive copy-discard category if and only if the copy and discard morphisms are compatible with

coproducts, 𝜈𝑋+𝑌 = (𝜈𝑋 + 𝜁𝑋⊗𝑌 + 𝜁𝑌⊗𝑋 +𝜈𝑌 ) # (𝛿−L𝑋 ;𝑋,𝑌
+ 𝛿−L

𝑌 ;𝑋,𝑌
) # 𝛿−R

𝑋,𝑌 ;𝑋+𝑌 and 𝜀𝑋+𝑌 = (𝜀𝑋 + 𝜀𝑌 ) # 𝜇1.
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Proof. Suppose that the copy and discard morphisms are compatible with coproducts. We show

that 𝜄𝑋 # 𝜀𝑋+𝑌 = 𝜀𝑋 , i.e. that the outer diagram below commutes.

𝑋 1

𝑋 + 𝑌 1 + 1 1

𝜀

𝜄 (𝑖) 𝜄
id

𝜀+𝜀

𝜀

(𝑖𝑖)

(𝑖𝑖𝑖) 𝜇

The diagram (i) commutes by naturality of the injection 𝜄𝑋 ; the diagram (ii) commutes by unitality

of the structure morphism of the coproduct 𝜇𝐼 ; the diagram (iii) commutes by hypothesis. Similarly,

we show that 𝜄𝑋 # 𝜈𝑋+𝑌 = 𝜈𝑋 # (𝜄𝑋 ⊗ 𝜄𝑋 ), i.e. that the outer diagram below commutes. We omit the

symbol ⊗ for the monoidal product to ease readability.

𝑋 𝑋𝑋

𝑋𝑋 + 𝑌𝑌 𝑋𝑋 + 𝑋𝑌 + 𝑌𝑋 + 𝑌𝑌

𝑋 + 𝑌 (𝑋 + 𝑌 ) (𝑋 + 𝑌 )

𝜈

𝜄

(𝑖)
𝜄⊗𝜄

𝜄

(𝑖𝑖)
𝜄+𝜄

(𝑖𝑖𝑖)
(𝛿−L+𝛿−L )#𝛿−R

𝜈

𝜈+𝜈

The diagram (i) commutes by naturality of the injection 𝜄𝑋 ; the diagram (ii) commutes by Theo-

rem 110; the diagram (iii) commutes by hypothesis.

Conversely, suppose that the coproduct injections are total and deterministic. Then, the two

diagrams below commute.

𝑋 𝑋 + 𝑌 𝑌

1

𝜄

𝜀
𝜀

𝜄

𝜀

𝑋 𝑋 + 𝑌 𝑌

𝑋𝑋 (𝑋 + 𝑌 ) (𝑋 + 𝑌 ) 𝑌𝑌

𝜄

𝜈 𝜈

𝜄

𝜈

𝜄⊗𝜄 𝜄⊗𝜄

By the universal property of coproducts, we must have 𝜀𝑋+𝑌 = [𝜀𝑋 , 𝜀𝑌 ] = (𝜀𝑋 + 𝜀𝑌 ) # 𝜇1 and
equation (10) below. Equations (11, 12) follow from properties of coproducts, while (13, 14) follow

from the canonicity of distributors.

𝜈𝑋+𝑌

= [𝜈𝑋 # (𝜄𝑋 ⊗ 𝜄𝑋 ), 𝜈𝑌 # (𝜄𝑌 ⊗ 𝜄𝑌 )] (10)

= (𝜈𝑋 + 𝜈𝑌 ) # [𝜄𝑋 ⊗ 𝜄𝑋 , 𝜄𝑌 ⊗ 𝜄𝑌 ] (11)

= (𝜈𝑋 + 𝜈𝑌 ) # ((id𝑋 ⊗ 𝜄𝑋 ) + (id𝑌 ⊗ 𝜄𝑌 )) # [𝜄𝑋 ⊗ id𝑋+𝑌 , 𝜄𝑌 ⊗ id𝑋+𝑌 ] (12)

= (𝜈𝑋 + 𝜈𝑌 ) # ((id𝑋 ⊗ 𝜄𝑋 ) + (id𝑌 ⊗ 𝜄𝑌 )) # 𝛿−R𝑋,𝑌 ;𝑋+𝑌 (13)

= (𝜈𝑋 + 𝜈𝑌 ) # ((𝜄𝑋𝑋 # 𝛿−L𝑋 ;𝑋,𝑌 ) + (𝜄𝑌𝑌 # 𝛿−L𝑌 ;𝑋,𝑌 )) # 𝛿−R𝑋,𝑌 ;𝑋+𝑌 (14)

= (𝜈𝑋 + 𝜈𝑌 ) # (𝜄𝑋𝑋 + 𝜄𝑌𝑌 ) # (𝛿−L𝑋 ;𝑋,𝑌 + 𝛿−L𝑌 ;𝑋,𝑌 ) # 𝛿−R𝑋,𝑌 ;𝑋+𝑌

= (𝜈𝑋 + 𝜁𝑋𝑌 + 𝜁𝑌𝑋 + 𝜈𝑌 ) # (𝛿−L𝑋 ;𝑋,𝑌 + 𝛿−L𝑌 ;𝑋,𝑌 ) # 𝛿−R𝑋,𝑌 ;𝑋+𝑌

□

Lemma 62. In a distributive copy-discard category, the structure morphisms of coproducts, 𝜇 and 𝜁 ,

are total and deterministic.
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Proof. By initiality of 0, we obtain that 𝜈0 # (𝜁𝑋 ⊗ 𝜁𝑋 ) = 𝜁𝑋 # 𝜈𝑋 and that 𝜀0 = 𝜁𝑋 # 𝜀𝑋 . By the

hypothesis on the discard maps, 𝜀, and by naturality of 𝜇, we obtain that the maps 𝜇 are total:

𝜀𝑋+𝑋 = (𝜀𝑋 +𝜀𝑋 ) #𝜇1 = 𝜇𝑋 #𝜀𝑋 . By (15) the hypothesis on the copy maps, 𝜈 , by (16, 17) the canonicity

of the distributors, by (19, 21) naturality of 𝜇, and by (20) by properties of coproducts, we obtain

that the maps 𝜇 are deterministic.

𝜈𝑋+𝑋 # (𝜇𝑋 ⊗ 𝜇𝑋 )
= (𝜈𝑋 + 𝜁𝑋𝑋 + 𝜁𝑋𝑋 + 𝜈𝑋 ) # (𝛿−L𝑋 ;𝑋,𝑋 + 𝛿−L𝑋 ;𝑋,𝑋 ) # 𝛿−R𝑋,𝑋 ;𝑋+𝑋 # (𝜇𝑋 ⊗ 𝜇𝑋 )
= (𝜈𝑋 + 𝜈𝑋 ) # ((𝜄𝑋𝑋 # 𝛿−L𝑋 ;𝑋,𝑋 ) + (𝜄𝑋𝑋 # 𝛿−L𝑋 ;𝑋,𝑋 )) # 𝛿−R𝑋,𝑋 ;𝑋+𝑋 # (𝜇𝑋 ⊗ 𝜇𝑋 ) (15)

= (𝜈𝑋 + 𝜈𝑋 ) # ((id𝑋 ⊗ 𝜄𝑋 ) + (id𝑋 ⊗ 𝜄𝑋 )) # 𝛿−R𝑋,𝑋 ;𝑋+𝑋 # (𝜇𝑋 ⊗ 𝜇𝑋 ) (16)

= (𝜈𝑋 + 𝜈𝑋 ) # ((id𝑋 ⊗ 𝜄𝑋 ) + (id𝑋 ⊗ 𝜄𝑋 )) (17)

# ((𝜄𝑋 ⊗ id𝑋+𝑋 ) + (𝜄𝑋 ⊗ id𝑋+𝑋 )) # 𝜇 (𝑋+𝑋 ) (𝑋+𝑋 ) # (𝜇𝑋 ⊗ 𝜇𝑋 ) (18)

= (𝜈𝑋 + 𝜈𝑋 ) # ((𝜄𝑋 ⊗ 𝜄𝑋 ) + (𝜄𝑋 ⊗ 𝜄𝑋 )) # ((𝜇𝑋 ⊗ 𝜇𝑋 ) + (𝜇𝑋 ⊗ 𝜇𝑋 )) # 𝜇𝑋𝑋 (19)

= (𝜈𝑋 + 𝜈𝑋 ) # 𝜇𝑋𝑋 (20)

= 𝜇𝑋 # 𝜈𝑋 (21)

□

Remark 112 (Bimonoidally strict distributive category). A distributive category is bimonoidally

strict—or simply strict, in this text—when both its monoidal and cocartesian structures are strict.

Every distributive category is equivalent to a bimonoidally strict one: in fact, equivalent to one

where one of the left distributor (respectively, the right distributor) is the identity [Lap06]. However,

not every distributive category is equivalent to a fully strict one: if both distributors were to be

identities, the following strict equality

𝐴𝐶 +𝐴𝐷 + 𝐵𝐶 + 𝐵𝐷 = (𝐴 + 𝐵) (𝐶 + 𝐷) = 𝐴𝐶 + 𝐵𝐶 +𝐴𝐷 + 𝐵𝐷,

would force the coproduct to be commutative, instead of symmetric.

Proposition 75. Under the conditions of Theorem 73, the Kleisli category of a monad, kl(𝑇 ), has a
posetal uniform trace.

Proof. We first recall the construction of the monoidal trace in Theorem 73. Hereafter, identities

(e.g. id𝑌 : 𝑌 → 𝑌 ), injections (𝜅𝑈 : 𝑈 → 𝑈 + 𝑋 ) and coproducts (+) are all in kl(𝑇 ). Moreover, we

write Σ𝑛∈N𝑌 for the countable coproduct of an object 𝑌 and ∇ : Σ𝑛∈N𝑌 → 𝑌 for the copairing of

𝑖𝑑𝑌 .

For each 𝑓 : 𝑈 + 𝑋 → 𝑈 + 𝑌 in kl(𝑇 ), one defines ˆ𝑓 : (𝑈 + 𝑋 ) → (𝑈 + 𝑋 ) + 𝑌 as 𝑓 # (𝜅𝑈 + id𝑌 ).
This is a coalgebra for the functor 𝐼𝑑 + 𝑌 : kl(𝑇 ) → kl(𝑇 ). One can show that Σ𝑛∈N𝑌 carries a final

coalgebra for such functor and thus one has a unique coalgebra morphism ! ˆ𝑓
: (𝑈 + 𝑋 ) → Σ𝑛∈N𝑌 .

It is shown in Theorem 5.2 in [Jac10] that defining 𝑇𝑟 (𝑓 ) : 𝑋 → 𝑌 as

tr(𝑓 ) = 𝜅𝑋 #! ˆ𝑓 # ∇ (22)

provides a uniform monoidal trace.

In order to prove posetal uniformity we rely on a previous result [Has06, Proposition 5.6], stated

under the same conditions of Theorem 73 but restricted to the case C = Set; one can carefully

check that its proof also works for arbitrary categories C with countable coproducts.

Take 𝑓 : 𝑈 + 𝑋 → 𝑈 + 𝑌 , 𝑔 : 𝑉 + 𝑋 → 𝑉 + 𝑌 and 𝑢 : 𝑈 → 𝑉 in kl(𝑇 ) and assume that

𝑓 # (𝑢 ⊕ id𝑌 ) ≥ (𝑢 ⊕ id𝑋 ) # 𝑔. (23)
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As for
ˆ𝑓 : 𝑈 → 𝑈 + 𝑌 , we define the coalgebra 𝑔 : 𝑉 → 𝑉 + 𝑌 and consider the unique coalgebra

morphim !𝑔 : 𝑉 → Σ𝑛∈N𝑌 . From (23), one easily derive that

ˆ𝑓 # ((𝑢 + id𝑋 ) ⊕ id𝑌 ) ≥ (𝑢 ⊕ id𝑋 ) # 𝑔,

namely, using the terminology in [Has06], (𝑢 + id𝑋 ) is a lax-coalgebra morphism from
ˆ𝑓 to 𝑔. Now

(𝑢 + id𝑋 )#!𝑔 : 𝑈 +𝑋 → Σ𝑛∈N𝑌 is also a lax-coalgebra morphism. By Proposition 5.6 in [Has06], the

unique coalgebra morphism ! ˆ𝑓
: 𝑈 + 𝑋 → Σ𝑛∈N𝑌 is the greatest lax coalgebra morphism and thus

! ˆ𝑓
≥ (𝑢 + id𝑋 )#!𝑔. (24)

We can then conclude with the following derivation.

tr(𝑓 ) =𝜅𝑋 #! ˆ𝑓 # ∇ (22)

≥ 𝜅𝑋 # (𝑢 + id𝑋 )#!𝑔 # ∇ (24)

= 𝜅𝑋 #!𝑔 # ∇ (coproduct)

= tr(𝑔) (22)

For proving the other implication, one proceeds by reversing the inequalities and use the fact that,

by Proposition 5.6 in [Has06], ! ˆ𝑓
is the smallest oplax coalgebra morphism. □

Corollary 76. The Kleisli categories of the maybe monad, powerset monad, and subdistributions

monad on the distributive category Set, and of the subdistributions monad on the distributive category

StdBorel are posetal imperative categories.

Proof. For the monads on Set, the assumptions of Theorem 73 are already checked in [Jac10].

We now check the conditions for the monad G on StdBorel. The countable coproduct of standard
Borel spaces is again standard Borel, so StdBorel has countable coproducts. The Kleisli category of

G is poset-enriched with the pointwise order and it has a bottom element, the zero subdistribution.

Moreover, hom-sets are DCPOs because the supremum of an increasing sequence of measurable

functions is defined pointwise and bounded increasing sequences of real numbers have a supremum.

Finally, cotuplings are monotone because they are so pointwise. □

D Proofs for Section 5 (Distributive program logics)
Theorem 79. The following are valid assertion-correctness triples in any posetal imperative category

where abort ≤ 𝑓 and 𝑓 # ⊤ ≤ ⊤ for all morphisms 𝑓 .

skip

{𝑝} skip {𝑝}

comp

{𝑝} 𝑐1 {𝑞} {𝑞} 𝑐2 {𝑟 }
{𝑝} 𝑐1 ; 𝑐2 {𝑟 }

assign

𝑒 deterministic and total

{𝑝 [𝑢 \ 𝑒]}𝑢 := 𝑒 {𝑝}
choice

{𝑝} 𝑐1 {𝑞} {𝑝} 𝑐2 {𝑞}
{𝑝} if 𝑏 then 𝑐1 else 𝑐2 {𝑞}

loop

{𝑝} 𝑐 {𝑝}
{𝑝} while𝑏 do 𝑐 {𝑝}

unroll

{𝑝} if 𝑏 then(𝑐 ; while𝑏 do 𝑐) else skip {𝑞}
{𝑝} while𝑏 do 𝑐 {𝑞}

ifelse

{𝑝 ∧ 𝑏#} 𝑐1 {𝑞} {𝑝 ∧ (¬𝑏)#} 𝑐2 {𝑞} 𝑏 deterministic

{𝑝} if 𝑏 then 𝑐1 else 𝑐2 {𝑞}

while

{𝑏# ∧ 𝑝} 𝑐 {𝑝} 𝑏 deterministic

{𝑝} while𝑏 do 𝑐 {𝑝 ∧ (¬𝑏)#}

monotone

𝑝1 ≤ 𝑝2 {𝑝2} 𝑐 {𝑞2} 𝑞2 ≤ 𝑞1
{𝑝1} 𝑐 {𝑞1}

and

{𝑝1} 𝑐 {𝑞1} {𝑝2} 𝑐 {𝑞2}
{𝑝1 ∧ 𝑝2} 𝑐 {𝑞1 ∧ 𝑞2}

fail

{𝑝} abort {𝑞}
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assert

𝑞 ∧ 𝑟 ≤ ⊥
{𝑝 +𝑏 𝑞} assert 𝑟 {𝑝 ∧ 𝑏#}

top

{𝑝} 𝑐 {⊤}

bot

{⊥} 𝑐 {𝑞}

Proof. The skip rule follows from neutrality of skip (Theorem 29) and reflexivity of the preorder.

assert𝑝 ; skip ≡ assert 𝑝 ≤ assert 𝑝 ≡ skip ; assert𝑝

The comp rule follows from its first and second premises, implicitly using associativity of

concatenation (Theorem 29) and the congruence of the preorder.

assert𝑝 ; 𝑐1 ; 𝑐2 ≤ 𝑐1 ; assert𝑞 ; 𝑐2 ≤ 𝑐1 ; 𝑐2 ; assert 𝑟
The assign rule follows from the definition of expression substitution (Theorem 24), determinism

of 𝑒 and, implicitly, from reflexivity of the preorder.

assert 𝑝 [𝑢 \ 𝑒] ; (𝑢 := 𝑒) = assert((𝑢 := 𝑒) ; 𝑝) ; (𝑢 := 𝑒) = (𝑢 := 𝑒) ; assert𝑝
The choice rule follows by (i) Theorem 99, (ii) both assumptions, {𝑝} 𝑐1 {𝑞} and {𝑝} 𝑐2 {𝑞}, and

(iii) the definition of composition.

assert𝑝 ; if 𝑏 then 𝑐1 else 𝑐2
(i)

≡
if 𝑏 then(assert𝑝 ; 𝑐1) else(assert𝑝 ; 𝑐2)

(ii)

≤
if 𝑏 then(𝑐1 ; assert𝑞) else(𝑐2 ; assert𝑞)

(iii)

≡
(if 𝑏 then 𝑐1 else 𝑐2) ; 𝑞.

The ifelse rule follows from (i) determinism of𝑏 (Theorem 97), (ii) Theorem 99, (iii) the definition

of predicate conjunction (Theorem 24) (iv) the hypotheses, and (v) the definition of composition of

program fragments (Theorem 27).

assert 𝑝 ; if 𝑏 then 𝑓 else𝑔
(i)

=

assert 𝑝 ; if 𝑏 then(assert𝑏# ; 𝑓 ) else(assert (¬𝑏)# ; 𝑔) (ii)

=

if 𝑏 then(assert 𝑝 ; assert𝑏# ; 𝑓 ) else(assert 𝑝 ; assert (¬𝑏)# ; 𝑔) (iii)

=

if 𝑏 then(assert(𝑝 ∧ 𝑏#) ; 𝑓 ) else(assert(𝑝 ∧ (¬𝑏)#) ; 𝑔) (iv)

=

if 𝑏 then(𝑓 ; assert𝑞) else(𝑔 ; assert𝑞) (v)

=

(if 𝑏 then 𝑓 else𝑔) ; assert𝑞.
For the loop rule, we apply the uniformity principle (Theorem 29); the antecedent of the unifor-

mity rule follows from (i) Theorem 99, and (ii) the correctness assumption.

assert 𝑝 ; L𝑏M{𝑐}{skip} (i)

=

L𝑏M{assert 𝑝 ; 𝑐}{assert 𝑝}
(ii)

≤
L𝑏M{𝑐 ; assert𝑝}{assert 𝑝}

Then, by uniformity, assert𝑝 ; while𝑏 do 𝑐 = assert 𝑝 ; while𝑏 do 𝑐 ; skip ≤ while𝑏 do 𝑐 ; assert𝑝 .
Thewhile rule is similar to the loop rule, but additionally uses (ii) determinism of𝑏 (Theorem 97).

assert𝑝 ; L𝑏M{𝑐}{skip} (i)

=

L𝑏M{assert𝑝 ; 𝑐}{assert 𝑝} (ii)

=

L𝑏M{assert𝑏# ; assert 𝑝 ; 𝑐}{assert (¬𝑏)# ; assert𝑝} (iii)

=

L𝑏M{assert(𝑏# ∧ 𝑝) ; 𝑐}{assert((¬𝑏)# ∧ 𝑝)}
(iv)

≤
L𝑏M{𝑐 ; assert 𝑝}{assert((¬𝑏)# ∧ 𝑝)}
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Then, assert 𝑝 ; while𝑏 do 𝑐 = assert 𝑝 ; while𝑏 do 𝑐 ; skip ≤ while𝑏 do 𝑐 ; assert((¬𝑏)# ∧ 𝑝).
The unroll rule follows from (i) Theorem 29 and (ii) the assumption.

assert𝑝 ; (while𝑏 do 𝑐)
(𝑖 )
≡

assert𝑝 ; (if 𝑏 then(𝑐 ; while𝑏 do 𝑐) else skip)
(𝑖𝑖 )
≤

(if 𝑏 then(𝑐 ; while𝑏 do 𝑐) else skip) ; assert𝑞
(𝑖 )
≡

(while𝑏 do 𝑐) ; assert𝑞
The monotone rule follows from monotonicity of composition.

assert 𝑝1 ; 𝑐 ≤ assert 𝑝2 ; 𝑐 ≤ 𝑐 ; assert𝑞2 ≤ 𝑐 ; assert𝑞1
The and rule follows from the properties of assertions (Theorem 29).

assert(𝑝1 ∧ 𝑝2) ; 𝑐 = assert 𝑝1 ; assert𝑝2 ; 𝑐 ≤ assert𝑝1 ; 𝑐 ; assert𝑞2
≤ 𝑐 ; assert𝑞1 ; assert𝑞2 = 𝑐 ; assert(𝑞1 ∧ 𝑞2)

The fail rule follows from the properties of abort (Theorem 29).

assert𝑝 ; abort = abort = abort ; assert𝑞

The assert rule follows from (i) Theorem 29, (ii) the definition of commands composition

(Theorem 27), (iii) the hypotheses, (iv) Theorem 29, (v) Theorem 99, (vi) Theorem 29, and (vii)

Theorem 29.

assert(𝑝 +𝑏 𝑞) ; assert 𝑟
(𝑖 )
=

if 𝑏 then(assert𝑝) else(assert𝑞) ; assert 𝑟 (𝑖𝑖 )
=

if 𝑏 then(assert𝑝 ; assert 𝑟 ) else(assert𝑞 ; assert 𝑟 )
(𝑖𝑖𝑖 )
≤

if 𝑏 then(assert𝑝 ; assert 𝑟 ) else(assert⊥) (𝑖𝑣)
=

if 𝑏 then(assert 𝑟 ; assert 𝑝) else(assert 𝑟 ; assert𝑝 ; assert⊥) (𝑣)
=

assert 𝑟 ; assert 𝑝 ; if 𝑏 then skip else abort
(𝑣𝑖 )
=

assert 𝑟 ; assert 𝑝 ; assert(𝑏#) (𝑣𝑖𝑖 )
=

assert 𝑟 ; assert(𝑝 ∧ 𝑏#)
The top and bot rules follow from (i) the extra hypotheses, (ii) Theorem 29, and (iii) Theorem 29.

assert 𝑝 ; 𝑐
(𝑖 )
≤ assert⊥ ; 𝑐

(𝑖𝑖𝑖 )
=

assert⊤ ; 𝑐
(𝑖𝑖 )
= abort ;𝑐

(𝑖𝑖𝑖 )
=

𝑐
(𝑖𝑖 )
= 𝑐 ; abort

(𝑖 )
≤

𝑐 ; assert⊤ 𝑐 ; assert𝑞

□

Theorem 81. The following are valid state-incorrectness triples in any posetal imperative category

where abort ≤ 𝑓 for all morphisms 𝑓 .

skip

{𝑠} skip {𝑠}

comp

{𝑠} 𝑐1 {𝑡} {𝑡} 𝑐2 {𝑟 }
{𝑠} 𝑐1 ; 𝑐2 {𝑟 }

comp (error)

{𝑠} 𝑐1 {⊥}
{𝑠} 𝑐1 ; 𝑐2 {⊥}

assign

{𝑠} 𝑥 := 𝑦 {𝑠 (𝑥 \ 𝑦)}

sample

{𝑠} 𝑥 ← 𝑠0 {
∐

𝑥𝑠 · 𝑠0}
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choice (left)

{𝑠 ⇂ 𝑏#} 𝑐1 {𝑡}
{𝑠} if 𝑏 then 𝑐1 else 𝑐2 {𝑡}

choice (right)

{𝑠 ⇂ (¬𝑏)#} 𝑐2 {𝑡}
{𝑠} if 𝑏 then 𝑐1 else 𝑐2 {𝑡}

convex

{𝑠1} 𝑐 {𝑡1} {𝑠2} 𝑐 {𝑡2} 𝑏 constant

{𝑠1 +𝑏 𝑠2} 𝑐 {𝑡1 +𝑏 𝑡2}
iter zero

{𝑠} while𝑏 do 𝑐 {𝑠 ⇂ (¬𝑏)#}

iter

{𝑠 ⇂ 𝑏#} 𝑐 ; while𝑏 do 𝑐 {𝑡}
{𝑠} while𝑏 do 𝑐 {𝑡}

monotone

𝑠1 ≥ 𝑠2 {𝑠2} 𝑐 {𝑡2} 𝑡2 ≥ 𝑡1
{𝑠1} 𝑐 {𝑡1}

assert

{𝑠} assert 𝑝 {𝑠 ⇂ 𝑝}

fail

{𝑠} abort {⊥}

bot

{𝑠} 𝑐 {⊥}

Proof. The skip and comp rules follow from Theorem 29. The comp (error) rule follows from

naturality of abort (Theorem 29).

𝑠 ; skip = 𝑠 𝑠 ; 𝑐1 ; 𝑐2 ≥ 𝑡 ; 𝑐2 ≥ 𝑢 𝑠 ; 𝑐1 ; 𝑐2 ≥ ⊥ ; 𝑐2 = ⊥
The assign and sample rules follow from the definitions of the state combinators (Theorem 31).

𝑠 ; (𝑥 := 𝑦) = 𝑠 (𝑥 \ 𝑦) 𝑠 ; (𝑥 ← 𝑠𝑥 ) =
∐

𝑥𝑠 · 𝑠𝑥
The choice (left) and choice (right) rules follow from (i) the hypothesis, (ii) Theorem 29, (iii)

Theorem 31, and (iv) the assumption.

𝑠 ; (if 𝑏 then 𝑐1 else 𝑐2)
(𝑖 )
≥ 𝑠 ; (if 𝑏 then 𝑐1 else 𝑐2)

(𝑖 )
≥

𝑠 ; (if 𝑏 then 𝑐1 else abort)
(𝑖𝑖 )
= 𝑠 ; (if 𝑏 then abort else 𝑐2)

(𝑖𝑖 )
=

𝑠 ; assert𝑏# ; 𝑐1
(𝑖𝑖𝑖 )
= 𝑠 ; assert (¬𝑏)# ; 𝑐2

(𝑖𝑖𝑖 )
=

(𝑠 ⇂ 𝑏#) ; 𝑐1
(𝑖𝑣)
≥ (𝑠 ⇂ (¬𝑏)#) ; 𝑐2

(𝑖𝑣)
≥

𝑡 𝑡

The convex rule follows from the definition of command composition (Theorem 27).

𝑠1 +𝑏 𝑠2 ; 𝑐 = (𝑠1 ; 𝑐) +𝑏 (𝑠2 ; 𝑐) ≥ 𝑡1 +𝑏 𝑡2
The iter zero rule follows from (i) the hypothesis, (ii) Theorem 29 and (iii) Theorem 31.

𝑠 ; while𝑏 do 𝑐
(𝑖 )
≥𝑠 ; while𝑏 do abort (𝑖𝑖 )= 𝑠 ; assert (¬𝑏)# (𝑖𝑖𝑖 )= 𝑠 ⇂ (¬𝑏)#

The iter rule follows from (i) Theorem 29, (ii) the hypothesis, (iii) Theorem 29, (iv) Theorem 31,

and (v) the assumption.

𝑠 ; while𝑏 do 𝑐
(𝑖 )
=

𝑠 ; (if 𝑏 then(𝑐 ; while𝑏 do 𝑐) else skip)
(𝑖𝑖 )
≥

𝑠 ; (if 𝑏 then(𝑐 ; while𝑏 do 𝑐) else abort) (𝑖𝑖𝑖 )
=

𝑠 ; assert𝑏# ; 𝑐 ; while𝑏 do 𝑐
(𝑖𝑣)
=

(𝑠 ⇂ 𝑏#) ; 𝑐 ; while𝑏 do 𝑐
(𝑣)
≥

𝑡

Themonotone rule follows frommonotonicity of command composition. The assert rule applies

Theorem 31. The fail rule follows from Theorem 29. The bot rule follows from the hypothesis.

𝑠1 ; 𝑐 ≥ 𝑠2 ; 𝑐 ≥ 𝑡2 ≥ 𝑡1 𝑠 # assert 𝑝 = 𝑠 ⇂ 𝑝 𝑠 ; abort = ⊥ 𝑠 ; 𝑐 ≥ ⊥
□
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Theorem 83. The following are valid predicate-correctness triples in any posetal imperative category

where abort ≤ 𝑓 for all morphisms 𝑓 .

skip

{𝑝} skip {𝑝}

comp

{𝑝} 𝑐1 {𝑞} {𝑞} 𝑐2 {𝑟 }
{𝑝} 𝑐1 ; 𝑐2 {𝑟 }

assign

𝑒 deterministic

{𝑝 [𝑢 \ 𝑒]}𝑢 := 𝑒 {𝑝}

sample

{𝑝 [𝑢 \ 𝑠]}𝑢 ← 𝑠 {𝑝}
unroll

{𝑝} if 𝑏 then(𝑐 ; while𝑏 do 𝑐) else skip {𝑞}
{𝑝} while𝑏 do 𝑐 {𝑞}

choice

{𝑝} 𝑐1 {𝑞} {𝑝} 𝑐2 {𝑞} 𝑏 total

{𝑝} if 𝑏 then 𝑐1 else 𝑐2 {𝑞}
ifelse

{𝑏# ∧ 𝑝} 𝑐1 {𝑞} {(¬𝑏)# ∧ 𝑝} 𝑐2 {𝑞} 𝑏 total and deterministic

{𝑝} if 𝑏 then 𝑐1 else 𝑐2 {𝑞}

assert

(¬𝑏)# ∧ 𝑞 = ⊥ 𝑏 deterministic

{𝑝 +𝑏 𝑞} assert𝑏# {𝑝}

convex

{𝑝1} 𝑐 {𝑞1} {𝑝2} 𝑐 {𝑞2} 𝑏 constant

{𝑝1 +𝑏 𝑝2} 𝑐 {𝑞1 +𝑏 𝑞2}
monotone

𝑝1 ≤ 𝑝2 {𝑝2} 𝑐 {𝑞2} 𝑞2 ≤ 𝑞1
{𝑝1} 𝑐 {𝑞1}

bot

{⊥} 𝑐 {𝑞}

Proof. The skip and comp rules follow from Theorem 29. The assign and sample rules follow

from Theorem 24.

𝑝 = skip ;𝑝 𝑝 ≤ 𝑐1 ; 𝑞 ≤ 𝑐1 ; 𝑐2 ; 𝑟 (𝑢 := 𝑒) ; 𝑝 = 𝑝 [𝑢 \ 𝑒] (𝑢 ← 𝑠) ; 𝑝 = 𝑝 [𝑢 \ 𝑠]

The choice rule follows from (i) Theorem 98, (ii) the definition of command composition

(Theorem 27), and (iii) the assumption.

𝑝
(𝑖 )
=

(if 𝑏 then skip else skip) ; 𝑝 (𝑖𝑖 )
=

𝑝 +𝑏 𝑝
(𝑖𝑖𝑖 )
≤

(𝑐1 ; 𝑞) +𝑏 (𝑐2 ; 𝑞)
(𝑖𝑖 )
=

(if 𝑏 then 𝑐1 else 𝑐2) ; 𝑞

The ifelse rule is proven similarly, additionally using (iv) determinism of the guard𝑏 (Theorem 97)

and (v) Theorem 29.

𝑝
(𝑖 )
=

(if 𝑏 then skip else skip) ; 𝑝 (𝑖𝑣)
=

(if 𝑏 then assert𝑏# else assert (¬𝑏)#) ; 𝑝 (𝑖𝑖 )
=

(assert𝑏# ; 𝑝) +𝑏 (assert (¬𝑏)# ; 𝑝)
(𝑣)
=

(assert(𝑏# ∧ 𝑝)) +𝑏 (assert((¬𝑏)# ∧ 𝑝))
(𝑖𝑖𝑖 )
≤

(𝑐1 ; 𝑞) +𝑏 (𝑐2 ; 𝑞)
(𝑖𝑖 )
=

(if 𝑏 then 𝑐1 else 𝑐2) ; 𝑞

The unroll rule applies Theorem 29.

𝑝 ≤ if 𝑏 then(𝑐 ; while𝑏 do 𝑐) else skip ;𝑞 = while𝑏 do 𝑐 ; 𝑞
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The assert rule follows from the definition of predicate combinators (Theorem 24), the assump-

tion and determinism of 𝑏.

assert𝑏# ; 𝑝 = 𝑝 +𝑏 ⊥ = 𝑝 +𝑏 (¬𝑏)# ∧ 𝑞 = 𝑝 +𝑏 𝑞

The convex rule uses that constant guards commute with commands (Theorem 100).

𝑝1 +𝑏 𝑝2 ≤ (𝑐 ; 𝑞1) +𝑏 (𝑐 ; 𝑞2) = 𝑐 ; (𝑞1 +𝑏 𝑞2)

The monotone rule uses monotonicity of composition. The bot rule use the extra hypothesis.

𝑝1 ≤ 𝑝2 ≤ 𝑐 ; 𝑞2 ≤ 𝑐 ; 𝑞1 ⊥ ≤ 𝑐 ; 𝑞

□

E Proofs for Section 6 (Distributive relational program logics)
We study the algebra of couplings.

Lemma 113. Consider morphisms 𝑐𝑖 : 𝑋𝑖 → 𝑌𝑖 and 𝑑𝑖 : 𝑌𝑖 → 𝑍𝑖 for 𝑖 = 1, 2 in a commutative

imperative category. If there are couplings 𝑔 ⊲ 𝑐1 & 𝑐2 and ℎ ⊲ 𝑑1 & 𝑑2, then there is a coupling

(𝑔 # [ℎ,𝑑1 # 𝜄1, 𝑑2 # 𝜄2]) ⊲ (𝑐1 # 𝑑1) & (𝑐2 # 𝑑2).

Proof.

𝑔 # [ℎ,𝑑1 # 𝜄1, 𝑑2 # 𝜄2] # [𝜋1, id, 0] =

𝑔 # 𝜄 # [(ℎ # [𝜋1, id, 0]), 𝑑1] =

𝑔 # 𝜄 # [(𝜋 # 𝑑1), 𝑑1] =

𝑔 # [𝜋1, id, 0] # 𝑑1 =

𝜋 # 𝑐1 # 𝑑1

Similarly, one shows that 𝑔 # [ℎ,𝑑1 # 𝜄1, 𝑑2 # 𝜄2] # [𝜋2, 0, id] = 𝜋 # 𝑐2 # 𝑑2. □

Lemma 114. For two total morphisms 𝑐1 : 𝑋1 → 𝑌1 and 𝑐2 : 𝑋2 → 𝑌2 in a commutative imperative

category, their monoidal product always gives a coupling: ((𝑐1 ⊗ 𝑐2) # 𝜄1) ⊲ 𝑐1 & 𝑐2.

Proof. We use totality of 𝑐2.

(𝑐1 ⊗ 𝑐2) # 𝜄1 # [𝜋1, id, 0] =

(𝑐1 ⊗ 𝑐2) # 𝜋1 =

𝜋1 # 𝑐1

Similarly, one shows that (𝑐1 ⊗ 𝑐2) # 𝜄1 # [𝜋2, 0, id] = 𝜋 # 𝑐2 by totality of 𝑐1. □

Lemma 115. For two morphisms 𝑐1 : 𝑋1 → 𝑌1 and 𝑐2 : 𝑋2 → 𝑌2 in a commutative imperative

category, a coupling ℎ ⊲ 𝑐1 & 𝑐2 induces a coupling (𝜎 # ℎ # (𝜎 + 𝜎+)) ⊲ 𝑐2 & 𝑐1.

Proof. This is easily checked as symmetries are isomorphisms. □

Lemma 116. Consider morphisms 𝑐𝑖 , 𝑑𝑖 : 𝑋𝑖 → 𝑌𝑖 and total morphisms 𝑏𝑖 : 𝑋𝑖 → 1 + 1 for 𝑖 = 1, 2

in a commutative imperative category. If there are couplings 𝑔 ⊲ 𝑐1 & 𝑐2, 𝑔
′ ⊲ 𝑐1 & 𝑑2, ℎ

′ ⊲ 𝑑1 & 𝑐2,

and ℎ ⊲ 𝑑1 & 𝑑2, then there is a coupling 𝑙 ⊲ (if 𝑏1 then 𝑐1 else𝑑1) & (if 𝑏2 then 𝑐2 else𝑑2) defined by
𝑙 = if 𝑏1 then(if 𝑏2 then𝑔 else𝑔′) else(if 𝑏2 thenℎ′ elseℎ).
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Lemma 117. We use that 𝑏2 is total.

𝑙 # [𝜋1, id, 0] =

(if 𝑏1 then(if 𝑏2 then𝑔 else𝑔′) else(if 𝑏2 thenℎ′ elseℎ)) # [𝜋1, id, 0] =

if 𝑏1 then (if 𝑏2 then(𝑔 # [𝜋1, id, 0]) else(𝑔′ # [𝜋1, id, 0]))
else (if 𝑏2 then(ℎ′ # [𝜋1, id, 0]) else(ℎ # [𝜋1, id, 0])) =

if 𝑏1 then(if 𝑏2 then(𝜋1 # 𝑐1) else(𝜋1 # 𝑐1)) else(if 𝑏2 then(𝜋1 # 𝑑1) else(𝜋1 # 𝑑1)) =

if 𝑏1 then(𝜋1 # 𝑐1) else(𝜋1 # 𝑑1) =

𝜋1 # (if 𝑏1 then 𝑐1 else𝑑1)
Similarly, one shows that 𝑙 # [𝜋2, 0, id] = 𝜋2 # (if 𝑏2 then 𝑐2 else𝑑2) using that 𝑏1 is total.
Lemma 118. Consider morphisms 𝑐𝑖 , 𝑑𝑖 : 𝑋𝑖 → 𝑌𝑖 and total and deterministic morphisms 𝑏𝑖 : 𝑋𝑖 →
1+ 1 for 𝑖 = 1, 2 in a commutative imperative category. If there are couplings 𝑔 ⊲ 𝑐1 &𝑐2 and ℎ ⊲𝑑1 &𝑑2,

then there is a coupling 𝑙 ⊲ (if 𝑏1 then 𝑐1 else𝑑1) & (if 𝑏2 then 𝑐2 else𝑑2) defined by 𝑙 = assert(𝑏1 =

𝑏2) ; (if (𝑏1 ⊗ 𝑏2) then𝑔 elseℎ).
Proof sketch. The proof follows the same idea as that of Theorem 116, but additionally uses

determinism of the guards to duplicate them in the assertion. □

Lemma 119. Consider morphisms 𝑐𝑖 : 𝑋𝑖 → 𝑋𝑖 and total and deterministic morphisms 𝑏𝑖 : 𝑋𝑖 → 1+1
for 𝑖 = 1, 2 in a commutative imperative category. If there is a coupling 𝑔 ⊲ 𝑐1 & 𝑐2, then there is a

coupling 𝑙𝑑 (𝑔) ⊲ (while𝑏1 do 𝑐1) & (while𝑏2 do 𝑐2) defined by
loop 𝛼𝛼𝛼 (𝑥,𝑦){𝑏1 (𝑥){𝑏2 (𝑦){𝑔(𝑥,𝑦){𝑥,𝑦.𝛼𝛼𝛼 (𝑥,𝑦)}{𝑥 ′ .𝛾𝛾𝛾 (𝑥 ′)}{𝑦′ .𝛿𝛿𝛿 (𝑦′)}}{𝑥,𝑦.𝛽𝛽𝛽 (𝑥,𝑦)}}{𝑥,𝑦.𝛽𝛽𝛽 (𝑥,𝑦)}}.
Lemma 120. Consider morphisms 𝑐𝑖 : 𝑋𝑖 → 𝑋𝑖 and total morphisms 𝑏𝑖 : 𝑋𝑖 → 1 + 1 for 𝑖 = 1, 2 in a

commutative imperative category. If there are couplings 𝑔 ⊲ 𝑐1 & 𝑐2, ℎ1 ⊲ 𝑐1 & id𝑋2
, and ℎ2 ⊲ id𝑋1

& 𝑐2,

then there is a coupling 𝑙 (𝑔, ℎ1, ℎ2) ⊲ (while𝑏1 do 𝑐1) & (while𝑏2 do 𝑐2).
loop (𝛼𝛼𝛼 (𝑥,𝑦), 𝛽𝛽𝛽1 (𝑥1, 𝑦1), 𝛽𝛽𝛽2 (𝑥2, 𝑦2),𝛾𝛾𝛾 (𝑥 ′),𝛿𝛿𝛿 (𝑦′)){𝑥,𝑦, 𝑥1, 𝑦1, 𝑥2, 𝑦2, 𝑥 ′, 𝑦′ .(
(𝑏1 ⊗ 𝑏2) (𝑥,𝑦)
{𝑔{𝛼𝛼𝛼 (𝑥,𝑦)}{𝛿𝛿𝛿 (𝑥 ′)}{𝛾𝛾𝛾 (𝑦′)}}
{ℎ1{𝛽𝛽𝛽1 (𝑥1, 𝑦1)}{𝛿𝛿𝛿 (𝑥 ′)}{𝛾𝛾𝛾 ′ (𝑦𝑜 )}}
{ℎ2{𝛽𝛽𝛽2 (𝑥2, 𝑦2)}{𝛿𝛿𝛿 ′ (𝑥𝑜 )}{𝛾𝛾𝛾 (𝑦′)}}
{𝛼𝛼𝛼 ′ (𝑥𝑜 , 𝑦𝑜 )}
+ 𝑏1 (𝑥1, 𝑦1){ℎ1{𝛽𝛽𝛽1 (𝑥1, 𝑦1)}{𝛿𝛿𝛿 (𝑥 ′)}{𝛾𝛾𝛾 ′ (𝑦𝑜 )}}{𝛼𝛼𝛼 ′ (𝑥𝑜 , 𝑦𝑜 )}
+ 𝑏2 (𝑥2, 𝑦2){ℎ2{𝛽𝛽𝛽2 (𝑥2, 𝑦2)}{𝛿𝛿𝛿 ′ (𝑥𝑜 )}{𝛾𝛾𝛾 (𝑦′)}}{𝛼𝛼𝛼 ′ (𝑥𝑜 , 𝑦𝑜 )}
+ 𝑏1 (𝑥 ′){𝑐1{𝛿𝛿𝛿 (𝑥 ′)}}{𝛿𝛿𝛿 ′ (𝑥𝑜 )}
+ 𝑏2 (𝑦′){𝑐2{𝛾𝛾𝛾 (𝑦′)}}{𝛾𝛾𝛾 ′ (𝑦𝑜 )})

Theorem 88. The following are valid relational assertion-correctness triples in any posetal imperative

category where abort ≤ 𝑓 for all morphisms 𝑓 .

skip

{𝑝} skip ∼ skip {𝑝}

comp

{𝑝} 𝑐1 ∼ 𝑑1 {𝑞} {𝑞} 𝑐2 ∼ 𝑑2 {𝑟 }
{𝑝} (𝑐1 ; 𝑐2) ∼ (𝑑1 ; 𝑑2) {𝑟 }

assign

𝑒1, 𝑒2 total and deterministic

{𝑝 [(𝑢1, 𝑢2) \ (𝑒1, 𝑒2)]} (𝑢1 := 𝑒1) ∼ (𝑢2 := 𝑒2) {𝑝}
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choice

{𝑝} 𝑐1 ∼ 𝑐2 {𝑞} {𝑝} 𝑐1 ∼ 𝑑2 {𝑞} {𝑝}𝑑1 ∼ 𝑐2 {𝑞} {𝑝}𝑑1 ∼ 𝑑2 {𝑞} 𝑏1, 𝑏2 total

{𝑝} (if 𝑏1 then 𝑐1 else𝑑1) ∼ (if 𝑏2 then 𝑐2 else𝑑2) {𝑞}
ifelse

{(𝑏1# ⊗ 𝑏2#) ∧ 𝑝} 𝑐1 ∼ 𝑐2 {𝑞}
{((¬𝑏1)# ⊗ (¬𝑏2)#) ∧ 𝑝}𝑑1 ∼ 𝑑2 {𝑞} 𝑏1, 𝑏2 total and deterministic

{(𝑏1 = 𝑏2) ∧ 𝑝} (if 𝑏1 then 𝑐1 else𝑑1) ∼ (if 𝑏2 then 𝑐2 else𝑑2) {𝑞}
loop

{𝑝} 𝑐1 ∼ 𝑐2 {𝑝} {𝑝} 𝑐1 ∼ skip {𝑝} {𝑝} skip ∼ 𝑐2 {𝑝} 𝑏1, 𝑏2 total

{𝑝} (while𝑏1 do 𝑐1) ∼ (while𝑏2 do 𝑐2) {𝑝}
while

{(𝑏1# ⊗ 𝑏2#) ∧ 𝑝} 𝑐1 ∼ 𝑐2 {(𝑏1 = 𝑏2) ∧ 𝑝} 𝑏1, 𝑏2 total and deterministic

{(𝑏1 = 𝑏2) ∧ 𝑝} (while𝑏1 do 𝑐1) ∼ (while𝑏2 do 𝑐2) {((¬𝑏1)# ⊗ (¬𝑏2)#) ∧ 𝑝}

monotone

𝑝1 ≤ 𝑝2 {𝑝2} 𝑐 ∼ 𝑑 {𝑞2} 𝑞2 ≤ 𝑞1
{𝑝1} 𝑐 ∼ 𝑑 {𝑞1}

symm

{𝑝} 𝑐 ∼ 𝑑 {𝑞}
{𝜎 ; 𝑝}𝑑 ∼ 𝑐 {𝜎 ; 𝑞}

assign-L

𝑒 total and deterministic

{𝑝 [𝑥 \ 𝑒]} (𝑥 := 𝑒) ∼ skip {𝑝}

choice-L

{𝑝} 𝑐 ∼ skip {𝑞} {𝑝}𝑑 ∼ skip {𝑞} 𝑏 total

{𝑝} (if 𝑏 then 𝑐 else𝑑) ∼ skip {𝑞}
ifelse-L

{(𝑏# ⊗ ⊤) ∧ 𝑝} 𝑐 ∼ skip {𝑞} {((¬𝑏1)# ⊗ ⊤) ∧ 𝑝}𝑑 ∼ skip {𝑞} 𝑏 total and deterministic

{𝑝} (if 𝑏 then 𝑐 else𝑑) ∼ skip {𝑞}
loop-L

{𝑝} 𝑐 ∼ skip {𝑝} 𝑏 total

{𝑝} (while𝑏 do 𝑐) ∼ skip {𝑝}

while-L

{(𝑏# ⊗ ⊤) ∧ 𝑝} 𝑐 ∼ skip {𝑝} 𝑏 total and deterministic

{𝑝} (while𝑏 do 𝑐) ∼ skip {((¬𝑏)# ⊗ ⊤) ∧ 𝑝}

Proof. skip. By Theorem 114, the monoidal product gives a coupling: ((skip ⊗ skip) # 𝜄) ⊲
skip& skip. By unitality, we obtain the rule.

assert𝑝 ; ((skip ⊗ skip) # 𝜄)= = assert 𝑝 ; (skip ⊗ skip) = assert𝑝

comp. Suppose there are couplings𝑔1⊲𝑐1&𝑑1 and𝑔2⊲𝑐2&𝑑2 satisfying assert𝑝 ;𝑔=1 ≤ 𝑔=1 ;assert𝑞 and
assert𝑞 ;𝑔=

2
≤ 𝑔=

2
;assert 𝑟 . By Theorem 113, there is a coupling (𝑔1 # [𝑔2, 𝑐2 #𝜄, 𝑑2 #𝜄])⊲ (𝑐1 #𝑐2)& (𝑑1 #𝑑2).

Then, applying the definition of (−)= and the assumptions, we obtain the desired inequality.

assert 𝑝 ; (𝑔1 # [𝑔2, 𝑐2 # 𝜄, 𝑑2 # 𝜄])= =

assert 𝑝 ; 𝑔1 ; 𝜋
+
1
; 𝑔2 ; 𝜋

+
1

=

assert 𝑝 ; 𝑔=
1
; 𝑔=

2
≤

𝑔=
1
; assert𝑞 ; 𝑔=

2
≤

𝑔=
1
; 𝑔=

2
; assert 𝑟 =

𝑔1 ; 𝜋
+
1
; 𝑔2 ; 𝜋

+
1
; assert 𝑟 =

(𝑔1 # [𝑔2, 𝑐2 # 𝜄, 𝑑2 # 𝜄])= ; assert 𝑟
assign. By Theorem 114, the monoidal product gives a coupling: (((𝑢1 := 𝑒1) ⊗ (𝑢2 := 𝑒2)) # 𝜄) ⊲
(𝑢1 := 𝑒1) & (𝑢2 := 𝑒2). This coupling satisfies the triple by determinism of 𝑒1 and 𝑒2.

assert(𝑝 [(𝑢1, 𝑢2) \ (𝑒1, 𝑒2)]) ; (((𝑢1 := 𝑒1) ⊗ (𝑢2 := 𝑒2)) # 𝜄)= =
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assert(𝑝 [(𝑢1, 𝑢2) \ (𝑒1, 𝑒2)]) ; ((𝑢1 := 𝑒1) ⊗ (𝑢2 := 𝑒2)) =

((𝑢1 := 𝑒1) ⊗ (𝑢2 := 𝑒2)) ; assert 𝑝 =

(((𝑢1 := 𝑒1) ⊗ (𝑢2 := 𝑒2)) # 𝜄)= ; assert𝑝
choice. The assumption gives us couplings as in the hypotheses Theorem 116, so that we

obtain a coupling if 𝑏1 then(if 𝑏2 then𝑔 else𝑔′) else(if 𝑏2 thenℎ′ elseℎ) of if 𝑏1 then 𝑐1 else𝑑1 and
if 𝑏2 then 𝑐2 else𝑑2. We show that it satisfies the triple.

assert𝑝 ; (if 𝑏1 then(if 𝑏2 then𝑔 else𝑔′) else(if 𝑏2 thenℎ′ elseℎ))= =

assert 𝑝 ; (if 𝑏1 then(if 𝑏2 then𝑔= else𝑔′=) else(if 𝑏2 thenℎ′= elseℎ=)) =

if 𝑏1 then (if 𝑏2 then(assert 𝑝 ; 𝑔=) else(assert 𝑝 ; 𝑔′=))
else (if 𝑏2 then(assert 𝑝 ; ℎ′=) else(assert𝑝 ; ℎ=)) ≤

if 𝑏1 then (if 𝑏2 then(𝑔= ; assert𝑞) else(𝑔′= ; assert𝑞))
else (if 𝑏2 then(ℎ′= ; assert𝑞) else(ℎ= ; assert𝑞)) =

(if 𝑏1 then(if 𝑏2 then𝑔= else𝑔′=) else(if 𝑏2 thenℎ′= elseℎ=)) ; assert𝑞 =

(if 𝑏1 then(if 𝑏2 then𝑔 else𝑔′) else(if 𝑏2 thenℎ′ elseℎ))= ; assert𝑞
ifelse. The assumptions give us couplings as in the hypotheses of Theorem 118, so we obtain that

assert(𝑏1 = 𝑏2) ; (if (𝑏1⊗𝑏2) then𝑔 elseℎ) is a coupling of if 𝑏1 then 𝑐1 else𝑑1 and if 𝑏2 then 𝑐2 else𝑑2.
Then, we derive the inequality using determinism of 𝑏1 and 𝑏2, the definition of (−)=, and the

assumption.

assert(𝑏1 = 𝑏2) ; assert 𝑝 ; (assert(𝑏1 = 𝑏2) ; (if (𝑏1 ⊗ 𝑏2) then𝑔 elseℎ))= =

assert(𝑏1 = 𝑏2) ; assert 𝑝 ; (if (𝑏1 ⊗ 𝑏2) then𝑔= elseℎ=) =

assert(𝑏1 = 𝑏2) ; (if 𝑏1 then (assert(𝑏1# ⊗ 𝑏2#) ; assert𝑝 ; 𝑔=)
else (assert((¬𝑏1)# ⊗ (¬𝑏2)#) ; assert𝑝 ; ℎ=)) ≤

assert(𝑏1 = 𝑏2) ; (if (𝑏1 ⊗ 𝑏2) then(𝑔= ; assert𝑞) else(ℎ= ; assert𝑞)) =

assert(𝑏1 = 𝑏2) ; (if (𝑏1 ⊗ 𝑏2) then𝑔= elseℎ=) ; assert𝑞 =

(assert(𝑏1 = 𝑏2) ; (if (𝑏1 ⊗ 𝑏2) then𝑔 elseℎ))= ; assert𝑞

while. We use the assumption, determinism of 𝑏1 and 𝑏2, and Theorem 119.

assert(𝑝 ∧ (𝑏1 = 𝑏2)) ; (𝑏1 (𝑥){𝑏2 (𝑦){𝑔=(𝑥,𝑦){𝑥,𝑦.𝛼𝛼𝛼 (𝑥,𝑦)}}{𝑥,𝑦.𝛽𝛽𝛽 (𝑥,𝑦)}}{𝑥,𝑦.𝛽𝛽𝛽 (𝑥,𝑦)}) =

𝑏1 (𝑥){𝑏2 (𝑦){(assert(𝑝 ∧ (𝑏1# ⊗ 𝑏2#)) ; 𝑔=) (𝑥,𝑦){𝑥,𝑦.𝛼𝛼𝛼 (𝑥,𝑦)}}
{𝑥,𝑦. assert(𝑝 ∧ (¬𝑏1# ⊗ ¬𝑏2#)){𝛽𝛽𝛽 ()}}}
{𝑥,𝑦. assert(𝑝 ∧ (¬𝑏1# ⊗ ¬𝑏2#)){𝛽𝛽𝛽 ()}} ≤

𝑏1 (𝑥){𝑏2 (𝑦){(𝑔= ; assert𝑝) (𝑥,𝑦){𝑥,𝑦.𝛼𝛼𝛼 (𝑥,𝑦)}}
{𝑥,𝑦. assert(𝑝 ∧ (¬𝑏1# ⊗ ¬𝑏2#)){𝛽𝛽𝛽 ()}}}
{𝑥,𝑦. assert(𝑝 ∧ (¬𝑏1# ⊗ ¬𝑏2#)){𝛽𝛽𝛽 ()}}

Then, by uniformity, we obtain the desired inequality.

assert(𝑝 ∧ (𝑏1 = 𝑏2)) ; (loop 𝛼𝛼𝛼 (𝑥,𝑦){𝑏1 (𝑥){𝑏2 (𝑦){𝑔(𝑥,𝑦)
{𝑥,𝑦.𝛼𝛼𝛼 (𝑥,𝑦)}{𝑥 ′ .𝛾𝛾𝛾 (𝑥 ′)}{𝑦′ .𝛿𝛿𝛿 (𝑦′)}}{𝑥,𝑦.𝛽𝛽𝛽 (𝑥,𝑦)}}{𝑥,𝑦.𝛽𝛽𝛽 (𝑥,𝑦)}})= =

assert(𝑝 ∧ (𝑏1 = 𝑏2))
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; (loop 𝛼𝛼𝛼 (𝑥,𝑦){𝑏1 (𝑥){𝑏2 (𝑦){𝑔=(𝑥,𝑦){𝑥,𝑦.𝛼𝛼𝛼 (𝑥,𝑦)}}{𝑥,𝑦.𝛽𝛽𝛽 (𝑥,𝑦)}}{𝑥,𝑦.𝛽𝛽𝛽 (𝑥,𝑦)}}) ≤
loop 𝛼𝛼𝛼 (𝑥,𝑦){𝑏1 (𝑥){𝑏2 (𝑦){𝑔=(𝑥,𝑦){𝑥,𝑦.𝛼𝛼𝛼 (𝑥,𝑦)}}
{𝑥,𝑦. assert(𝑝 ∧ (¬𝑏1# ⊗ ¬𝑏2#)𝑝)𝛽𝛽𝛽 (𝑥,𝑦)}}{𝑥,𝑦. assert(𝑝 ∧ (¬𝑏1# ⊗ ¬𝑏2#)𝑝)𝛽𝛽𝛽 (𝑥,𝑦)}} =

(loop 𝛼𝛼𝛼 (𝑥,𝑦){𝑏1 (𝑥){𝑏2 (𝑦){𝑔=(𝑥,𝑦){𝑥,𝑦.𝛼𝛼𝛼 (𝑥,𝑦)}}{𝑥,𝑦.𝛽𝛽𝛽 (𝑥,𝑦)}}{𝑥,𝑦.𝛽𝛽𝛽 (𝑥,𝑦)}})
; assert(𝑝 ∧ (¬𝑏1# ⊗ ¬𝑏2#))

The derivation for the loop rule follows the same idea of that for the while rule: it relies on

Theorem 120 and uniformity, but it does not need determinism of the guards because they don’t

need to be duplicated in the pre- and post-conditions.

monotone. Let ℎ ⊲ 𝑐 & 𝑑 be the coupling given by the assumption.

assert 𝑝1 ; ℎ= ≤ assert 𝑝2 ; ℎ= ≤ ℎ= ; assert𝑞2 ≤ ℎ= ; assert𝑞1

symm. Letℎ⊲𝑐&𝑑 be the coupling given by the assumption. By Theorem 115, (𝜎 #ℎ# (𝜎+𝜎+))⊲𝑑&𝑐
and this satisfies the desired inequality.

assert(𝜎 ; 𝑝) ; (𝜎 # ℎ # (𝜎 + 𝜎+))= =

assert(𝜎 ; 𝑝) ; 𝜎 ; ℎ= ; 𝜎 =

𝜎 ; assert 𝑝 ; ℎ= ; 𝜎 ≤
𝜎 ; ℎ= ; assert𝑞 ; 𝜎 =

𝜎 ; ℎ= ; 𝜎 ; assert(𝜎 ; 𝑞) =

(𝜎 ; ℎ ; (𝜎 + 𝜎+))= ; assert(𝜎 ; 𝑞)

The one-sided rules are particular instances of the two sided rules, by taking (assign-L) the

expression 𝑒2 to be the variable 𝑢2, (choice-L, ifelse-L) the commands 𝑐2 and 𝑑2 to be skip and

(loop-L, while-L) the guard 𝑏2 to be RRR and the command 𝑐2 to be skip. □

Theorem 90. The following are valid relational predicate-incorrectness triples in any posetal impera-

tive category where abort ≤ 𝑓 and 𝑓 # ⊤ ≤ ⊤ for all morphisms 𝑓 .

skip

{𝑝} skip ∼ skip {𝑝}

comp

{𝑝} 𝑐1 ∼ 𝑑1 {𝑞} {𝑞} 𝑐2 ∼ 𝑑2 {𝑟 }
{𝑝} (𝑐1 ; 𝑐2) ∼ (𝑑1 ∼ 𝑑2) {𝑟 }

assign

{𝑝 [(𝑢1, 𝑢2) \ (𝑣1, 𝑣2)]} (𝑢1 := 𝑣1) ∼ (𝑢2 := 𝑣2) {𝑝}

sample

ℎ ⊲ 𝑐1 & 𝑐2

{𝑝 [(𝑢1, 𝑢2) \ ℎ=]} (𝑢1 ← 𝑐1) ∼ (𝑢2 ← 𝑐2) {𝑝}
choice

{𝑝} 𝑐1 ∼ 𝑐2 {𝑞} {𝑝} 𝑐1 ∼ 𝑑2 {𝑞} {𝑝}𝑑1 ∼ 𝑐2 {𝑞} {𝑝}𝑑1 ∼ 𝑑2 {𝑞} 𝑏1, 𝑏2 total

{𝑝} (if 𝑏1 then 𝑐1 else𝑑1) ∼ (if 𝑏2 then 𝑐2 else𝑑2) {𝑞}
ifelse

{(𝑏1# ⊗ 𝑏2#) ∧ 𝑝} 𝑐1 ∼ 𝑐2 {𝑞}
{((¬𝑏1)# ⊗ (¬𝑏2)#) ∧ 𝑝}𝑑1 ∼ 𝑑2 {𝑞} 𝑏1, 𝑏2 total and deterministic

{(𝑏1 = 𝑏2) ∧ 𝑝} (if 𝑏1 then 𝑐1 else𝑑1) ∼ (if 𝑏2 then 𝑐2 else𝑑2) {𝑞}
loop

{𝑝} 𝑐1 ∼ 𝑐2 {𝑝} {𝑝} 𝑐1 ∼ skip {𝑝} {𝑝} skip ∼ 𝑐2 {𝑝} 𝑏1, 𝑏2 total

{𝑝} (while𝑏1 do 𝑐1) ∼ (while𝑏2 do 𝑐2) {𝑝}
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while

{(𝑏1# ⊗ 𝑏2#) ∧ 𝑝} 𝑐1 ∼ 𝑐2 {(𝑏1 = 𝑏2) ∧ 𝑝} 𝑏1, 𝑏2 total and deterministic

{(𝑏1 = 𝑏2) ∧ 𝑝} (while𝑏1 do 𝑐1) ∼ (while𝑏2 do 𝑐2) {((¬𝑏1)# ⊗ (¬𝑏2)#) ∧ 𝑝}

monotone

𝑝1 ≥ 𝑝2 {𝑝2} 𝑐 ∼ 𝑑 {𝑞2} 𝑞2 ≥ 𝑞1
{𝑝1} 𝑐 ∼ 𝑑 {𝑞1}

choice-L

{𝑝} 𝑐 ∼ skip {𝑞} {𝑝}𝑑 ∼ skip {𝑞} 𝑏 total

{𝑝} (if 𝑏 then 𝑐 else𝑑) ∼ skip {𝑞}
symm

{𝑝} 𝑐 ∼ 𝑑 {𝑞}
{𝜎 ; 𝑝}𝑑 ∼ 𝑐 {𝜎 ; 𝑞}

assign-L

{𝑝 [𝑥 \ 𝑣]} (𝑥 := 𝑣) ∼ skip {𝑝}

sample-L

𝑐 total

{𝑝 [𝑢 \ 𝑐]} (𝑢 ← 𝑐) ∼ skip {𝑝}
ifelse-L

{(𝑏# ⊗ ⊤) ∧ 𝑝} 𝑐 ∼ skip {𝑞} {((¬𝑏1)# ⊗ ⊤) ∧ 𝑝}𝑑 ∼ skip {𝑞} 𝑏 total and deterministic

{𝑝} (if 𝑏 then 𝑐 else𝑑) ∼ skip {𝑞}
loop-L

{𝑝} 𝑐 ∼ skip {𝑝} 𝑏 total

{𝑝} (while𝑏 do 𝑐) ∼ skip {𝑝}

while-L

{(𝑏# ⊗ ⊤) ∧ 𝑝} 𝑐 ∼ skip {𝑝} 𝑏 total and deterministic

{𝑝} (while𝑏 do 𝑐) ∼ skip {((¬𝑏)# ⊗ ⊤) ∧ 𝑝}

Proof. skip. By Theorem 114, the monoidal product gives a coupling: ((skip ⊗ skip) # 𝜄) ⊲
skip& skip. By unitality, we obtain the rule.

𝑝 = (skip ⊗ skip) ; 𝑝 = ((skip ⊗ skip) # 𝜄)= ; 𝑝
comp. Suppose there are couplings 𝑔1 ⊲ 𝑐1 &𝑑1 and 𝑔2 ⊲ 𝑐2 &𝑑2 satisfying 𝑝 ≥ 𝑔=1 ;𝑞 and 𝑞 ≥ 𝑔=

2
; 𝑟 .

By Theorem 113, there is a coupling (𝑔1 # [𝑔2, 𝑐2 # 𝜄, 𝑑2 # 𝜄]) ⊲ (𝑐1 # 𝑐2) & (𝑑1 # 𝑑2). Then, applying the
definition of (−)= and the assumptions, we obtain the desired inequality.

(𝑔1 # [𝑔2, 𝑐2 # 𝜄, 𝑑2 # 𝜄])= ; 𝑟 =

𝑔1 ; 𝜋
+
1
; 𝑔2 ; 𝜋

+
1
; 𝑟 =

𝑔=
1
; 𝑔=

2
; 𝑟 ≤

𝑔=
1
; 𝑞 ≤

𝑝

assign. By Theorem 114, the monoidal product gives a coupling: (((𝑢1 := 𝑒1) ⊗ (𝑢2 := 𝑒2)) # 𝜄) ⊲
(𝑢1 := 𝑒1) & (𝑢2 := 𝑒2). This coupling satisfies the triple by definition.

𝑝 [(𝑢1, 𝑢2) \ (𝑒1, 𝑒2)] = ((𝑢1 := 𝑒1) ⊗ (𝑢2 := 𝑒2)) ; 𝑝 = ((𝑢1 := 𝑒1) ⊗ (𝑢2 := 𝑒2) # 𝜄)= ; 𝑝
sample. Given a coupling ℎ ⊲ 𝑐1 & 𝑐2, the triple is satisfied by definition.

𝑝 [(𝑢1, 𝑢2) \ ℎ=] = ℎ= ; 𝑝

choice. The assumption gives us couplings as in the hypotheses Theorem 116, so that we

obtain a coupling if 𝑏1 then(if 𝑏2 then𝑔 else𝑔′) else(if 𝑏2 thenℎ′ elseℎ) of if 𝑏1 then 𝑐1 else𝑑1 and
if 𝑏2 then 𝑐2 else𝑑2. We show that it satisfies the triple using totality of the guards.

(if 𝑏1 then(if 𝑏2 then𝑔 else𝑔′) else(if 𝑏2 thenℎ′ elseℎ))= ; 𝑞 =

(if 𝑏1 then(if 𝑏2 then𝑔= else𝑔′=) else(if 𝑏2 thenℎ′= elseℎ=)) ; 𝑞 =

if 𝑏1 then(if 𝑏2 then(𝑔= ; 𝑞) else(𝑔′= ; 𝑞)) else(if 𝑏2 then(ℎ′= ; 𝑞) else(ℎ= ; 𝑞)) ≤
if 𝑏1 then(if 𝑏2 then𝑝 else𝑝) else(if 𝑏2 then𝑝 else𝑝) =

𝑝
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ifelse. The assumptions give us couplings as in the hypotheses of Theorem 118, so we obtain that

assert(𝑏1 = 𝑏2) ; (if (𝑏1⊗𝑏2) then𝑔 elseℎ) is a coupling of if 𝑏1 then 𝑐1 else𝑑1 and if 𝑏2 then 𝑐2 else𝑑2.
Then, we derive the inequality using determinism of 𝑏1 and 𝑏2, the definition of (−)=, and the

assumption.

(assert(𝑏1 = 𝑏2) ; (if (𝑏1 ⊗ 𝑏2) then𝑔 elseℎ))= ; 𝑞 =

assert(𝑏1 = 𝑏2) ; (if (𝑏1 ⊗ 𝑏2) then𝑔= elseℎ=) ; 𝑞 =

assert(𝑏1 = 𝑏2) ; (if (𝑏1 ⊗ 𝑏2) then(𝑔= ; 𝑞) else(ℎ= ; 𝑞)) ≤
assert(𝑏1 = 𝑏2) ; (if (𝑏1 ⊗ 𝑏2) then (𝑏1# ⊗ 𝑏2#) ∧ 𝑝 else ((¬𝑏1)# ⊗ (¬𝑏2)#) ∧ 𝑝) =

assert(𝑏1 = 𝑏2) ; (if (𝑏1 ⊗ 𝑏2) then𝑝 else 𝑝) =

assert(𝑏1 = 𝑏2) ; 𝑝 =

(𝑏1 = 𝑏2) ∧ 𝑝

while. We use the assumption, determinism of 𝑏1 and 𝑏2, and Theorem 119.

𝑏1 (𝑥){𝑏2 (𝑦){𝑔=(𝑥,𝑦){𝑥,𝑦.((𝑏1 = 𝑏2) ∧ 𝑝){𝛼𝛼𝛼 ()}}}
{𝑥,𝑦.(𝑝 ∧ (¬𝑏1# ⊗ ¬𝑏2#)){𝛽𝛽𝛽 ()}}}{𝑥,𝑦.(𝑝 ∧ ((¬𝑏1)# ⊗ ¬𝑏2#)){𝛽𝛽𝛽 ()}} ≤
𝑏1 (𝑥){𝑏2 (𝑦){𝑥,𝑦.(𝑝 ∧ (𝑏1# ⊗ 𝑏2#)){𝛼𝛼𝛼 ()}}}
{𝑥,𝑦.(𝑝 ∧ (¬𝑏1# ⊗ ¬𝑏2#)){𝛽𝛽𝛽 ()}}}{𝑥,𝑦.(𝑝 ∧ (¬𝑏1# ⊗ ¬𝑏2#)){𝛽𝛽𝛽 ()}} =

assert(𝑝 ∧ (𝑏1 = 𝑏2)) ; (𝑏1 (𝑥){𝑏2 (𝑦){𝑥,𝑦.𝛼𝛼𝛼 ()}}{𝑥,𝑦.𝛽𝛽𝛽 ()}}{𝑥,𝑦.𝛽𝛽𝛽 ()}) =

Then, by uniformity and the extra hypothesis, we obtain the desired inequality.

(𝑝 ∧ (𝑏1 = 𝑏2)) ≥
assert(𝑝 ∧ (𝑏1 = 𝑏2)) ; (loop 𝛼𝛼𝛼 (𝑥,𝑦){𝑏1 (𝑥){𝑏2 (𝑦){𝑥,𝑦.𝛼𝛼𝛼 (𝑥,𝑦)}{𝑥,𝑦.𝛽𝛽𝛽 ()}}{𝑥,𝑦.𝛽𝛽𝛽 ()}}) ≥
loop 𝛼𝛼𝛼 (𝑥,𝑦){𝑏1 (𝑥){𝑏2 (𝑦){𝑔=(𝑥,𝑦){𝑥,𝑦.𝛼𝛼𝛼 (𝑥,𝑦)}}
{𝑥,𝑦.(𝑝 ∧ ((¬𝑏1)# ⊗ ¬𝑏2#))𝛽𝛽𝛽 ()}}{𝑥,𝑦.(𝑝 ∧ ((¬𝑏1)# ⊗ ¬𝑏2#))𝛽𝛽𝛽 ()}} =

(loop 𝛼𝛼𝛼 (𝑥,𝑦){𝑏1 (𝑥){𝑏2 (𝑦){𝑔=(𝑥,𝑦){𝑥,𝑦.𝛼𝛼𝛼 (𝑥,𝑦)}}{𝑥,𝑦.𝛽𝛽𝛽 (𝑥,𝑦)}}{𝑥,𝑦.𝛽𝛽𝛽 (𝑥,𝑦)}})
; (𝑝 ∧ ((¬𝑏1)# ⊗ ¬𝑏2#))

The derivation for the loop rule follows the same idea of that for the while rule: it relies on

Theorem 120 and uniformity, but it does not need determinism of the guards because they don’t

need to be duplicated in the pre- and post-conditions.

monotone. Let ℎ ⊲ 𝑐 & 𝑑 be the coupling given by the assumption.

𝑝1 ≥ 𝑝2 ≥ ℎ= ; 𝑞2 ≥ ℎ= ; 𝑞1
symm. Letℎ⊲𝑐&𝑑 be the coupling given by the assumption. By Theorem 115, (𝜎 #ℎ# (𝜎+𝜎+))⊲𝑑&𝑐

and this satisfies the desired inequality.

(𝜎 # ℎ # (𝜎 + 𝜎+))= ; 𝜎 ; 𝑞 =

𝜎 ; ℎ= ; 𝜎 ; 𝜎 ; 𝑞 =

𝜎 ; ℎ= ; 𝑞 ≤
𝜎 ; 𝑝

The one-sided rules are particular instances of the two sided rules, by taking (assign-L) the

expression 𝑒2 to be the variable 𝑢2, (sample-L) the command 𝑐 to be skip, (choice-L, ifelse-L) the
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52 Anon.

commands 𝑐2 and 𝑑2 to be skip and (loop-L, while-L) the guard 𝑏2 to be RRR and the command 𝑐2 to

be skip. □
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