
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Program Logics via Distributive Monoidal Categories

ANONYMOUS AUTHOR(S)

We derive multiple program logics, including correctness, incorrectness, and relational Hoare logic, from

the axioms of imperative categories: uniformly traced distributive copy-discard categories. We introduce an

internal language for imperative multicategories, on top of which we derive combinators for an adaptation of

Dijkstra’s guarded command language. Rules of program logics are derived from this internal language.

ACM Reference Format:
Anonymous Author(s). 2025. Program Logics via Distributive Monoidal Categories. 1, 1 (July 2025), 52 pages.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Program logics are sets of derivation rules used to reason about program behaviour under input

and output conditions. Statements are written as triples {𝑝} 𝑐 {𝑞} of a command 𝑐 , a precondition 𝑝

and a postcondition 𝑞. The semantics of such a triple, though, depends on the behaviour one is

interested in studying. For program correctness, intuitively, the triple is valid if, starting on input

states that satisfy 𝑝 , the output states of the program satisfy 𝑞. For example, the following rule of

Hoare logic derives a correctness triple for a loop from the correctness triple of its body.

{𝑏 ∧ 𝑝} 𝑐 {𝑝}
{𝑝} while𝑏 do 𝑐 {(¬𝑏) ∧ 𝑝}

(1)

However, correctness is only one of the possible triple interpretations; intensive research has

produced logics for a myriad of triple interpretations, and for multiple program semantics.

Program logics start by fixing a semantics for their commands, an interpretation for their

triples, and derivation rules for its logic. Command semantics can be partial [Hoa69, Ben04],

relational [Win93, O’H19] or stochastic [Kam18, BKOZB12, ZDS23]. Triples can capture program

correctness [Hoa69], incorrectness [dVK11, O’H19] or quantitative aspects of execution [ZDS23,

ABDG25]. After these two choices, the logic is completed with a set of derivation rules that capture

the relevant behaviour and are sound for the intended semantics. While they appear to follow some

general pattern, the rules of program logics are defined on a case-by-case basis.

We propose the algebraic structure of imperative categories—a variant of Elgot distributive

categories—as a foundation for program logics. From the axioms of imperative categories, we derive

the usual rules of various program logics. From the models of imperative categories, we expand the

scope of these rules beyond a fixed semantics. The categorical structure becomes common to the

usual relational, partial, and probabilistic semantics, while remaining more general.

Imperative categories come with an internal language that we develop and employ through the

paper: an internal language that mimics unstructured programming, with arbitrary jumps to labelled

looping points (marked by “looplooploop” followed by a label). Unstructured programming is needed for

full expressivity, but certainly not always desirable [Dij68]; in fact, while unstructured and typed,

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM XXXX-XXXX/2025/7-ART

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: July 2025.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Anon.

the internal language is actually inspired by a structured and untyped one: the famous Dijkstra’s

guarded command language [Dij75].

Dijkstra’s command language is recovered from the endomorphisms of imperative categories.

The simplest command combinators of the language—skip and concatenation (;)—feature as the
identity and endomorphism composition. Choice and iteration (if-then-else and while) feature as
a cocartesian and traced monoidal structure. All command combinators are derivable from the

unstructured internal language; for instance, if-then-else and while are defined in these terms.

if 𝑏 then 𝑐1 else 𝑐2 ≡ 𝑏 [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \ 𝑐1, 𝑐2]; (2)

while𝑏 do 𝑐 ≡ loop 𝛼𝛼𝛼 (®𝑥){®𝑥 . 𝑏 [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \ 𝑐 [𝜂𝜂𝜂 \ ®𝑥 .𝛼𝛼𝛼 (®𝑥)], ®𝑥 .𝜂𝜂𝜂 (®𝑥)]}; (3)

These read as follow: to execute “if 𝑏 then 𝑐1 else 𝑐2”, execute 𝑏 but replace each of its two exit

conditions (𝛼𝛼𝛼1 and 𝛼𝛼𝛼2) by the two branches (𝑐1 and 𝑐2); to execute “while𝑏 do 𝑐”, start by labelling a

looping point (𝛼𝛼𝛼) and then execute 𝑏 but replacing its first exit condition (𝛼𝛼𝛼1) with the body of the

loop (𝑐)—while replacing 𝑐’s exit condition (𝜂𝜂𝜂) by the looping label—and its second exit condition

with its, now only, exit condition (𝜂𝜂𝜂).

While less familiar, the internal language derives the usual reasoning principles: for instance,

the previous definitions—together with an auxiliary skip ≡ 𝜂𝜂𝜂 (®𝑥)—imply loop unfolding (4).

while𝑏 do 𝑐 ≡ if 𝑏 then (𝑐 ; while𝑏 do 𝑐) else skip; (4)

Around commands, notice how we pass a vector of variables (®𝑥), carrying the state of loops

and choices. This sort of state-passing translation requires a second monoidal—or premonoidal—

structure, with the ability to copy and discard the value of variables. It enables variable assignment:

if both 𝑥𝑖 and 𝑥 𝑗 are variables in the vector that we pass as state, then the following command

stores in 𝑥𝑖 the value of 𝑓𝑓𝑓 (𝑥 𝑗).
(𝑥𝑖 ≔ 𝑓𝑓𝑓 (𝑥 𝑗)) ≡ 𝑓𝑓𝑓 (𝑥 𝑗){𝑥𝑖 .𝜂𝜂𝜂 (®𝑥)}.

As a side benefit, the second monoidal structure provides the extra expressivity needed to define

couplings of programs, validity in relational Hoare triples, and notions of totality and determinism,

useful in stochastic and partial semantics.

1.1 Interpreting triples
The interpretation of program triples rests on comparing programs: the validity of a Hoare triple

{𝑝} 𝑐 {𝑞} will be defined as an inequality, assert 𝑝 ; 𝑐 ≤ 𝑐 ; assert𝑞. In the category of relations,

where morphisms are ordered by inclusion, we recover the validity of a partial correctness triple: it

compares the subset 𝑐 ; assert𝑞 of possible final states with the subset assert𝑝 ;𝑐 of possible outputs
of 𝑐 on inputs that belong to 𝑝 . In general, we require a poset enrichment on imperative categories,

leading to posetal imperative categories: poset-enriched categories with (i) traced coproducts and a

second (ii) monoidal copy-discard structure, interacting by distributivity.

The most important axiom for this posetal structure is posetal uniformity, which justifies loop

invariants. Intuitively, it says that if a command 𝑐 is invariant under a branch guarded by 𝑏, then

it remains invariant under a loop guarded by 𝑏. That is, 𝑐; L𝑏M{𝑐1}{skip} ≤ L𝑏M{𝑐2; 𝑐0}{𝑐3} implies

𝑐0;while𝑏 do 𝑐1 ≤ while𝑏 do 𝑐2; 𝑐3.
With this interpretation, let us prove validity of the example triple we just introduced.

Proposition 1. The triple in Equation (1) is valid when 𝑏 is deterministic.

Proof. We reason by (i) interchange of predicates and guards, (ii) determinism of the guard 𝑏,

(iii) the definition of conjunction, and (iv) the assumption of the rule, {𝑏 ∧ 𝑝} 𝑐 {𝑝}.
assert 𝑝; L𝑏M{𝑐}{skip} (i)

=

, Vol. 1, No. 1, Article . Publication date: July 2025.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Program Logics via Distributive Monoidal Categories 3

L𝑏M{assert 𝑝; 𝑐}{assert 𝑝} (ii)

=

L𝑏M{assert𝑏#; assert 𝑝; 𝑐}{assert (¬𝑏)#; assert𝑝} (iii)

=

L𝑏M{assert(𝑏# ∧ 𝑝); 𝑐}{assert((¬𝑏)# ∧ 𝑝)}
(iv)

≤
L𝑏M{𝑐; assert 𝑝}{assert((¬𝑏)# ∧ 𝑝)}.

We conclude, by posetal uniformity, that assert𝑝;while𝑏 do 𝑐 ≤ while𝑏 do 𝑐; assert(¬𝑏 ∧ 𝑝). This
means that {𝑝} while𝑏 do 𝑐 {(¬𝑏) ∧ 𝑝} is valid. □

1.2 Contributions
We introduce imperative multicategories as traced distributive copy-discard multicategories. We

provide an internal language taking sound semantics in imperative categories (Theorem 54), and we

prove it complete by exhibiting a syntactic model (Theorem 56). In terms of this internal language,

we derive combinators for guards, predicates, commands, and states, inspired by Dijkstra’s guarded

command language (Section 3).

Finally, we classify triple shapes from various program logics (Section 5), and we prove the

derivation rules for Hoare logic, incorrectness logic, and an outcome-like logic (Theorems 79, 81

and 83). We extend these to their relational versions, proving the derivation rules for relational

Hoare logic and a relational incorrectness logic (Theorems 88 and 90).

1.3 Synopsis
Section 2 introduces an internal language for imperative multicategories and posetal imperative

multicategories. Section 3 specializes the language for the elements of a generic program triple

and derives a version of Dijkstra’s guarded command language. Section 4 provides categorical

denotational semantics in terms of posetally-enriched traced distributive copy-discard multicategories.

Section 5 derives correctness triples, incorrectness triples, and outcome-like triples in any imperative

multicategory. Section 6 derives relational correctness triples and relational incorrectness triples

again from the axioms of imperative multicategories.

1.4 Related work
Categorical program semantics. Categorical program semantics has a long tradition [LS88, Ole83,

Win93]. In particular, distributive categories are since long used to model both control flow and

data flow of programs [Coc93, CLW93, Wal92]. More specifically, distributive monoidal categories

with copy-discard structure have naturally appeared in non-deterministic, partial, and stochastic

semantics [LCS25, Nes25]. The approach is compatible with the long tradition of using monads for

computations [Mog91, Wad98, BK99, BHM00].

Arbib and Manes employ traced cocartesian categories to express the control flow of pro-

grams [AM80], generalising Elgot’s techniques for the interpretation of iteration and choice in

partial functions [Elg75]; but also apart from their work, categorical semantics for iteration has

been studied extensively [BÉ93, SP00]. Of particular relevance to our work is the metalanguage

for guarded iteration by Goncharov, Rauch and Schröder [GRS21]; and the recent denotational

semantics of static single assingment of Ghalayini and Krishnaswami [GK24]. When reasoning

about the semantics of loops, we employ Hasuo’s generic trace theory [Has06, HJS06], which builds

on Fiore’s work on coinduction [Fio93, Fio96]. Uniform traces need not to exist in cocartesian

categories. In our examples, we ensure the existence of uniform traces by relying on partially

additive monads [Jac10], which ensure a form of iteration in the Kleisli category less restrictive

than additive monads [CJ13] or Kleene monads [Gon10].

, Vol. 1, No. 1, Article . Publication date: July 2025.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Anon.

Categorical logic. The guarded command syntax for programs distinguishes between guards and

commands. We interpret this distinction in the categorical setting following the ideas from effectus

theory [Jac15], where the logic on guards derives from categorical structure.

The structure of hom-sets in imperative categories resembles that of Kleene algebras with

tests [Koz97] and their probabilistic variation [MCM06], and of guarded Kleene algebras with

tests [SFH
+
19, GBG25a] and their probabilistic [RKK

+
23] and approximate variants [GBG25b].

Guards in imperative categories do not in general form a boolean algebra as they are not necessarily

deterministic.

Program logics. Since the work of Floyd [Flo93] and Hoare [Hoa69, CH72] on correctness assertions

about programs, much work on program logics has extended the scope of the original logic.

Separation logic [Rey02, ORY01] considers programs that access globally shared data, incorrectness

logic considers assertions about faults of programs [dVK11, O’H19], and outcome logics [ZDS23,

ZSS24, ZKST25] provide a synthesis of correctness and incorrectness reasoning. Verification of

probabilistic programs is an active research area that takes another view on program logics studying

weakest precondition and strongest postcondition calculi [KK17, Kam18, ZK22].

Relational program logics extend the reasoning of program logics to pairs of programs considering

binary relations between their inputs instead of predicates on the inputs of one program alone.

As in the predicate version, relational program logics can focus on correctness assertions about

deterministic programs [Ben04], or be extended to probabilistic semantics [BGZB09, ABDG25] and

approximate reasoning [Olm14, BKOZB12, Sat16, ABH
+
21].

Categorical approaches to program logics are not new. Manes and Arbib describe the control

flow of Hoare logic with traced cocartesian categories [MA12]. Outcome logic considers a class

of semantic universes given by Kleisli categories of monads with some extra structure [ZDS23].

Program triples can also be seen as fibrations over a category of programs [MZ15, MZ16] or as

functors to monotone relations [AMMO09]. More recently, the structure of distributive categories

as been shown to derive the rules of Hoare logic, restricted to the relational semantics [BDD25].

2 An internal distributive language
Program logics follow simple imperative languages—e.g. Dijkstra’s guarded command language

[Dij75]. These tend to be bad candidates for a categorical internal language: many are untyped, and

many are too redundant to construct free categories. For instance, many have explicit commands

for identity (skip) and composition (#), implicitly blocking categorical cut-elimination; many do

poorly on relevant case-matching, rendering some categorical constructions impossible.

This section introduces the formal internal language we use for the rest of the paper. Next

sections will develop its semantics in terms of imperative categories.

2.1 Signatures: values, generators, and basic types
A distributive signature is a structure apt to represent all the morphisms of a distributive category

without their compositional structure. Instead of nesting sums and tensors, it exploits that every

nesting of sums and tensors can be normalized—not uniquely—into a sum of tensors of basic types.

In other words, all the morphisms of a distributive category can be recovered from those between

sums of tensors,

𝑓 :
∑ℓ

𝑖=1

⊗𝑛𝑖
𝑗=1𝑋

𝑖
𝑗 →

∑𝑝

𝑖=1

⊗𝑚𝑖

𝑗=1 𝑌
𝑖
𝑗 .

And moreover, because of the universal property of coproducts, these correspond uniquely to tuples

of morphisms from a tensor of basic types into a sum of tensors of basic types,(
𝑓𝑖 :

⊗𝑛𝑖
𝑗=1𝑋

𝑖
𝑗 →

∑𝑝

𝑖=1

⊗𝑚𝑖

𝑗=1 𝑌
𝑖
𝑗

) ℓ
𝑖=1

.

, Vol. 1, No. 1, Article . Publication date: July 2025.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Program Logics via Distributive Monoidal Categories 5

Thus, generators—the elements of a distributive signature—will be interpreted as inducing a mor-

phism from a product,

⊗𝑛

𝑗=1𝑋 𝑗 , to a sum of products,

∑𝑝

𝑖=1

⊗𝑚𝑖

𝑗=1 𝑌
𝑖
𝑗 .

Definition 2 (Distributive signature). A distributive signature, (B,G), is given by a set whose

elements we call basic types, B, and, for each list of basic types {𝑋𝑖 ∈ B}𝑛𝑖=1, and each list of lists of

basic types, {{𝑌 𝑖
𝑗 ∈ B}

𝑚𝑖

𝑗=1
}𝑝
𝑖=1

, a set, G(𝑋1, ..., 𝑋𝑛 ; [𝑌 1

1
, ..., 𝑌 1

𝑚1

], ..., [𝑌 ℓ
1
, ..., 𝑌 ℓ

𝑚1

]), whose elements we

call generators.

All morphisms in a distributive category can be brought to this form: any morphism from a

coproduct is determined by a tuple of generators; morphisms between non-normalized polynomials

correspond bijectively morphisms between any choice of normalizations.

Remark 3. Explicit product and coproduct types will not be needed: primitive types on the language

are normalized polynomials of basic types. This does not mean we cannot include them explicitly—

they are sometimes convenient—but they will be derived notions: we introduce them with bijections

to primitive types, constituting their introduction/elimination pair.

2.2 Language primitives
Let us state the three constructors that form the terms of the formal language that we employ

for traced distributive copy-discard multicategories. The language—in the style of categorical

cut-elimination [Whi41, Joy95, RC01, Shu16]—tries to be as minimalistic as possible, avoiding

redundancy of constructors: ideally, every term would correspond uniquely to a morphism in a free

traced distributive copy-discard multicategory without any extra quotienting. Indeed, we only use

quotienting for 𝛼-equivalence and four axioms, regarding commutativity and loops (in Section 2.4).

Definition 4 (Variables, labels, contexts, and indices). Let V be a countable infinite set whose

elements we call variables. Let A be a countable infinite set whose elements we call labels. A context,

Γ = 𝑥1 : 𝑋1, ..., 𝑥𝑛 : 𝑋𝑛 , is a list of variables and basic types, i.e. Γ ∈ List(V × B). Indices are lists of
labels and contexts, i.e. Idx = List(A × Ctx).
Remark 5. Labels naturally appear when reasoning about jumps in Hoare logic [CH72]; they also

match the exit conditions of incorrectness logic [O’H19].

Axiom 6 (Primitive terms). Terms of the internal language, over a distributive signature (B,G),
are inductively generated by the following rules.

Return

{(𝑥𝑖 : 𝑋𝑖) ∈ Γ}𝑛𝑖=1 (𝛼𝛼𝛼 : 𝑋1, ..., 𝑋𝑛) ∈ Δ
Γ ⊢ 𝛼𝛼𝛼 (𝑥1, ..., 𝑥𝑛) : Δ

Generator

𝑓 ∈ G(𝑋1, ..., 𝑋𝑛 ; (𝑌1,1, ..., 𝑌1,𝑚1
), ..., (𝑌ℓ,1, ..., 𝑌ℓ,𝑚ℓ

))
{(𝑥𝑖 : 𝑋𝑖) ∈ Γ}𝑛𝑖=1 {(𝑦𝑖,1 : 𝑌𝑖,1), ..., (𝑦𝑖,𝑚𝑖

: 𝑌𝑖,𝑚𝑖
), Γ ⊢ 𝑝𝑖 : Δ}ℓ𝑖=1

Γ ⊢ 𝑓 (𝑥1, ..., 𝑥𝑛){𝑦𝑖,1, ..., 𝑦𝑖,𝑚𝑖
. 𝑝𝑖 }ℓ𝑖=1

Loop

{(𝑥𝑖 : 𝑋𝑖) ∈ Γ}𝑛𝑖=1 (𝑢1 : 𝑋1), ..., (𝑢𝑛 : 𝑋𝑛), Γ ⊢ 𝑝 : (𝛼𝛼𝛼 : 𝑋1, ..., 𝑋𝑛),Δ
Γ ⊢ loop 𝛼𝛼𝛼 (𝑥1, ..., 𝑥𝑛){𝑢1, ..., 𝑢𝑛 . 𝑝} : Δ

• The Return rule states that, given an label, (𝛼𝛼𝛼 : 𝑋1, ..., 𝑋𝑛) ∈ Δ, and a well-typed list of

variables in context, {(𝑥𝑖 : 𝑋𝑖) ∈ Γ}𝑛𝑖=1, a term may just point to that label.

• The Generator rule states that, given any generator, 𝑓 , with well-typed list of variables,

{(𝑥𝑖 : 𝑋𝑖) ∈ Γ}𝑛𝑖=1, and a term for each one of its possible branches, {𝑝𝑖 }ℓ𝑖=1, we can evaluate

the generator and branch according to its result.

, Vol. 1, No. 1, Article . Publication date: July 2025.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Anon.

• The Loop rule states that we can introduce a label, 𝛼𝛼𝛼 (𝑥1, ..., 𝑥𝑛), to which the rest of the

term, 𝑝 , may now jump.

From now on, let us use vector notation for lists when convenient: for instance, ®𝑥 : ®𝑋 will mean

𝑥1 : 𝑋1, ..., 𝑥𝑛 : 𝑋𝑛 , and ®𝑦𝑖 will mean 𝑦𝑖
1
, ..., 𝑦𝑖𝑚𝑖

.

Remark 7. We work up to 𝛼-equivalence of both variables and labels. While its formalization is a

routine matter, the interested reader can follow Section A.1.

2.3 Substitution
Substitution appears as a derived rule: it builds terms that, while structurally similar, employ

variables differently. Most derived structural rules (e.g., exchange, contraction, or weakening) will

follow from substitution. In the same way that we substitute variables, we can substitute labels.

The substitution rule for labels is based in the substitution rule of clones (or Lawvere theories).

Definition 8 (Variable substitution). Substitution of a list of variables, ®𝑢 = 𝑢1, ..., 𝑢𝑛 , by a list of

variables, ®𝑣 = 𝑣1, ..., 𝑣𝑛 , is defined by 𝑢𝑖 [®𝑢 \ ®𝑣] = 𝑣𝑖 , and𝑤 [®𝑢 \ ®𝑣] =𝑤 when {𝑤 ≠ 𝑢𝑖 }𝑛𝑖=1. Substitution
extends inductively to terms, as follows.

(𝛼𝛼𝛼 (𝑥1, ..., 𝑥𝑛)) [®𝑢 \ ®𝑣] ≡ 𝛼𝛼𝛼 (𝑥1 [®𝑢 \ ®𝑣], ..., 𝑥𝑛 [®𝑢 \ ®𝑣]);
(loop 𝛼𝛼𝛼 (𝑥1, ..., 𝑥𝑛){𝑦1, ..., 𝑦𝑛 . 𝑝}) [®𝑢 \ ®𝑣] ≡ loop 𝛼𝛼𝛼 (𝑥1, ..., 𝑥𝑛){𝑦1, ..., 𝑦𝑛 . 𝑝 [®𝑢 \ ®𝑣]};
(𝑓 (𝑥1, ..., 𝑥𝑛){𝑦1, ..., 𝑦𝑚 . 𝑝𝑖 }𝑖) [®𝑢 \ ®𝑣] ≡ 𝑓 (𝑥1 [®𝑢 \ ®𝑣], ..., 𝑥𝑛 [®𝑢 \ ®𝑣]){𝑦𝑖,1, ..., 𝑦𝑖,𝑚𝑖

. 𝑝𝑖 [®𝑢 \ ®𝑣]}𝑖 ;
For the last two clauses, we must assume—without loss of generality, thanks to 𝛼-equivalence—that

all variables that appear bound, 𝑦1, ..., 𝑦𝑛 and 𝑦𝑖,1, ..., 𝑦𝑖,𝑚𝑖
, are fresh.

Definition 9 (Label substitution). Substitution of a label,𝛼𝛼𝛼 , by a term 𝑞 with a list of bound variables

®𝑢, inside a term 𝑝 , is inductively defined as follows.

𝛼𝛼𝛼 (®𝑥) [𝛼𝛼𝛼 \ ®𝑢.𝑞] ≡ 𝑞 [®𝑢 \ ®𝑥];
𝜔𝜔𝜔 (®𝑥) [𝛼𝛼𝛼 \ ®𝑢.𝑞] ≡ 𝜔𝜔𝜔 (®𝑥), when𝜔𝜔𝜔 ≠ 𝛼𝛼𝛼 ;

(loop 𝛽𝛽𝛽 (®𝑥){®𝑦. 𝑝}) [𝛼𝛼𝛼 \ ®𝑢.𝑞] ≡ loop 𝛽𝛽𝛽 (®𝑥){®𝑦. 𝑝 [𝛼𝛼𝛼 \ ®𝑢.𝑞]};
𝑓 (®𝑥){®𝑦𝑖 . 𝑝𝑖 }𝑖 [𝛼𝛼𝛼 \ ®𝑢.𝑞] ≡ 𝑓 (®𝑥){®𝑦𝑖 . 𝑝𝑖 [𝛼𝛼𝛼 \ ®𝑢.𝑞]}𝑖 .

Proposition 10 (Substitution rules). The following are derived rules.
variable substitution

Γ1, (®𝑥 : ®𝑋), Γ2 ⊢ 𝑝 : Δ (®𝑢 : ®𝑋) ∈ Γ
Γ1, Γ, Γ2 ⊢ 𝑝 [®𝑥 \ ®𝑢] : Δ

label substitution

Γ ⊢ 𝑝 : (𝛼𝛼𝛼 : ®𝑋),Δ (®𝑢 : ®𝑋), Γ ⊢ 𝑞 : Δ′,Δ

Γ ⊢ 𝑝 [𝛼𝛼𝛼 \ ®𝑢.𝑞] : Δ′,Δ

2.4 Interchange and Loop axioms
The interchange axiom declares that applying a term 𝑝 and then a term 𝑞 on each of its branches—

and independently of the branch—is the same as applying the term 𝑞 and then the term 𝑝 on each

of its branches, as long as the variables that both generators use and create are separate.

Axiom 11 (Interchange). Terms of the language must satisfy the following axiom, where the first

term have indices Δ1 = (𝛼𝛼𝛼1 :
®𝑈1), ..., (𝛼𝛼𝛼𝑛 : ®𝑈𝑛) and Δ2 = (𝛽𝛽𝛽1 : ®𝑉1), ..., (𝛽𝛽𝛽𝑚 : ®𝑉𝑚), and the resulting

equation uses the tensor of both indices, i.e. Δ1 ⊗ Δ2 = (𝛾𝛾𝛾1,1 : ®𝑈1, ®𝑉1), ..., (𝛾𝛾𝛾𝑛,𝑚 : ®𝑈𝑛, ®𝑉𝑚).
Interchange

Γ1 ⊢ 𝑝 : Δ1 Γ2 ⊢ 𝑞 : Δ2

Γ1, Γ2 ⊢ 𝑝 [𝛼𝛼𝛼𝑖 \ ®𝑢𝑖 .𝑞 [𝛽𝛽𝛽 𝑗 \ ®𝑣 𝑗 .𝛾𝛾𝛾𝑖, 𝑗 (𝑢𝑖 , 𝑣 𝑗)]]𝑖 ≡ 𝑞 [𝛽𝛽𝛽 𝑗 \ ®𝑣 𝑗 .𝑝 [𝛼𝛼𝛼𝑖 \ ®𝑢𝑖 .𝛾𝛾𝛾𝑖, 𝑗 (𝑢𝑖 , 𝑣 𝑗)]] 𝑗 : Δ1 ⊗ Δ2

, Vol. 1, No. 1, Article . Publication date: July 2025.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Program Logics via Distributive Monoidal Categories 7

Remark 12 (Premonoidal and monoidal categories). The interchange axiom distinguishes two

possible semantic universes: premonoidal categories and monoidal categories. In this text, we will

be mostly concerned with monoidal categories (those for which the interchange axiom holds), but

dropping the interchange axiom does recover a language for the premonoidal case.

The following three axioms (Theorem 13) all concern the behaviour of loops. They are inspired

by the axioms of Conway theories ([Has97, SP00], which are traced cartesian multicategories), only

adapted to the distributive setting.

Axiom 13 (Loop axioms). Terms of the language must satisfy the following three axioms.

Dinaturality

(®𝑥 : ®𝑋) ∈ Γ (®𝑢 : ®𝑋), Γ ⊢ 𝑝 : (𝛽𝛽𝛽 : ®𝑌),Δ (®𝑣 : ®𝑌), Γ ⊢ 𝑞 : (𝛼𝛼𝛼 : ®𝑋),Δ
Γ ⊢ loop 𝛼𝛼𝛼 (®𝑥){®𝑢.𝑝 [𝛽𝛽𝛽 \ ®𝑣 .𝑞]} ≡ 𝑝 [𝛽𝛽𝛽 \ ®𝑦.loop 𝛽 (®𝑦){®𝑣 . 𝑞[𝛼𝛼𝛼 \ ®𝑢.𝑝]}]

Diagonal

(®𝑥 : ®𝑋) ∈ Γ (®𝑢 : ®𝑋), Γ ⊢ 𝑝 : (𝛽𝛽𝛽 : ®𝑋), (𝛼𝛼𝛼 : ®𝑋),Δ
Γ ⊢ loop 𝛼𝛼𝛼 (®𝑥){®𝑢. loop 𝛽𝛽𝛽 (®𝑢){®𝑢. 𝑝}} ≡ loop 𝛼𝛼𝛼 (®𝑥){®𝑢. 𝑝 [𝛽𝛽𝛽 \ ®𝑣 .𝛼𝛼𝛼 (®𝑣)]} : Δ

Uniformity

(®𝑢 : ®𝑋), Γ ⊢ ℓ : (𝛽𝛽𝛽1 : ®𝑌1), ..., (𝛽𝛽𝛽𝑚 : ®𝑌𝑚) (®𝑢 : ®𝑋), Γ ⊢ 𝑝 : (𝛾𝛾𝛾 : ®𝑋),Δ
(®𝑣𝑖 : ®𝑌𝑖), (®𝑥 : ®𝑋), Γ ⊢ 𝑞𝑖 : (𝛿𝛿𝛿𝑖 : ®𝑌𝑖),Δ

(®𝑥 : ®𝑋) ∈ Γ (®𝑢 : ®𝑋), Γ ⊢ 𝑝 [𝛾𝛾𝛾 \ ®𝑢.ℓ] ≡ ℓ [𝛽𝛽𝛽𝑖 \ ®𝑣𝑖 .𝑞𝑖]𝑖 : (𝛽𝛽𝛽1 : ®𝑌1), ..., (𝛽𝛽𝛽𝑚 : ®𝑌𝑚),Δ
Γ ⊢ loop 𝛾𝛾𝛾 (®𝑥){®𝑢.𝑝} ≡ ℓ [®𝑢 \ ®𝑥] [𝛽𝛽𝛽𝑖 \ loop 𝛿𝛿𝛿𝑖 (®𝑦𝑖){ ®𝑣𝑖 .𝑞𝑖 }] : Δ

The main consequence of the previous loop axioms is that loops are fixed points.

Proposition 14 (Fixpoint rule). Looping on a label, loop 𝛼 (®𝑥){®𝑢.𝑝}, is a fixed-point for substitution
on that label, 𝑝 [𝛼𝛼𝛼 \ •], for any term 𝑝 . In other words, the following is a derived rule.

Fixpoint

(®𝑥 : ®𝑋) ∈ Γ (®𝑢 : ®𝑋), Γ ⊢ 𝑝 : (𝛼𝛼𝛼 : ®𝑋),Δ
Γ ⊢ loop 𝛼𝛼𝛼 (®𝑥){®𝑢.𝑝} ≡ 𝑝 [®𝑢 \ ®𝑥] [𝛼𝛼𝛼 \ loop 𝛼𝛼𝛼 (®𝑥){®𝑢.𝑝}] : Δ

2.5 Derived structural rules
We do not need to impose the usual structural rules: these are consequences of how our terms were

constructed to start with. This has the advantage of simplifying some proofs later, where will not

have to separately check that our constructions preserve structural rules.

Proposition 15 (Label exchange, contraction, and weakening). Exchange, contraction, and weaken-
ing for labels are derivable.

lblExchange

Γ ⊢ 𝑝 : Δ1, (𝛼𝛼𝛼1 : Ψ1), (𝛼𝛼𝛼2 : Ψ2),Δ2

Γ ⊢ 𝑝 : Δ1, (𝛼𝛼𝛼2 : Ψ2), (𝛼𝛼𝛼1 : Ψ1),Δ2

lblContraction

Γ ⊢ 𝑝 : Δ1, (𝛼𝛼𝛼1 : Ψ), (𝛼𝛼𝛼2 : Ψ),Δ2

Γ ⊢ lCntr𝛼𝛼𝛼1,𝛼𝛼𝛼2
(𝑝) : Δ1, (𝛼𝛼𝛼 : Ψ),Δ2

lblWeakening

Γ ⊢ 𝑝 : Δ1,Δ2

Γ ⊢ 𝑝 : Δ1, (𝛼𝛼𝛼 : Ψ),Δ2

Proposition 16 (Index tensor exchange, contraction, weakening). Exchange, copying, and discarding
for variables on the index are derivable.

rExchange

Γ ⊢ 𝑝 : Δ1, (𝛼𝛼𝛼 : Ψ1, 𝑋1, 𝑋2,Ψ2),Δ2

Γ ⊢ rExch(𝑝) : Δ1, (𝛼𝛼𝛼 : Ψ1, 𝑋2, 𝑋1,Ψ2),Δ2

rCopying

Γ ⊢ 𝑝 : Δ1, (: Ψ1, 𝑋,Ψ2),Δ2

Γ ⊢ rCopy(𝑝) : Δ1, (𝛼𝛼𝛼 : Ψ1, 𝑋, 𝑋,Ψ2),Δ2

rDiscarding

Γ ⊢ 𝑝 : Δ1, (𝛼𝛼𝛼 : Ψ1, 𝑋,Ψ2),Δ2

Γ ⊢ rDisc(𝑝) : Δ1, (𝛼𝛼𝛼 : Ψ1,Ψ2),Δ2

, Vol. 1, No. 1, Article . Publication date: July 2025.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Anon.

Proposition 17 (Variable exchange and contraction). Variable exchange, variable contraction, and
variable weakening are derivable.

varExchange

Γ1, (𝑥 : 𝑋), (𝑦 : 𝑌), Γ2 ⊢ 𝑝 : Δ

Γ1, (𝑦 : 𝑌), (𝑥 : 𝑋), Γ2 ⊢ 𝑝 : Δ

varContraction

Γ1, (𝑥1 : 𝑋), (𝑥2 : 𝑋), Γ2 ⊢ 𝑝 : Δ

Γ1, (𝑥 : 𝑋), Γ2 ⊢ 𝑝 [𝑥1, 𝑥2 \ 𝑥, 𝑥] : Δ

varWeakening

Γ1, Γ2 ⊢ 𝑝 : Δ

Γ1, (𝑥 : 𝑋), Γ2 ⊢ 𝑝 : Δ

2.6 Posetal reasoning
Program logics will require not only that we reason about equality, but also about different notions of

implication and dominance that only share the common structure of partially ordered sets preserved

by the term constructors. For this, it is also convenient to assume a partially ordered set in the

generators of the language. Most of our semantic examples will actually form directed-complete

partial orders (dcpo’s) but, strictly speaking, we do not need them to do so.

Definition 18 (Posetal distributive signature). A posetal distributive signature, (B,G,≤), is a
distributive signature whose sets of generators are endowed with a poset structure.

Axiom 19 (Posetal reasoning). The following are the primitive rules for posetal reasoning.

Return

{(𝑥𝑖 : 𝑋𝑖) ∈ Γ}𝑛𝑖=1 (𝛼𝛼𝛼 : 𝑋1, ..., 𝑋𝑛) ∈ Δ
Γ ⊢ 𝛼𝛼𝛼 (𝑥1, ..., 𝑥𝑛) ≤ 𝛼𝛼𝛼 (𝑥1, ..., 𝑥𝑛) : Δ

Loop

{(®𝑥 : ®𝑋) ∈ Γ} Γ ⊢ 𝑝 ≤ 𝑞 : 𝛾𝛾𝛾 (𝑋1, ..., 𝑋𝑛),Δ
Γ ⊢ (loop 𝛼𝛼𝛼 (®𝑥){®𝑢.𝑝}) ≤ (loop 𝛼𝛼𝛼 (®𝑥){®𝑢.𝑞}) : Δ

Generator (𝑓)

{(𝑥𝑖 : 𝑋𝑖) ∈ Γ}𝑛𝑖=1 {®𝑦𝑖 : ®𝑌𝑖 , Γ ⊢ 𝑝𝑖 ≤ 𝑞𝑖 : Δ}ℓ𝑖=1 𝑓 ≤ 𝑔
Γ ⊢ 𝑓 (®𝑥){®𝑦𝑖 .𝑝𝑖 }ℓ𝑖=1 ≤ 𝑔(®𝑥){®𝑦𝑖 .𝑞𝑖 }ℓ𝑖=1 : Δ

We ask for two additional conditions—inspired by our intended semantics—declaring the top

and bottom elements of this preorder to be the empty return and the diverging loop, respectively.

Top

Γ ⊢ 𝑝 : (𝛼𝛼𝛼 : ())
Γ ⊢ 𝑝 ≤ 𝛼𝛼𝛼 () : (𝛼𝛼𝛼 : ())

Bottom

Γ ⊢ 𝑝 : Δ

Γ ⊢ loop 𝛼𝛼𝛼 (){𝛼𝛼𝛼 ()} ≤ 𝑝 : Δ

The final ingredient is for loops to be considered not only up to uniformity but up to both posetal

translations of the uniformity rule. This is captured by the following posetal uniformity axioms.

Axiom 20 (Posetal uniformity). Posetal uniformity consists of the following pair of axioms.

Backward posetal uniformity

(®𝑢 : ®𝑋), Γ ⊢ 𝑝 [𝛾𝛾𝛾 \ ®𝑢.ℓ] ≤ ℓ [𝛽𝛽𝛽𝑖 \ ®𝑣𝑖 .𝑞𝑖]𝑖 : (𝛽𝛽𝛽1 : ®𝑌1), ..., (𝛽𝛽𝛽𝑚 : ®𝑌𝑚),Δ
Γ ⊢ loop 𝛾𝛾𝛾 (®𝑥){®𝑢.𝑝} ≤ ℓ [®𝑢 \ ®𝑥] [𝛽𝛽𝛽𝑖 \ loop 𝛿𝛿𝛿𝑖 (®𝑦𝑖){ ®𝑣𝑖 .𝑞𝑖 }] : Δ

Forward posetal uniformity

(®𝑢 : ®𝑋), Γ ⊢ ℓ [𝛽𝛽𝛽𝑖 \ ®𝑣𝑖 .𝑞𝑖]𝑖 ≤ 𝑝 [𝛾𝛾𝛾 \ ®𝑢.ℓ] : (𝛽𝛽𝛽1 : ®𝑌1), ..., (𝛽𝛽𝛽𝑚 : ®𝑌𝑚),Δ
Γ ⊢ ℓ [®𝑢 \ ®𝑥] [𝛽𝛽𝛽𝑖 \ loop 𝛿𝛿𝛿𝑖 (®𝑦𝑖){ ®𝑣𝑖 .𝑞𝑖 }] ≤ loop 𝛾𝛾𝛾 (®𝑥){®𝑢.𝑝} : Δ

3 Guards, predicates and commands
Program triples, {𝑝} 𝑐 {𝑞}, contain three elements, but of different nature. To start with, while the

middle element, 𝑐 , is a command modifying a state of the program, both 𝑝 and 𝑞 are conditions that

do not produce new values. In terms of categories, commands are endomorphisms 𝑐 : 𝑋 → 𝑋 on a

, Vol. 1, No. 1, Article . Publication date: July 2025.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Program Logics via Distributive Monoidal Categories 9

fixed type 𝑋 of program states, while conditions will be—depending on the logic—either predicates,

𝑝, 𝑞 : 𝑋 → 𝐼 , or states, 𝑝, 𝑞 : 𝐼 → 𝑋 .

It is tempting to conflate predicates and states. In non-deterministic semantics, for instance, they

coincide: a function from 𝑋 to P(1) is the same as a function from 1 to P(𝑋). We must resist this

temptation. Already in the stochastic case, a function 𝑝 : 𝑋 → D(1) assigns a number in the unit

interval to each element, 𝑝 (𝑥) ∈ [0, 1], representing the probability that 𝑥 satisfies the property 𝑝 ;

on the other hand, a function 𝑠 : 1→ D(𝑋) is a distribution: it not only assigns an number to each

element, but explicitly asks them to add up to 1, as they represent the probability that the different

events in 𝑋 happen.

The second temptation is to conflate predicates with the conditions that commands use in their

“if-else” clauses: what we call guards. Guards, however, are morphisms 𝑏 : 𝑋 → 1 + 1. They do not

deal only with choosing whether some condition holds or not, but must decide on which of the

branches to follow.

In many models, guards and predicates can be confused. For instance, a partial function 𝑋 → 1

is the same thing as a total function 𝑋 → 1 + 1; the first has the form of a predicate, the second

that of a guard. However, this is not true in general [Jac18, Proposition 11 and Lemma 14] and it is

by carefully distinguishing them that we get a consistent algebra that works across probabilistic,

partial, or relational models.

3.1 Guards
Definition 21 (Guard combinators). Guards are terms of the form Γ ⊢ 𝑏 : Ω, for an arbitrary

context Γ = (𝑥1 : 𝑋1, ..., 𝑥𝑛 : 𝑋𝑛) and an index of the form Ω = (𝛼𝛼𝛼1 : (),𝛼𝛼𝛼2 : ()). We introduce the

following guard combinators.

Left

Γ ⊢ LLL : Ω

Right

Γ ⊢ RRR : Ω

And

Γ ⊢ 𝑏1 : Ω Γ ⊢ 𝑏2 : Ω
Γ ⊢ 𝑏1∧𝑏2 : Ω

Or

Γ ⊢ 𝑏1 : Ω Γ ⊢ 𝑏2 : Ω
Γ ⊢ 𝑏1∨𝑏2 : Ω

Not

Γ ⊢ 𝑏 : Ω
Γ ⊢ (¬𝑏) : Ω

Pick

Γ ⊢ 𝑏 : Ω Γ ⊢ 𝑡1 : Δ Γ ⊢ 𝑡2 : Δ
Γ ⊢ [𝑏]{𝑡1}{𝑡2} : Δ

Proposition 22. Guard combinators are derived constructs, defined as follows.

[𝑏]{𝑡1}{𝑡2} ≡ 𝑏 [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \ 𝑡1, 𝑡2];
LLL ≡ 𝛼𝛼𝛼1 (); RRR ≡ 𝛼𝛼𝛼2 (); (¬𝑏) ≡ 𝑏 [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \𝛼𝛼𝛼2,𝛼𝛼𝛼1];

(𝑏1∧𝑏2) ≡ 𝑏1 [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \ 𝑏2, 𝑏2 [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \𝛼𝛼𝛼2,𝛼𝛼𝛼2]]; (𝑏1∨𝑏2) ≡ 𝑏1 [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \ 𝑏2 [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \𝛼𝛼𝛼1,𝛼𝛼𝛼1], 𝑏2];

Proposition 23. Guards form a pair of commutative monoids, and negation is an involutive homo-

morphism between them.

𝑏1∧𝑏2 ≡ 𝑏2∧𝑏1; (𝑏1∧𝑏2)∧𝑏3 ≡ 𝑏1∧(𝑏2∧𝑏3); 𝑏∧LLL ≡ 𝑏;
𝑏1∨𝑏2 ≡ 𝑏2∨𝑏1; (𝑏1∨𝑏2)∨𝑏3 ≡ 𝑏1∨(𝑏2∨𝑏3); 𝑏∨RRR ≡ 𝑏;

¬(𝑏1∧𝑏2) ≡ ¬𝑏2∨¬𝑏1; ¬(¬𝑏) ≡ 𝑏.

For any total guard, Γ ⊢ 𝑏𝑡 : Ω, we additionally have the annihilator rules, 𝑏𝑡∧RRR ≡ RRR and 𝑏𝑡∨LLL ≡ LLL.
For any deterministic guard, Γ ⊢ 𝑏𝑑 : Ω, we additionally have the idempotency rules. 𝑏𝑑∧𝑏𝑑 ≡ 𝑏𝑑 and

𝑏𝑑∨𝑏𝑑 ≡ 𝑏𝑑 .

, Vol. 1, No. 1, Article . Publication date: July 2025.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 Anon.

3.2 Predicates
Definition 24 (Predicate combinators). Predicates are terms of the form Γ ⊢ 𝑝 : Υ, for an arbitrary

context Γ = (𝑥1 : 𝑋1, ..., 𝑥𝑛 : 𝑋𝑛) and an index of the form Υ = (𝜐𝜐𝜐 : ()). We introduce the following

predicate combinators.

Top

Γ ⊢ ⊤ : Υ

Bot

Γ ⊢ ⊥ : Υ

And

Γ ⊢ 𝑝 : Υ Γ ⊢ 𝑞 : Υ

Γ ⊢ 𝑝 ∧ 𝑞 : Υ

Conditional

Γ ⊢ 𝑝 : Υ Γ ⊢ 𝑞 : Υ

Γ ⊢ 𝑝 +𝑏 𝑞 : Υ

Guard

Γ ⊢ 𝑏 : Ω

Γ ⊢ 𝑏# : Υ

Substitution

Γ ⊢ 𝑝 : Υ Γ ⊢ 𝑒 : (𝜀 : 𝑋𝑖) (𝑥𝑖 : 𝑋𝑖) ∈ Υ
Γ ⊢ 𝑝 [𝑥𝑖 \ 𝑒] : Υ

Proposition 25. Predicate combinators are derived constructs, defined as follows.

⊤ ≡ 𝜐𝜐𝜐 (); ⊥ ≡ loop𝜔𝜔𝜔 (){𝜔𝜔𝜔 ()}; (𝑝 ∧ 𝑞) ≡ 𝑝 [𝜈𝜈𝜈 \ 𝑞]; (𝑝 +𝑏 𝑞) ≡ [𝑏]{𝑝}{𝑞};
𝑏# ≡ [𝑏]{⊤}{⊥}; 𝑝 [𝑥𝑖 \ 𝑒] ≡ 𝑒 [𝜀 \ 𝑥𝑖 .𝑝] .

Proposition 26. The following equations hold for predicate combinators: predicates form a commu-

tative monoid with conjunction and truth, with falsehood as an absorbing element, that distributes

over choices.

𝑝 ∧ 𝑞 ≡ 𝑞 ∧ 𝑝; 𝑝 ∧ (𝑞 ∧ 𝑟) ≡ (𝑝 ∧ 𝑞) ∧ 𝑟 ; 𝑝 ∧ ⊤ ≡ 𝑝; 𝑝 ∧ ⊥ ≡ ⊥;
𝑝 ∧ (𝑞 +𝑏 𝑟) ≡ (𝑝 ∧ 𝑞) +𝑏 (𝑝 ∧ 𝑟).

For any total predicate, Γ ⊢ 𝑝𝑡 : Υ, we have it collapse, 𝑝 ≡ ⊤. For any deterministic predicate,

Γ ⊢ 𝑝𝑑 : Υ, we have the idempotency rule, 𝑝𝑑 ∧ 𝑝𝑑 ≡ 𝑝𝑑 .

3.3 Commands
Definition 27 (Command combinators). Commands are terms of the form Γ ⊢ 𝑐 : Ψ, for an
arbitrary context Γ = (𝑥1 : 𝑋1, ..., 𝑥𝑛 : 𝑋𝑛) and an index of the form Ψ = (𝜂𝜂𝜂 : (𝑋1, ..., 𝑋𝑛)). We

introduce the following command combinators, inspired by Winskel’s IMP language [Win93].

Skip

Γ ⊢ skip : Ψ

Abort

Γ ⊢ abort : Ψ

While

Γ ⊢ 𝑏 : Ω Γ ⊢ 𝑐 : Ψ
Γ ⊢ while𝑏 do 𝑐 : Ψ

IfElse

Γ ⊢ 𝑏 : Ω Γ ⊢ 𝑐1 : Ψ Γ ⊢ 𝑐2 : Ψ
Γ ⊢ if 𝑏 then 𝑐1 else 𝑐2 : Ψ

Concatenate

Γ ⊢ 𝑐1 : Ψ Γ ⊢ 𝑐2 : Ψ
Γ ⊢ (𝑐1; 𝑐2) : Ψ

Assert

Γ ⊢ 𝑝 : Υ

Γ ⊢ assert𝑝 : Γ

Variable Assignment

{(𝑢𝑖 : 𝐴𝑖) ∈ Γ}𝑛𝑖=1 {(𝑣𝑖 : 𝐴𝑖) ∈ Γ}𝑛𝑖=1
Γ ⊢ 𝑢1, ..., 𝑢𝑛 ≔ 𝑣1, ..., 𝑣𝑚 : Ψ

Generator Assignment

{(𝑢𝑖 : 𝐴𝑖) ∈ Γ}𝑛𝑖=1 {(𝑣 𝑗 : 𝐵 𝑗) ∈ Γ}𝑚𝑗=1 𝑓 ∈ Σ(𝐴1, ..., 𝐴𝑛 ;𝐵1, ..., 𝐵𝑚)
Γ ⊢ 𝑢1, ..., 𝑢𝑛 ≔ 𝑓 (𝑣1, ..., 𝑣𝑚) : Ψ

Proposition 28. Command combinators are derived constructors, defined as follows.

skip ≡ 𝜂𝜂𝜂 (®𝑥); (𝑐1 ; 𝑐2) ≡ 𝑐1 [𝜂𝜂𝜂 \ ®𝑥 .𝑐2]; assert𝑝 ≡ 𝑝 [𝑣𝑣𝑣 \𝜂𝜂𝜂 (®𝑥)] abort ≡ assert⊥;
(®𝑢 ≔ ®𝑣) = 𝜂𝜂𝜂 (®𝑥) [®𝑢 \ ®𝑣]; (®𝑢 ≔ 𝑓 (®𝑣)) = 𝑓 (®𝑣){®𝑢.𝜂𝜂𝜂 (®𝑥)}; if 𝑏 then 𝑐1 else 𝑐2 ≡ [𝑏]{𝑐1}{𝑐2};

while𝑏 do 𝑐 ≡ loop 𝛼𝛼𝛼 (®𝑥){if 𝑏 then 𝑐 [𝜂𝜂𝜂 \ ®𝑥 .𝛼𝛼𝛼 (®𝑥)] else skip};

Proposition 29. The following equations hold for command combinators. In particular, commands

form a monoid, with composition and skip.

(𝑐1 ; 𝑐2) ; 𝑐3 ≡ 𝑐1 ; (𝑐2 ; 𝑐3); (𝑐 ; skip) ≡ 𝑐 ≡ (skip ;𝑐); abort; 𝑐 ≡ abort ≡ 𝑐 ; abort;

, Vol. 1, No. 1, Article . Publication date: July 2025.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Program Logics via Distributive Monoidal Categories 11

if LLL then 𝑐1 else 𝑐2 ≡ 𝑐1; if RRR then 𝑐1 else 𝑐2 ≡ 𝑐2; if (¬𝑏) then 𝑐1 else 𝑐2 ≡ if 𝑏 then 𝑐2 else 𝑐1;

while𝑏 do 𝑐 ≡ if 𝑏 then(𝑐 ; while𝑏 do 𝑐) else skip; while𝑏 do abort ≡ assert (¬𝑏)#;
if 𝑏 then 𝑐1 else 𝑐2 ; 𝑑 ≡ if 𝑏 then(𝑐1;𝑑) else(𝑐2;𝑑);

assert 𝑝; assert𝑞 ≡ assert(𝑝 ∧ 𝑞); assert𝑏# ≡ if 𝑏 then skip else abort;

assert⊤ ≡ skip; assert⊥ ≡ abort; assert(𝑝 +𝑏 𝑞) = if 𝑏 then(assert𝑝) else(assert𝑞)

We define a combinator that does not yield an endomorphism but that will be useful in the proofs

that employ uniformity.

Definition 30. For a guard 𝑏 and two arbitrary terms 𝑡1 and 𝑡2, the branch combinator is defined

as L𝑏M{𝑡1}{𝑡2} ≡ 𝑏 [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \ 𝑡1, 𝑡2]. Its typing rule is below.
Branch

Γ ⊢ 𝑏 : Ω Γ ⊢ 𝑡1 : Δ1 Γ ⊢ 𝑡2 : Δ2

Γ ⊢ L𝑏M{𝑐1}{𝑐2} : Δ1,Δ2

3.4 States
Definition 31 (States). States are terms of the form ⊢ 𝑠 : Ψ, implicitly fixing an arbitrary context

Γ = (𝑥1 : 𝑋1, ..., 𝑥𝑛 : 𝑋𝑛) and taking an index of the form Ψ = (𝜂𝜂𝜂 : (𝑋1, ..., 𝑋𝑛)). We introduce the

following state combinators.

abort

⊢ ⊥ : Ψ

observe

⊢ 𝑠 : Ψ Γ ⊢ 𝑝 : Υ

⊢ 𝑠 ⇂ 𝑝 : Ψ

choice

⊢ 𝑠 : Ψ ⊢ 𝑡 : Ψ ⊢ 𝑏 : Ω

⊢ 𝑠 +𝑏 𝑡 : Ψ

sample

⊢ 𝑠 : Ψ (𝑥 : 𝑋) ∈ Γ
⊢ (𝑥 ← 𝑠) : Ψ

cosubstitution

(𝑥 : 𝑋) ∈ Γ (𝑢 : 𝑋) ∈ Γ
⊢ 𝑠 (𝑢 \ 𝑥) : Ψ

mute

⊢ 𝑠 : Ψ ⊢ 𝑠𝑖 : (𝛼𝑖 : 𝑋𝑖) (𝑥𝑖 : 𝑋𝑖) ∈ Γ
⊢∐𝑥𝑖

𝑠 · 𝑠𝑖 : Ψ

Proposition 32. State combinators are derived rules, defined as follows.

⊥ ≡ loop 𝛼𝛼𝛼 (){𝛼𝛼𝛼 ()}; 𝑠 ⇂ 𝑝 ≡ (𝑠; assert𝑝); 𝑠 +𝑏 𝑡 ≡ 𝑏 [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \ 𝑠, 𝑡];
(𝑥𝑖 ← 𝑠) ≡ (𝑥𝑖 ≔ 𝑠𝑖 ()); 𝑠 (𝑢 \ 𝑥) ≡ 𝑠 [𝜂𝜂𝜂 \ 𝑥 ≔ 𝑢]; ∐

𝑥1
𝑠 · 𝑠𝑖 ≡ 𝑠 [𝜂𝜂𝜂 \ 𝑥𝑖 ≔ 𝑠𝑖 ()];

4 Categorical semantics
After having finally introduced all the components of program logics, this section provides their

categorical semantics.

4.1 Premonoidal copy-discard categories
Premonoidal categories [PT97, PR97, Jef97] provide denotational semantics to process theories

where the order of execution matters, as it usually does in impure imperative programming. Our

multiplicative fragment semantics is inspired by the theory of Freyd categories [PT97, Lev22, HJ06],

but instead of allowing a distinguished class of cartesian values, we simply ask for the ability

to copy and discard variables: those providing this ability are called copy-discard premonoidal

categories (see also [Fü99]).

Definition 33 (Premonoidal category). A (strict) premonoidal category is a category, C, endowed
with a sesquifunctor (⊗) : (C,C) → C and an object 𝐼 ∈ C, that are associative and unital on objects,
satisfying 𝐴 ⊗ (𝐵 ⊗ 𝐶) = (𝐴 ⊗ 𝐵) ⊗ 𝐶 and 𝐴 ⊗ 𝐼 = 𝐴 = 𝐼 ⊗ 𝐴, and separately associative and unital

on morphisms, satisfying: (i) (𝑓 ⊗ id𝐵) ⊗ id𝐶 = 𝑓 ⊗ (id𝐵 ⊗ id𝐶); (ii) (id𝐴 ⊗𝑔) ⊗ id𝐶 = id𝐴 ⊗ (𝑔 ⊗ id𝐶);
(iii) id𝐴 ⊗ (id𝐵 ⊗ ℎ) = (id𝐴 ⊗ id𝐵) ⊗ ℎ; and (iv) id𝐼 ⊗ 𝑓 = 𝑓 = 𝑓 ⊗ id𝐼 .

, Vol. 1, No. 1, Article . Publication date: July 2025.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12 Anon.

Crucially, a premonoidal category does not necessarily satisfy the following interchange axiom.

We say that a morphism, 𝑓 : 𝐴 → 𝐴′, is central whenever, for any morphism 𝑔 : 𝐵 → 𝐵′, the
interchange axiom holds:

(𝑓 ⊗ id𝐵) # (id𝐴′ ⊗ 𝑔) = (id𝐴′ ⊗ 𝑔) # (𝑓 ⊗ id𝐵′).
A monoidal category is a premonoidal category where all morphisms are central.

Definition 34 (Copy-discard premonoidal category). A copy-discard premonoidal category is a

symmetric premonoidal category where each object,𝑋 , has a compatible and central cocommutative

comonoid structure: a copy morphism 𝜈𝑋 : 𝑋 → 𝑋 ⊗ 𝑋 and a discard morphism 𝜀𝑋 : 𝑋 → 𝐼 , that

are associative, 𝜈𝑋 # (𝜈𝑋 ⊗ id𝑋) = 𝜈𝑋 # (id𝑋 ⊗ 𝜈𝑋), unital, 𝜈𝑋 # (𝜀𝑋 ⊗ id𝑋) = id𝑋 , commutative,

𝜈𝑋 # 𝜎𝑋,𝑋 = 𝜈𝑋 , and compatible with tensor and unit, 𝜈𝑋⊗𝑌 = (𝜈𝑋 ⊗ 𝜈𝑌) # (id𝑋 ⊗ 𝜎𝑋,𝑌 ⊗ id𝑌) and
𝜀𝑋⊗𝑌 = (𝜀𝑋 ⊗ 𝜀𝑌), and 𝜈𝐼 = id𝐼 and 𝜀𝐼 = id𝐼 . A copy-discard monoidal category is a copy-discard

premonoidal category where all morphisms are central.

Definition 35 (Deterministic and total morphisms). In a copy-discard category, a morphism

𝑓 : 𝑋 → 𝑌 is deterministic if it preserves copying, 𝑓 # 𝜈𝑌 = 𝜈𝑋 # (𝑓 ⊗ 𝑓); it is total if it preserves
discarding, 𝑓 # 𝜀𝑌 = 𝜀𝑋 .

Proposition 36 (Grandis [Gra01, Theorem 4.1], Lack [Lac04, §5.1]). Each copy-discard category,

(C, ⊗, 𝐼), is endowed with a (non-natural) family of morphisms for each opposite function between

finite sets,

𝑓 ★𝑋 : C(𝑋1, ..., 𝑋𝑛 ;𝑋𝑓 (1) , ..., 𝑋𝑓 (𝑚)), for each 𝑓 ∈ FinSet(𝑚;𝑛);
these additionally satisfy (i) 𝑓 ★

𝑋
⊗ 𝑔★

𝑌
= (𝑓 + 𝑔)★

𝑋⊗𝑌 , (ii) 𝑓
★
𝑋

𝑔★
𝑋 (𝑓) = (𝑔 # 𝑓)★

𝑋
, and (iii) id

★
𝑋 = id𝑋 .

Remark 37 (Values and computations). The language here proposed does not define values separately

from statements: it is not possible to substitute values for variables. Instead, it is possible to substitute

variables, generators by terms, and labels by terms. Nothing—but minimalism—prevents us from

adding this distinction; but let us note that it is not necessary for our development.

Example 38. Copy-discard premonoidal categories provide a less expressive but more general

alternative to Moggi’s monadic metalanguage [Mog91]: the Kleisli category of every strong monad,

comonad, or distributive law over a cartesian category forms a copy-discard premonoidal category.

Copy-discard monoidal categories have encountered applications in probability theory, at the base

of Markov categories.

However, they lack both iteration and choice, which makes them too restrictive for fully-fledged

imperative programming. We now add choice in the form of cocartesian products: not via co-

cartesian monoidal categories (which would introduce further redundancy) but via cocartesian

multicategories, which reformulate clones and Lawvere theories.

4.2 Cocartesian multicategories
Multicategories are well-known algebraic structures for the modelling of sequent logic [Her00,

Lam68]; their cartesian version, cartesian multicategories, is the multi-sorted version of clones. We

will employ cartesian multicategories with a twist: their intended semantics is not in categories we

would think of as cartesian, but on the “opposite to a cocartesian category”. To emphasize this, we

call them cocartesian multicategories.

The structure of copy-discard premonoidal category we just detailed will still be present, but now

as an operation on multimorphisms. Cocartesian multicategories that are, at the same time—and

in a compatible way—copy-discard premonoidal categories form predistributive multicategories;

, Vol. 1, No. 1, Article . Publication date: July 2025.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Program Logics via Distributive Monoidal Categories 13

respectively, cocartesian multicategories that are at the same time—and in a compatible way—copy-

discard categories form distributive multicategories. While these are less studied in the literature,

their representable counterparts distributive categories are well-known; we extract coherence

results from this literature [Lap06].

Definition 39 (Multicategory). A multicategory (or, equivalently, a comulticategory), M, is a collec-

tion of objects, M𝑜𝑏 𝑗 , together with a collection of multimorphisms, M(𝑋 ;𝑌1, ..., 𝑌𝑛), for each object,

𝑋 ∈ M𝑜𝑏 𝑗 , and each list of objects, 𝑌1, ..., 𝑌𝑛 ∈ M𝑜𝑏 𝑗 .

For each object, 𝑋 ∈ M𝑜𝑏 𝑗 , there must exist an identity morphism, id𝑋 : 𝑋 → 𝑋 ; and for each

object, 𝑋 ∈ M𝑜𝑏 𝑗 , each 𝑛-list of objects, 𝑌1, ..., 𝑌𝑛 ∈ M𝑜𝑏 𝑗 , and each 𝑛 lists of objects, 𝑍𝑖,1, ..., 𝑍𝑖,𝑚𝑖
∈

M𝑜𝑏 𝑗 , there exists a composition operation,

(#) : M(𝑋 ;𝑌1, ..., 𝑌𝑛) ×
𝑛∏
𝑖=0

M(𝑌𝑖 ;𝑍𝑖,1, ..., 𝑍𝑖,𝑚𝑖
) → M(𝑋 ;𝑍1,1, ..., 𝑍𝑛,𝑚𝑛

).

Composition and identities must satisfy the unitality axiom, stating that id # 𝑓 = 𝑓 = 𝑓 # (id, ..., id);
and the associativity axiom, stating that

𝑓 # (𝑔1 # (ℎ1,1, ..., ℎ1,𝑚1
), ..., 𝑔𝑛 # (ℎ𝑛,1, ..., ℎ𝑛,𝑚𝑛

)) =

𝑓 # (𝑔1#, ..., 𝑔𝑛) # (ℎ1,1, ..., ℎ1,𝑚1
, ..., ℎ𝑛,1, ..., ℎ𝑛,𝑚𝑛

).

Remark 40. Multicategories can be also axiomatized in terms of a composition operation on a

single index, which is sometimes more comfortable. We write the single composition operation

as 𝑓 #𝑖 𝑔 = 𝑓 # (id, ..., 𝑔 (𝑖) , ..., id). It must satisfy (i) that (𝑓 #𝑖 𝑔) #𝑗 ℎ = 𝑓 #𝑖 (𝑔 #𝑗−𝑖+1 ℎ) whenever
𝑖 ≤ 𝑗 ≤ 𝑖 +𝑚 − 1 where 𝑔 has𝑚 outputs, and that (ii) that (𝑓 #𝑖 𝑔) #𝑗 ℎ = (𝑓 #𝑗−𝑖+1 ℎ) #𝑖 𝑔 whenever

𝑖 +𝑚 − 1 < 𝑗 .

Lemma 41 (Terms form a multicategory). Terms, with composition, form a multicategory. The

composition of two terms with appropriately matching types, Γ ⊢ 𝑝 : Δ1, (𝜔𝜔𝜔 : 𝑌1, ..., 𝑌𝑚),Δ2 and

(𝑦1 : 𝑌1), ..., (𝑦𝑚 : 𝑌𝑚) ⊢ 𝑞 : Δ, along the label 𝜔𝜔𝜔 , yields a term, Γ ⊢ (𝑝 #𝜔 𝑞) : Δ1,Δ,Δ2, inductively

defined as follows.

𝜔𝜔𝜔 (®𝑥) #𝜔 𝑞 ≡ 𝑞 [®𝑦 \ ®𝑥];
𝛼𝛼𝛼 (®𝑥) #𝜔 𝑞 ≡ 𝛼𝛼𝛼 (®𝑥), for 𝛼𝛼𝛼 ≠ 𝜔𝜔𝜔 ;

(loop 𝛼𝛼𝛼 (®𝑥){®𝑢.𝑝}) #𝜔 𝑞 ≡ loop 𝛼𝛼𝛼 (®𝑥){®𝑢.(𝑝 #𝜔 𝑞)};
(𝑓 (®𝑥){®𝑦𝑖 .𝑝𝑖 }) #𝜔 𝑞 ≡ 𝑓 (®𝑥){®𝑦𝑖 .(𝑝𝑖 #𝜔 𝑞)}.

The identity term, ®𝑥 : ®𝑋 ⊢ id : (𝛼𝛼𝛼 : ®𝑋), is defined by id = 𝛼𝛼𝛼 (®𝑥).

Proposition 42 (Cut-elimination). The following cut is a derived rule.
Cut

Γ ⊢ 𝑝 : Δ1, (𝜔𝜔𝜔 : 𝑌1, ..., 𝑌𝑚),Δ2 (𝑦1 : 𝑌1), ..., (𝑦𝑚 : 𝑌𝑚) ⊢ 𝑞 : Δ
Γ ⊢ (𝑝 #𝜔 𝑞) : Δ1,Δ,Δ2

By only considering labels – and forgetting about the variable structure – terms follow the

structure of a cocartesian multicategory. This is the equivalent opposite of a cartesian multicategory

(a clone, or a colored Lawvere theory). In particular, a cocartesian multicategory is a symmetric

multicategory.

Definition 43 (Cocartesian multicategory). A cocartesian multicategory is a multicategory M with,

for each finite function, 𝜎 : 𝑚 → 𝑛, an action, (•) · 𝜎∗ : M(𝑋 ;𝑌𝜎 (1) , ..., 𝑌𝜎 (𝑚)) → M(𝑋 ;𝑌1, ..., 𝑌𝑛),
satisfying axioms,

, Vol. 1, No. 1, Article . Publication date: July 2025.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

14 Anon.

(1) 𝑓 · id∗ = 𝑓 , and 𝑓 · 𝜎∗ · 𝜏∗ = 𝑓 · (𝜎 # 𝜏)∗;
(2) 𝑔 # (𝑓1 · 𝜎∗1 , ..., 𝑓𝑛 · 𝜎∗𝑛) = (𝑔 # (𝑓1, ..., 𝑓𝑛)) · (𝜎1 + ... + 𝜎𝑛)∗;
(3) 𝑔 · 𝜎∗ # (𝑓1, ..., 𝑓𝑛) = (𝑔 # (𝑓𝜎 (1) , ..., 𝑓𝜎 (𝑚))) · (𝜎 (𝑘1, ..., 𝑘𝑚))∗.

Here, by 𝜎 (𝑘1, ..., 𝑘𝑛) : 𝑘𝜎 (1) + ... + 𝑘𝜎 (𝑚) → 𝑘1 + ... + 𝑘𝑛 , we denote the block function that acts

as the identity on each one of the blocks, and as 𝜎 : 𝑚 → 𝑛 among them [Shu16]. By 𝜎1 + ... +
𝜎𝑛 : 𝑘1 + ... + 𝑘𝑛 → 𝑘 ′

1
+ ... + 𝑘 ′𝑛 we denote the coproduct of finite functions. Later, we will use

[𝜎1, ..., 𝜎𝑛] : 𝑘1 + ... + 𝑘𝑛 → 𝑘 to denote the cotupling of functions sharing a codomain.

Proposition 44 (Terms form a cocartesian multicategory). Terms form a cocartesian multicategory

with label substitution. The following rule is derivable and satisfies the axioms in Theorem 43.

Label coaction

Γ ⊢ 𝑝 : (𝛼𝛼𝛼1 : Ψ𝜎 (1)), ..., (𝛼𝛼𝛼𝑚 : Ψ𝜎 (𝑚))
Γ ⊢ 𝑝 [𝛼𝛼𝛼1, ...,𝛼𝛼𝛼𝑚 \ 𝛽𝛽𝛽𝜎 (1) , ..., 𝛽𝛽𝛽𝜎 (𝑚)] : (𝛽𝛽𝛽1 : Ψ1), ..., (𝛽𝛽𝛽𝑛 : Ψ𝑛)

4.3 Distributive copy-discard multicategories
Definition 45 (Predistributive multicategory). A (strict) predistributive multicategory is a cocarte-

sian multicategory, (M, ∗), with a monoid on objects, (M𝑜𝑏 𝑗 , ⊗, 1), and, additionally, operations
(• ⋊𝑈) : M(𝑋 ;𝑌1, ..., 𝑌𝑛) → M(𝑋 ⊗ 𝑈 ;𝑌1 ⊗ 𝑈 , ..., 𝑌𝑛 ⊗ 𝑈),
(𝑈 ⋉ •) : M(𝑋 ;𝑌1, ..., 𝑌𝑛) → M(𝑈 ⊗ 𝑋 ;𝑈 ⊗ 𝑌1, ...,𝑈 ⊗ 𝑌𝑛),

that must satisfy (i) left unitality, (𝐼 ⋉ 𝑓) = 𝑓 , (ii) left associativity,𝑈 ⋉ (𝑉 ⋉ 𝑓) = (𝑈 ⊗ 𝑉) ⋉ 𝑓 , (iii)

right unitality, (𝑓 ⋊ 𝐼) = 𝑓 , (iv) right associativity, 𝑓 ⋊ (𝑈 ⋊𝑉) = (𝑓 ⋊𝑈) ⋊𝑉 , and (v) compatibility,

(𝑈 ⋉ 𝑓) ⋊𝑉 =𝑈 ⋉ (𝑓 ⋊𝑉).

Definition 46 (Predistributive copy-discard multicategory). A predistributive copy-discard multi-

category is a predistributive multicategory moreover endowed with the structure of a premonoidal

copy-discard category on its unary morphisms.

Lemma 47 (Terms form a predistributive copy-discard multicategory). Terms form a predistributive

copy-discard multicategory. Variable multiwhiskering (multiWhisk-r and multiWhisk-l), where we

add the same type to the premises and to each one of the conclusions, are derivable.

multiWhisk-l

Γ ⊢ 𝑝 : (𝛼𝛼𝛼1 : Ψ1), ..., (𝛼𝛼𝛼𝑛 : Ψ𝑛)
Γ, (𝑤 : 𝑋) ⊢ 𝑋 ⋉ 𝑝 : (𝛼𝛼𝛼1 : 𝑋,Ψ1), ..., (𝛼𝛼𝛼𝑛 : 𝑋,Ψ𝑛)

multiWhisk-r

Γ ⊢ 𝑝 : (𝛼𝛼𝛼1 : Ψ1), ..., (𝛼𝛼𝛼𝑛 : Ψ𝑛)
Γ, (𝑤 : 𝑋) ⊢ 𝑝 ⋊ 𝑋 : (𝛼𝛼𝛼1 : Ψ1, 𝑋), ..., (𝛼𝛼𝛼𝑛 : Ψ𝑛, 𝑋)

The copy-discard category structure follows from the rest of the structural rules (Theorem 16).

Predistributive multicategories, in particular, can compose two morphisms 𝑓 ∈ M(𝑋 ;𝑌1, ..., 𝑌𝑛)
and 𝑓 ′ ∈ M(𝑋 ′;𝑌 ′

1
, ..., 𝑌 ′𝑚) in two different ways: either as (𝑓 ⊗ 𝑋 ′) # (𝑋 ⊗ 𝑓 ′, ..., 𝑋 ⊗ 𝑓 ′), or as

(𝑋 ⊗ 𝑓 ′) # (𝑓 ⊗ 𝑋, ..., 𝑓 ⊗ 𝑋). These two cannot coincide; their types do not even match. However,

they coincide up to a symmetry: this constitutes the interchange axiom.

Definition 48 (Distributive multicategory). A (strict) distributive multicategory is a cocartesian

multicategory, (M, ∗), with a monoid on objects, (M𝑜𝑏 𝑗 , ⊗, 1), and a tensor operation, (⊗), taking
an 𝑛-multimorphism and an𝑚-multimorphism, and yielding an (𝑛 ·𝑚)-multimorphism,

M(𝑋 ;𝑌1, ..., 𝑌𝑛) × M(𝑋 ′;𝑌 ′
1
, ..., 𝑌 ′𝑚) → M(𝑋 ⊗ 𝑋 ′;𝑌1 ⊗ 𝑌 ′1 , ..., 𝑌1 ⊗ 𝑌 ′𝑚, ..., 𝑌𝑛 ⊗ 𝑌 ′1 , ..., 𝑌𝑛 ⊗ 𝑌 ′𝑚),

that satisfies the following axioms: (i) associativity, 𝑓 ⊗ (𝑔 ⊗ ℎ) = (𝑓 ⊗ 𝑔) ⊗ ℎ, (ii) unitality,

𝑓 ⊗ id = 𝑓 = id ⊗ 𝑓 , (iii) interchange,

(𝑓 # (𝑔1, ..., 𝑔𝑛)) ⊗ (𝑓 ′ # (𝑔′1, ..., 𝑔′𝑚)) = (𝑓 ⊗ 𝑓 ′) # (𝑔1 ⊗ 𝑔′1, ..., 𝑔1 ⊗ 𝑔′𝑚, ..., 𝑔𝑛 ⊗ 𝑔′1, ..., 𝑔𝑛 ⊗ 𝑔′𝑚).

, Vol. 1, No. 1, Article . Publication date: July 2025.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Program Logics via Distributive Monoidal Categories 15

Remark 49. In this definition, we choose to order pairs lexicographically—so that 𝑌1 ⊗ 𝑌 ′𝑚 appears

before 𝑌𝑛 ⊗ 𝑌 ′𝑚—but we could have chosen to order pairs antilexicographically. This convention

corresponds to choosing left-sesquistrict over right-sesquistrict distributive categories [Lap06].

4.4 Traced distributive multicategories
Definition 50 (Traced distributive multicategory). A traced distributive multicategory is a dis-

tributive multicategory endowed with a fixpoint operator, fix : M(𝑋 ;𝑋,𝑌1, ..., 𝑌𝑛) → M(𝑋 ;𝑌1, ..., 𝑌𝑛),
satisfying the following axioms:

• morphism naturality, fix(𝑓) # (𝑎1, ..., 𝑎𝑛) = fix(𝑓 # (𝑎1, ..., 𝑎𝑛));
• action naturality, fix(𝑓) · 𝜎∗ = fix(𝑓 · id1 + 𝜎∗);
• strength, fix(𝑓 ⋊ 𝑋) = fix(𝑓) ⋊ 𝑋 and fix(𝑋 ⋉ 𝑓) = 𝑋 ⋉ fix(𝑓);
• duplication, fix(fix(𝑓)) = fix(𝑓 · [id1, id1] + id∗𝑛);
• dinaturality, fix(𝑓 #

1
𝑔 · [id𝑛, id𝑛]∗) = 𝑔 #

1
fix(𝑓 #

1
𝑔 · [id𝑛, id𝑛, id𝑛]∗).

Respectively, a traced distributive copy-discard multicategory is a traced distributive multicategory

endowed with the structure of a copy-discard category on its unary morphisms.

Remark 51 (Terms form a traced multicategory). As expected, terms form a traced distributive

copy-discard multicategorywith looping. We additionally imposed on them the following uniformity

axiom: the last ingredient to an imperative multicategory.

Definition 52 (Uniform trace). A uniformly traced distributive multicategory (or, Elgot multicate-

gory), is a traced distributive multicategory additionally satisfying the following uniformity axiom:

for any appropriately typed multimorphisms, the equality

ℎ # (𝑓1, ..., 𝑓𝑛) · (𝜈𝑛 + id𝑚)∗ = 𝑔 # (id, 𝑛. . ., id, ℎ, 𝑚..., ℎ) · (id𝑛 + 𝜈𝑚)∗;
implies the following equality of traces, ℎ # (fix(𝑓1), ..., fix(𝑓𝑛)) · 𝜈∗𝑛 = fix(𝑔 · 𝜈∗𝑚), where we write 𝜈𝑘
for the 𝑘-cotupling of the identity.

4.5 Imperative multicategories
We can finally introduce the definition of imperative multicategory and immediately employ it to

realize the denotational sound and complete semantics of its internal language.

Definition 53 (Imperative multicategory). An imperative multicategory is a uniformly traced

distributive multicategory, endowed with copy-discard category structure on its unary morphisms.

Theorem 54 (Denotational semantics). Consider an assignment from a distributive signature

(B,G) to the underlying distributive signature of an imperative multicategory, (C𝑜𝑏 𝑗 ,C), given
by an assignment on objects, L•M𝑜𝑏 𝑗 : B → C𝑜𝑏 𝑗—which extends to an assignment on lists of types,

J•K⊗ : List(B) → C𝑜𝑏 𝑗 , defined inductively by JK⊗ = 𝐼 and J𝑋, ®𝑋 K⊗ = J𝑋 K⊗J ®𝑋 K⊗—and an assignment

on generators preserving their type,

L•M : G(®𝑋 ; ®𝑌1, ..., ®𝑌𝑛) → C(L ®𝑋 M; L®𝑌1M + ... + L®𝑌𝑛M).
It extends to an assignment, J•K : (®𝑥 : ®𝑋 ⊢ (𝛼𝛼𝛼1 :

®𝑌1), ..., (𝛼𝛼𝛼1 :
®𝑌𝑛)) → C(J ®𝑋 K⊗ ; J®𝑌1K⊗ + ... + J®𝑌𝑛K⊗),

from terms to morphisms of the multicategory C.

Remark 55. Regarding the coproduct, we essentially use the translation between clones and cartesian

multicategories [Sze86, Cur12]. Regarding the tensor, we are essentially using the translation from

arrow do-notation to copy-discard categories.

Theorem 56 (Soundness and completeness). The denotational semantics is sound and complete for

imperative multicategories.

, Vol. 1, No. 1, Article . Publication date: July 2025.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 Anon.

J𝛼𝑖 (®𝑥𝜎)K

J ®𝑋K

J ®𝑌1K J ®𝑌𝑙 KJ ®𝑋𝜎 K

𝜎★

J ®𝑋K

J ®𝑋𝜎 KJ ®𝑌1K J ®𝑌𝑙 K

Jloop 𝛼𝑖 (®𝑥) { ®𝑢.𝑝 }K
J𝑝K ⊗ 𝑖𝑑

[𝜎, 𝑖𝑑]★

𝜈

J ®𝑋K

J ®𝑋𝜎 K ⊗ J ®𝑋K
=

=

𝑖★
𝑘𝑙

𝑖★
𝑘
1

J ®𝑌1K J ®𝑌𝑙 K

J ®𝑋𝜎 K ⊗ J ®𝑋K ⊗ J ®𝑋K

J ®𝑌1K ⊗ J ®𝑋KJ ®𝑌1K J ®𝑌𝑙 K

J ®𝑋K

J𝑓 (®𝑥𝜎) { ®𝑢.𝑝𝑖 }K

;

J ®𝑋K

J ®𝑌1K J ®𝑌𝑙 K

𝜈 ; (J𝑓 K ⊗ 𝑖𝑑)

J𝑝1K J𝑝ℓ K

J ®𝑌1K J ®𝑌𝑙 K

J𝑝𝑖K=

;

;

J ®𝑋K

Fig. 1. String diagrams for the semantics of the internal language.

4.6 Posetal imperative multicategories
Reasoning requires an order on morphisms; an order that is respected by all of the operations of

the category. We model this by enriching our categories on partially ordered sets.

Definition 57 (Posetal distributive copy-discard multicategory). A posetal distributive copy-discard

multicategory is a distributive copy-discard multicategory where every set of multimorphisms

has a poset structure compatible with composition, tensor, and coproduct actions: for all 𝑓 , 𝑓 ′ ∈
M(𝑋 ;𝑌1, ..., 𝑌𝑛) with 𝑓 ≤ 𝑓 ′, we have 𝑓 · 𝜎∗ ≤ 𝑓 ′ · 𝜎∗; for all 𝑔𝑖 , 𝑔′𝑖 ∈ M(𝑌𝑖 ;𝑍𝑖,1, ..., 𝑍𝑖,𝑚𝑖

) with 𝑔𝑖 ≤ 𝑔′𝑖 ,
we additionally have 𝑓 # (𝑔1, ..., 𝑔𝑛) ≤ 𝑓 ′ # (𝑔′

1
, ..., 𝑔′𝑛); for all ℎ,ℎ′ ∈ M(𝑋 ′;𝑌 ′

1
, ..., 𝑌 ′𝑛) with ℎ ≤ ℎ′, we

additionally have 𝑓 ⊗ ℎ ≤ 𝑓 ⊗ ℎ′.

Definition 58 (Posetal uniform trace, cf. Hasegawa [Has02]). A posetal uniform traced distributive

multicategory is a traced distributive multicategory whose underlying multicategory is posetally-

enriched and whose fixpoint, additionally, satisfies the posetal uniformity axiom: for any appropri-

ately typed multimorphisms, the inequalities

ℎ # (𝑓1, ..., 𝑓𝑛) · (𝜈𝑛 + id𝑚)∗ ≤ 𝑔 # (id, 𝑛. . ., id, ℎ, 𝑚..., ℎ) · (id𝑛 + 𝜈𝑚)∗;
ℎ # (𝑓1, ..., 𝑓𝑛) · (𝜈𝑛 + id𝑚)∗ ≥ 𝑔 # (id, 𝑛. . ., id, ℎ, 𝑚..., ℎ) · (id𝑛 + 𝜈𝑚)∗;

imply, respectively, the following inequalities of traces,

ℎ # (fix(𝑓1), ..., fix(𝑓𝑛)) · 𝜈∗𝑛 ≤ fix(𝑔 · 𝜈∗𝑚), and ℎ # (fix(𝑓1), ..., fix(𝑓𝑛)) · 𝜈∗𝑛 ≥ fix(𝑔 · 𝜈∗𝑚).

Finally, let us introduce the structure we use for program logics: posetal imperative categories.

These express all the constructs of imperative programs but also the logical operations of program

logics.

Definition 59 (Posetal imperative multicategory). A posetal imperative multicategory is a posetal

distributive copy-discard multicategory with posetal uniform trace, and additionally satisfying: (i)

that its zero map is the least element of any set of multimorphisms, and (ii) the discarding map is

the top element any set of unary morphisms to the monoidal unit.

4.7 Examples, and representability
Most of our examples have still an extra property: the multicategory is representable, meaning

that multimorphisms correspond to morphisms to a tensor object (the coproduct). Formally, a

multicategory is representable when it has, for every list of objects, 𝑌1, ..., 𝑌𝑛 ∈ M𝑜𝑏 𝑗 , an object

𝑌1 + ... + 𝑌𝑛 ∈ M𝑜𝑏 𝑗 , and a family of morphisms case𝑛 : 𝑌1 + ... + 𝑌𝑛 → 𝑌1, ..., 𝑌𝑛 closed under

, Vol. 1, No. 1, Article . Publication date: July 2025.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Program Logics via Distributive Monoidal Categories 17

composition and inducing an isomorphism M(𝑋 ;𝑌1 + ... + 𝑌𝑛) � M(𝑋 ;𝑌1, ..., 𝑌𝑛) [Her00, §7]. In a

cocartesian multicategory, under this isomorphism, we obtain maps inj𝑖,𝑛 : 𝑌𝑖 → 𝑌1 + ... + 𝑌𝑛 .
We may explicitly impose this property by asking for two families of generators, case𝑛 ∈
G(𝑌1 + ... + 𝑌𝑛 ;𝑌1, ..., 𝑌𝑛) and inj𝑖,𝑛 ∈ G(𝑌𝑖 ;𝑌1 + ... + 𝑌𝑛), which must be total, deterministic, and

central, and moreover satisfy the following equations [Her00, Definition 8.1].

• case𝑛 (𝑢){𝑦𝑖 .inj𝑖,𝑛 (𝑦𝑖){𝑢.𝛼𝛼𝛼 (𝑢)}}𝑛𝑖=0 ≡ 𝛼𝛼𝛼 (𝑢);
• inj𝑖,𝑛 (𝑥𝑖){𝑢.case𝑛 (𝑢){𝑦𝑖 .𝛼𝛼𝛼𝑖 (𝑦𝑖)}} ≡ 𝛼𝛼𝛼𝑖 (𝑥𝑖);
• case1 (𝑢){𝑢.𝛼𝛼𝛼 (𝑢)} ≡ 𝛼𝛼𝛼 (𝑢);
• case𝑛 (𝑢){𝑥𝑖 .case𝑚 (𝑥𝑖){𝑦𝑖, 𝑗 .𝛼𝛼𝛼𝑖, 𝑗 (𝑦𝑖, 𝑗)}} ≡ case𝑛 ·𝑚 (𝑢){𝑦𝑖, 𝑗 .𝛼𝛼𝛼𝑖, 𝑗 (𝑦𝑖, 𝑗)};

Definition 60 (Imperative category). An imperative category is an imperative multicategory with

representable coproducts.

Remark 61. Every multicategory freely induces a representable multicategory; every imperative

multicategory freely induces an imperative category. The rest of this section looks at some examples

of posetal imperative categories. As common in program semantics, these are Kleisli categories of

commutative monads.

Lemma 62. In a distributive copy-discard category, the structure morphisms of coproducts, 𝜇 and 𝜁 ,

are total and deterministic.

Definition 63. A monad on a category C is a triple (𝑇, 𝜂, (−)>) of a functor 𝑇 : C → C, a fam-

ily of morphisms 𝜂𝑋 : 𝑋 → 𝑇 (𝑋) indexed by objects 𝑋 of C, and an operation on hom-sets

(−)> : C(𝑋,𝑇𝑌) → C(𝑇𝑋,𝑇𝑌) satisfying (i) 𝜂>
𝑋
= id𝑇𝑋 , (ii) 𝜂𝑋 # 𝑓 > = 𝑓 , and (iii) 𝑓 > #𝑔> = (𝑓 # 𝑔>)> .

The Kleisli category of a monad 𝑇 : C→ C commonly serves as semantics for computations in

C with 𝑇 -effects [Mog91].

Definition 64. For a monad 𝑇 on a category C, its Kleisli category, kl(𝑇), has the same objects

as C and the morphisms 𝑋 → 𝑌 are the morphisms 𝑋 → 𝑇 (𝑌) in C. Identities are given by the

monad unit, 𝜂𝑋 , and the composition is defined with Kleisli extensions, 𝑓 # 𝑔> .

We introduce the monads whose Kleisli categories will be our running examples. This section

shows that they do indeed have the structure of a posetal imperative category.

Example 65. Consider the category Set of sets and functions. The maybe monad on Set acts on
objects as L(𝑋) = 𝑋 + 1; its unit is the inclusion 𝜂𝑋 : 𝑋 → 𝑋 + 1; and the Kleisli extension of a

function 𝑓 : 𝑋 → 𝑌 + 1 is 𝑓 > (𝑥) = 𝑓 (𝑥) for 𝑥 ∈ 𝑋 , and 𝑓 > (∗) = ∗, where ∗ denotes the element of

1. Morphisms in its Kleisli category, Par, specify partial functions.

Example 66. Consider the powerset monad on Set. Its action on objects is P(𝑋) = {𝐸 ⊆ 𝑋 }; its unit
𝜂𝑋 (𝑥) = {𝑥} maps each element 𝑥 ∈ 𝑋 to the singleton {𝑥}; and the Kleisli extension of a function

𝑓 : 𝑋 → P(𝑌) is 𝑓 > (𝐸) = {𝑓 (𝑥) ∈ 𝑌 | 𝑥 ∈ 𝐸}. Morphisms in its Kleisli category, Rel, are relations.

Example 67. Consider the subdistribution monad on Set. We will consider countably supported

subdistributions [Jac10, BGL25]. For a set 𝑋 , these are functions 𝜎 : 𝑋 → [0, 1] whose support,
supp(𝜎) = {𝑥 ∈ 𝑋 | 𝜎 (𝑥) > 0}, is countable and whose total probability mass is at most 1, i.e.∑

𝑥∈𝑋 𝜎 (𝑥) ≤ 1. The subdistribution monad maps a set 𝑋 to the set D(𝑋) of countably supported

subdistributions on 𝑋 ; its unit 𝜂𝑋 (𝑥) = 𝛿𝑥 maps each element 𝑥 ∈ 𝑋 to the Dirac distribution at

point 𝑥 ; and the Kleisli extension of a function 𝑓 : 𝑋 → D(𝑌) is 𝑓 > (𝜎) (𝑦) = ∑
𝑥 𝜎 (𝑥) · 𝑓 (𝑥) (𝑦).

Morphisms in its Kleisli category, Stoch, are discrete stochastic channels.

Example 68. Consider the category StdBorel of standard Borel spaces and measurable functions

between them. A subdistribution on a standard Borel space (𝑋,A𝑋) is a measurable function

, Vol. 1, No. 1, Article . Publication date: July 2025.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

18 Anon.

𝜎 : (𝑋,A𝑋) → ([0, 1],B) whose total probability mass 𝜎 (𝑋) is at most 1, where B is the Borel

𝜎-algebra on the interval [0, 1]. The subdistribution monad on StdBorel [Gir82, Pan99] maps a

standard Borel space 𝑋 to the standard Borel space G(𝑋) of subdistributions on it with the 𝜎-

algebra generated by the set of evaluation maps ev𝑈 : G(𝑋) → [0, 1] for all the measurable subsets

𝑈 of 𝑋 .

When the base category has a monoidal structure, we may ask that the monad interacts well

with it to ensure that the monoidal structure lifts to the Kleisli category.

Definition 69. Amonad𝑇 on a symmetric monoidal category (𝐶, ⊕, 𝐼) is strong if there is a natural
transformation 𝑡𝑋,𝑌 : 𝑋 ⊕𝑇 (𝑌) → 𝑇 (𝑋 ⊕ 𝑌), the left strength, that is compatible with the monoidal

structure and with the monad structure: (i) 𝜆𝑇𝑋 # 𝑡𝐼 ,𝑋 = 𝑇 (𝜆𝑋), (ii) 𝑡𝑋⊗𝑌,𝑍 #𝑇 (𝛼𝑋,𝑌,𝑍) = 𝛼𝑋,𝑌,𝑇𝑍 #
(id𝑋 ⊗ 𝑡𝑌,𝑍) # 𝑡𝑋,𝑌⊗𝑍 , (iii) (id𝑋 ⊗𝜂𝑌) # 𝑡𝑋,𝑌 = 𝜂𝑋⊗𝑌 , and (iv) (id𝑋 ⊗ 𝜇𝑌) # 𝑡𝑋,𝑌 = 𝑡𝑋,𝑇𝑌 #𝑇 (𝑡𝑋,𝑌) # 𝜇𝑋⊗𝑌 ,
where 𝛼 , 𝜆 and 𝜌 denote the associator, and left and right unitors, and 𝜇 denotes the monad

multiplication, 𝜇𝑋 = id
>
𝑇𝑋 .

A strong monad is commutative if the two morphism of type 𝑇𝑋 ⊗ 𝑇𝑌 → 𝑇 (𝑋 ⊗ 𝑌) obtained
by composing strengths and symmetries coincide: 𝑡𝑇𝑋,𝑌 #𝑇 (𝑡 ′

𝑋,𝑌
) # 𝜇𝑋⊗𝑌 = 𝑡 ′

𝑋,𝑇𝑌
#𝑇 (𝑡𝑋,𝑌) # 𝜇𝑋⊗𝑌 ,

where 𝑡 ′
𝑋,𝑌

= 𝜎 # 𝑡 #𝑇 (𝜎) is the right strength obtained by composing the left strength 𝑡 with the

symmetry 𝜎 .

All the examples of monads in this section are known to be commutative with respect to the

cartesian product in their base categories. Any monad is commutative with respect to coproducts.

Thus, all their Kleisli categories are distributive copy-discard categories, as the next proposition

shows.

Proposition 70. The Kleisli category of a strong monad 𝑇 : C→ C on a distributive copy-discard

category C is also a distributive premonoidal copy-discard category. If the monad 𝑇 is commutative,

then its Kleisli category is a distributive copy-discard category.

Posetal imperative categories also require a trace for the coproducts. We apply a result that con-

structs such trace for monads satisfying a condition called partial additivity [Jac10]. The conditions

for partial additivity are rather technical and we recall them below.

Definition 71 ([Jac10, Definition 4.2]). A monad 𝑇 on a category C with countable coproducts

and products is partially additive if its Kleisli category is poset-enriched with a zero object and the

morphisms 𝛽𝑋 : 𝑇 (∐𝑛 𝑋𝑛) →
∏

𝑛𝑇 (𝑋𝑛), defined by pairing the canonical maps

∐
𝑛 𝑋𝑛 → 𝑇 (𝑋𝑖),

are monic and form a cartesian natural transformation.

Proposition 72 ([Jac10, Example 4.4] and [Jac16, Section 7]). The maybe monad, powerset monad,

and subdistributions monad on the distributive category of sets and functions, Set, are partially additive.
The subdistributions monad on the distributive category StdBorel is a partially additive monad.

While the law of uniformity is well known since at least Hasegawa’s work [Has02], the one of

posetal uniformity received far less attention (to the best of our knowledge only [BDD25]). We

illustrate a result that allows to prove posetal uniformity for a large variety of example, in particular,

all those considered in this text. Recall that a Dcpo⊥-enriched category is a category where each

homset has countable directed joins and a bottom element that are both preserved by composition.

Our starting point is the following result that ensures the existence of a uniform coproduct

trace [Jac10].

Theorem 73. [Jac10, Theorem 5.2] Let C be a category with countable coproducts and a monad,

𝑇 : C→ C, such that

, Vol. 1, No. 1, Article . Publication date: July 2025.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Program Logics via Distributive Monoidal Categories 19

• it is a partially additive monad;

• its Kleisli category, kl(𝑇), is Dcpo⊥-enriched;
• and its Kleisli category, kl(𝑇), has monotone cotuplings;

then, this Kleisli category is partially additive and has a uniform trace, (kl(𝑇),+, 0, tr).

Putting together Theorem 73 and Theorem 70, we obtain that these Kleisli categories have almost

all the structure that we need.

Corollary 74. The Kleisli category of a partially additive monad on a distributive category satisfying

the assumptions of Theorem 73 is an imperative category.

With Theorem 74, we are only left to prove posetal uniformity. Starting from Theorem 73, and

exploiting a result by Hasuo [Has06] that generalises forward and backward simulations as lax and

oplax coalgebra morphisms, we can prove that the monoidal trace of the theorem above is not just

a uniform trace but, crucially for our developement, a posetal uniform trace.

Proposition 75. Under the conditions of Theorem 73, the Kleisli category of a monad, kl(𝑇), has a
posetal uniform trace.

Corollary 76. The Kleisli categories of the maybe monad, powerset monad, and subdistributions

monad on the distributive category Set, and of the subdistributions monad on the distributive category

StdBorel are posetal imperative categories.

5 Distributive program logics
Program triples are tuples containing a precondition predicate, a command and a postcondition

predicate. Program logics are concerned with proving the validity of a triple, but what validity

means depends on the program logic in question and the properties it is concerned with.

For instance, the program triples {𝑝} 𝑐 {𝑞} and {𝑠} 𝑐 {𝑡} may mean any of the inequalities in

Figure 2, for a command 𝑐 , predicates 𝑝 and 𝑞, and states 𝑠 and 𝑡 .

State Predicate Assertion

Correctness 𝑠 # 𝑐 ≤ 𝑡 𝑝 ≤ 𝑐 # 𝑞 assert𝑝 # 𝑐 ≤ 𝑐 # assert𝑞
Incorrectness 𝑠 # 𝑐 ≥ 𝑡 𝑝 ≥ 𝑐 # 𝑞 assert𝑝 # 𝑐 ≥ 𝑐 # assert𝑞

Fig. 2. Inequalities that define validity of program triples {𝑝} 𝑐 {𝑞} or {𝑠} 𝑐 {𝑡}.

This section expresses program logics in the language of imperative categories. The next section

introduces couplings to cover relational program logics in a similar fashion. This level of generality

allows us to instantiate the rules that we prove here in all the examples of Section 4.7.

Each program logic defines validity of triples with one of the inequalities above. Hoare logic [Hoa69]

uses assert 𝑝 # 𝑐 ≤ 𝑐 # assert𝑞, incorrectness logic [dVK11, O’H19] uses 𝑠 # 𝑐 ≥ 𝑡 , and outcome

logic [ZDS23] uses 𝑝 ≤ 𝑐 # 𝑞. These are only three of the possibilities outlined above, but nothing

prevents us from considering the other ones as well.

The structure of imperative categories allows us to derive rules for any chosen triple shape: the

posetal enrichment is crucial for interpreting validity of triples; the categorical structure ensures

the skip and comp rules; the monoidal copy-discard structure gives the assign and sample rules;

the distributive coproducts give the rules for choice; the posetal-uniform trace gives the rules for

loops.

, Vol. 1, No. 1, Article . Publication date: July 2025.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

20 Anon.

5.1 Correctness triples
This section considers assertion-correctness triples. In the category Rel of sets and relations, these

are known as Hoare triples [Hoa69].

Definition 77 (Assertion-correctness triple). In a posetal imperative category, an assertion-

correctness triple, {𝑝} 𝑐 {𝑞}, consists of a morphism 𝑐 : 𝑋 → 𝑌 , a predicate on the input, 𝑝 : 𝑋 → 1,

and a predicate on the output, 𝑞 : 𝑌 → 1, satisfying assert𝑝 # 𝑐 ≤ 𝑐 # assert𝑞.

Remark 78. In the imperative category Rel of sets and relations, assertion-correctness triples are

equivalent to state-correctness triples: assert 𝑝 #𝑐 ≤ 𝑐 #assert𝑞 if and only if 𝑝op #𝑐 ≤ 𝑞op. Predicates
have, in general, a richer logic compared to states. Therefore, we choose the former triple shape.

We derive the rules of Hoare logic [Hoa69] as presented by Winskel’s reference book [Win93].

Additionally, we include rules for nondeterministic choice and iteration that accommodate examples

outside of the category of relations.

Theorem 79. The following are valid assertion-correctness triples in any posetal imperative category

where abort ≤ 𝑓 and 𝑓 # ⊤ ≤ ⊤ for all morphisms 𝑓 .

skip

{𝑝} skip {𝑝}

comp

{𝑝} 𝑐1 {𝑞} {𝑞} 𝑐2 {𝑟 }
{𝑝} 𝑐1 ; 𝑐2 {𝑟 }

assign

𝑒 deterministic and total

{𝑝 [𝑢 \ 𝑒]}𝑢 := 𝑒 {𝑝}
choice

{𝑝} 𝑐1 {𝑞} {𝑝} 𝑐2 {𝑞}
{𝑝} if 𝑏 then 𝑐1 else 𝑐2 {𝑞}

loop

{𝑝} 𝑐 {𝑝}
{𝑝} while𝑏 do 𝑐 {𝑝}

unroll

{𝑝} if 𝑏 then(𝑐 ; while𝑏 do 𝑐) else skip {𝑞}
{𝑝} while𝑏 do 𝑐 {𝑞}

ifelse

{𝑝 ∧ 𝑏#} 𝑐1 {𝑞} {𝑝 ∧ (¬𝑏)#} 𝑐2 {𝑞} 𝑏 deterministic

{𝑝} if 𝑏 then 𝑐1 else 𝑐2 {𝑞}

while

{𝑏# ∧ 𝑝} 𝑐 {𝑝} 𝑏 deterministic

{𝑝} while𝑏 do 𝑐 {𝑝 ∧ (¬𝑏)#}

monotone

𝑝1 ≤ 𝑝2 {𝑝2} 𝑐 {𝑞2} 𝑞2 ≤ 𝑞1
{𝑝1} 𝑐 {𝑞1}

and

{𝑝1} 𝑐 {𝑞1} {𝑝2} 𝑐 {𝑞2}
{𝑝1 ∧ 𝑝2} 𝑐 {𝑞1 ∧ 𝑞2}

fail

{𝑝} abort {𝑞}
assert

𝑞 ∧ 𝑟 ≤ ⊥
{𝑝 +𝑏 𝑞} assert 𝑟 {𝑝 ∧ 𝑏#}

top

{𝑝} 𝑐 {⊤}

bot

{⊥} 𝑐 {𝑞}

5.2 Incorrectness triples
This section considers state-incorrectness triples. In the category Rel of sets and relations, these

are known as reverse Hoare triples [dVK11] or incorrectness triples [O’H19].

Definition 80 (State-incorrectness triple). In a posetal imperative category, a state-incorrectness

triple, {𝑠} 𝑐 {𝑡}, consists of a morphism, 𝑐 : 𝑋 → 𝑌 , a state on the input, 𝑠 : 1→ 𝑋 , and a state on

the output, 𝑡 : 1→ 𝑌 , satisfying 𝑠 # 𝑐 ≥ 𝑡 .

We derive the rules of incorrectness logic [O’H19] in the more general setting of posetal im-

perative categories. The original incorrectness rules for choices and loops are a particular case

of the ones below. They are obtained by setting the guard 𝑏 : 𝑋 → 1 + 1 to be the relation

◀= {(𝑥, 0) | 𝑥 ∈ 𝑋 } ∪ {(𝑥, 1) | 𝑥 ∈ 𝑋 }, where 0 and 1 denote the two elements of 1 + 1. Similarly,

the nondeterministic assignment rule of incorrectness logic [O’H19] is a particular case of the

sample rule when the state 𝑠0 is chosen to be ⊤op, the opposite relation of the true predicate. The

guard ◀ and the state ⊤op do not exist in general posetal imperative categories, so we present the

, Vol. 1, No. 1, Article . Publication date: July 2025.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Program Logics via Distributive Monoidal Categories 21

rules with a generic guard 𝑏 and a generic state 𝑠0. The rules that we present hold, in particular, for

probabilistic examples like Stoch.
We omit the substitution rules in incorrectness logic [O’H19] because they follow from alpha

equivalence. We omit the local variable rule because it relies on the existence of the state ⊤op,
which does not exist in general. The constancy rule of incorrectness logic [O’H19] requires the

conjunction of preconditions. In copy-discard categories, conjunction of predicates always exists,

but not conjunction of states. Thus, we omit this rule. Similarly, the command assume(𝑝) does not
necessarily exist in posetal imperative categories. Thus, we substitute the assume rule with the

assert rule. The backward variant rule for loops relies on Kleene’s theorem for fixpoints. This

seems to require more assumptions on the categorical structure, so we decided to omit the rule.

Theorem 81. The following are valid state-incorrectness triples in any posetal imperative category

where abort ≤ 𝑓 for all morphisms 𝑓 .

skip

{𝑠} skip {𝑠}

comp

{𝑠} 𝑐1 {𝑡} {𝑡} 𝑐2 {𝑟 }
{𝑠} 𝑐1 ; 𝑐2 {𝑟 }

comp (error)

{𝑠} 𝑐1 {⊥}
{𝑠} 𝑐1 ; 𝑐2 {⊥}

assign

{𝑠} 𝑥 := 𝑦 {𝑠 (𝑥 \ 𝑦)}

sample

{𝑠} 𝑥 ← 𝑠0 {
∐

𝑥𝑠 · 𝑠0}
choice (left)

{𝑠 ⇂ 𝑏#} 𝑐1 {𝑡}
{𝑠} if 𝑏 then 𝑐1 else 𝑐2 {𝑡}

choice (right)

{𝑠 ⇂ (¬𝑏)#} 𝑐2 {𝑡}
{𝑠} if 𝑏 then 𝑐1 else 𝑐2 {𝑡}

convex

{𝑠1} 𝑐 {𝑡1} {𝑠2} 𝑐 {𝑡2} 𝑏 constant

{𝑠1 +𝑏 𝑠2} 𝑐 {𝑡1 +𝑏 𝑡2}
iter zero

{𝑠} while𝑏 do 𝑐 {𝑠 ⇂ (¬𝑏)#}

iter

{𝑠 ⇂ 𝑏#} 𝑐 ; while𝑏 do 𝑐 {𝑡}
{𝑠} while𝑏 do 𝑐 {𝑡}

monotone

𝑠1 ≥ 𝑠2 {𝑠2} 𝑐 {𝑡2} 𝑡2 ≥ 𝑡1
{𝑠1} 𝑐 {𝑡1}

assert

{𝑠} assert 𝑝 {𝑠 ⇂ 𝑝}

fail

{𝑠} abort {⊥}

bot

{𝑠} 𝑐 {⊥}

5.3 Outcome-like triples
This section considers predicate-correctness triples. In Kleisli categories of Set-monads𝑇 satisfying

some assumptions, these correspond to outcome triples [ZDS23].

Definition 82 (Predicate-correctness triples). In a posetal imperative category, a predicate-correctness

triple, {𝑝} 𝑐 {𝑞}, consists of a morphism 𝑐 : 𝑋 → 𝑌 , a predicate on the input, 𝑝 : 𝑋 → 1, and a

predicate on the output, 𝑞 : 𝑌 → 1, satisfying 𝑝 ≤ 𝑐 # 𝑞.

The logic for assertions in outcome logic is richer than the one we consider here: we restrict to

the combinators for predicates that come from the categorical structure so that we can interpret

the triples and prove their rules in any posetal imperative category. As a consequence, our rules

slightly differ from the ones for outcome logic [ZDS23]. As for incorrectness logic, we present

the rules with generic guards 𝑏 as we do not assume the existence of the guard ◀. The choice
rule below needs equal postconditions, contrary to that of outcome logic. The structure of posetal

imperative categories does not ensure the existence of a predicate⊤⊕ that is satisfied by all elements

of𝑇 (𝑋), including failure. Thus, this structure cannot express the empty and zero rules of outcome

logic [ZDS23] and implies a different assert rule. We omit the for rule as it follows by induction

from the rule for compositions and add the sample rule for nondeterministic assignment.

, Vol. 1, No. 1, Article . Publication date: July 2025.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

22 Anon.

Theorem 83. The following are valid predicate-correctness triples in any posetal imperative category

where abort ≤ 𝑓 for all morphisms 𝑓 .

skip

{𝑝} skip {𝑝}

comp

{𝑝} 𝑐1 {𝑞} {𝑞} 𝑐2 {𝑟 }
{𝑝} 𝑐1 ; 𝑐2 {𝑟 }

assign

𝑒 deterministic

{𝑝 [𝑢 \ 𝑒]}𝑢 := 𝑒 {𝑝}

sample

{𝑝 [𝑢 \ 𝑠]}𝑢 ← 𝑠 {𝑝}
unroll

{𝑝} if 𝑏 then(𝑐 ; while𝑏 do 𝑐) else skip {𝑞}
{𝑝} while𝑏 do 𝑐 {𝑞}

choice

{𝑝} 𝑐1 {𝑞} {𝑝} 𝑐2 {𝑞} 𝑏 total

{𝑝} if 𝑏 then 𝑐1 else 𝑐2 {𝑞}
ifelse

{𝑏# ∧ 𝑝} 𝑐1 {𝑞} {(¬𝑏)# ∧ 𝑝} 𝑐2 {𝑞} 𝑏 total and deterministic

{𝑝} if 𝑏 then 𝑐1 else 𝑐2 {𝑞}

assert

(¬𝑏)# ∧ 𝑞 = ⊥ 𝑏 deterministic

{𝑝 +𝑏 𝑞} assert𝑏# {𝑝}

convex

{𝑝1} 𝑐 {𝑞1} {𝑝2} 𝑐 {𝑞2} 𝑏 constant

{𝑝1 +𝑏 𝑝2} 𝑐 {𝑞1 +𝑏 𝑞2}
monotone

𝑝1 ≤ 𝑝2 {𝑝2} 𝑐 {𝑞2} 𝑞2 ≤ 𝑞1
{𝑝1} 𝑐 {𝑞1}

bot

{⊥} 𝑐 {𝑞}

6 Distributive relational program logics
Relational program triples compare pairs of programs in a shared context. They are a tuple of two

commands, a precondition on the product of the input types and a postcondition on the product of

the output types. As for (not relational) program triples, the validity of relational program triples

can be defined in terms of any of the inequalities in Figure 3. This time, 𝑝 and 𝑞 are predicates on a

product type, 𝑠 and 𝑡 are states on a product type, and the commands need to be replaced by couplings

of commands as one cannot assume that their effects are independent [BGZB09, BEH
+
19, ABDG25].

State Predicate Assertion

Relational correctness 𝑠 # ℎ= ≤ 𝑡 𝑝 ≤ ℎ= # 𝑞 assert𝑝 # ℎ= ≤ ℎ= # assert𝑞
Relational incorrectness 𝑠 # ℎ= ≥ 𝑡 𝑝 ≥ ℎ= # 𝑞 assert𝑝 # ℎ= ≥ ℎ= # assert𝑞

Fig. 3. Inequalities that define validity of relational program triples {𝑝} 𝑐 ∼ 𝑑 {𝑞} or {𝑠} 𝑐 ∼ 𝑑 {𝑡}, where
ℎ ⊲ 𝑐 & 𝑑 is a coupling of the commands 𝑐 and 𝑑 , and ℎ= = ℎ # 𝜋+

𝑋⊗𝑌 .

Definition 84. A coupling of two morphisms, 𝑓1 : 𝑋1 → 𝑌1 and 𝑓2 : 𝑋2 → 𝑌2 in an imperative

category, is a morphism ℎ : 𝑋1 ⊗ 𝑋2 → 𝑌1 ⊗ 𝑌2 + 𝑌1 + 𝑌2 such that ℎ # [𝜋1, id, 0] = 𝜋1 # 𝑓1 and
ℎ#[𝜋2, 0, id] = 𝜋2#𝑓2, where [𝜋1, id, 0] indicates the copairing of the first projection 𝜋1 : 𝑋1⊗𝑋2 → 𝑋1,

the identity id𝑋1
and the zero morphism 0 : 𝑋2 → 𝑋1. A strong coupling is a coupling of the form

ℎ # 𝜄𝑌1⊗𝑌2 , where 𝜄𝑌1⊗𝑌2 : 𝑌1 ⊗ 𝑌2 → 𝑌1 ⊗ 𝑌2 + 𝑌1 + 𝑌2 denotes the coproduct injection.
Wewrite thatℎ is a coupling of 𝑓1 and 𝑓2 asℎ⊲𝑓1&𝑓2. Given a couplingℎ : 𝑋1⊗𝑋2 → 𝑌1⊗𝑌2+𝑌1+𝑌2,

define ℎ= : 𝑋1 ⊗ 𝑋2 → 𝑌1 ⊗ 𝑌2 by postcomposing with the maps to the zero object, ℎ= = ℎ # 𝜋+
𝑌1⊗𝑌2 .

Remark 85. We spell out the definition of coupling for states in Stoch to show that, in this case, our

definition of coupling coincides with the definition of ★-coupling for subdistributions [ABDG25].

Two states 𝑠 : 1→ 𝑋 and 𝑡 : 1→ 𝑌 in Stoch are two subdistributions 𝑠 ∈ D(𝑋) and 𝑡 ∈ D(𝑌). A

, Vol. 1, No. 1, Article . Publication date: July 2025.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Program Logics via Distributive Monoidal Categories 23

coupling of 𝑠 and 𝑡 is a subdistribution𝑢 : 1→ 𝑋 ×𝑌 +𝑋 +𝑌 such that 𝑠 (𝑥) =∑
𝑦∈𝑌 𝑢 (𝑥,𝑦) +𝑢 (𝑥,★)

and 𝑡 (𝑥) = ∑
𝑥∈𝑋 𝑢 (𝑥,𝑦) + 𝑢 (★, 𝑦), where (𝑥,★) denotes the element 𝑥 in the second component

of the coproduct, and (★, 𝑦) denotes the element 𝑦 in the third component of the coproduct. A

subdistribution on𝑋 ×𝑌 +𝑋 +𝑌 is the same as a distribution on𝑋 ×𝑌 +𝑋 +𝑌 +1, thus couplings of
states in Stoch coincide with★-couplings of subdistributions [ABDG25]. Similarly, strong couplings

coincide with (total) couplings of subdistributions [BGZB09, ABDG25].

Strong couplings enforce the same termination behaviour as total couplings of subdistributions

do [ABDG25]. If ℎ ⊲ 𝑓1 & 𝑓2 is a strong coupling, (𝑓1 # 𝜀) ⊗ 𝜀 = ℎ # (𝜀 ⊗ 𝜀) = 𝜀 ⊗ (𝑓2 # 𝜀), where 𝑓𝑖 # 𝜀
gives the termination predicate of 𝑓𝑖 .

Remark 86. When all morphisms are deterministic, then strong couplings trivialise: all strong

couplings of 𝑓 and 𝑔 need to be 𝑓 ⊗ 𝑔. This is the case of the category Par of sets and partial

functions.

6.1 Relational correctness triples
This section considers relational assertion-correctness triples. In the category Par of sets and partial
functions, these correspond to relational Hoare triples [Ben04].

Definition 87 (Relational assertion-correctness triples). In a posetal imperative category, a re-

lational assertion-correctness triple, {𝑝} 𝑐 ∼ 𝑐′ {𝑞}, consists of two morphisms, 𝑐 : 𝑋 → 𝑌 and

𝑐′ : 𝑋 ′ → 𝑌 ′, a predicate on the product of the inputs, 𝑝 : 𝑋 ⊗ 𝑋 ′ → 1, and a predicate on the

product of the outputs, 𝑞 : 𝑌 ⊗ 𝑌 ′ → 1, such that there exist a coupling, ℎ ⊲ 𝑐 & 𝑐′, satisfying
assert 𝑝 # ℎ= ≤ ℎ= # assert𝑞.

Benton’s work [Ben04] restricts to strong couplings, which simplify in the case of partial functions

(Theorem 86). The validity condition of a triple {𝑝} 𝑐 ∼ 𝑐′ {𝑞}, thus, simplifies to assert𝑝 # (𝑐 ⊗ 𝑐′) ≤
(𝑐 ⊗ 𝑐′) # assert𝑞. We present the rules in the general case to allow semantics different from partial

functions.

Theorem 88. The following are valid relational assertion-correctness triples in any posetal imperative

category where abort ≤ 𝑓 for all morphisms 𝑓 .

skip

{𝑝} skip ∼ skip {𝑝}

comp

{𝑝} 𝑐1 ∼ 𝑑1 {𝑞} {𝑞} 𝑐2 ∼ 𝑑2 {𝑟 }
{𝑝} (𝑐1 ; 𝑐2) ∼ (𝑑1 ; 𝑑2) {𝑟 }

assign

𝑒1, 𝑒2 total and deterministic

{𝑝 [(𝑢1, 𝑢2) \ (𝑒1, 𝑒2)]} (𝑢1 := 𝑒1) ∼ (𝑢2 := 𝑒2) {𝑝}
choice

{𝑝} 𝑐1 ∼ 𝑐2 {𝑞} {𝑝} 𝑐1 ∼ 𝑑2 {𝑞} {𝑝}𝑑1 ∼ 𝑐2 {𝑞} {𝑝}𝑑1 ∼ 𝑑2 {𝑞} 𝑏1, 𝑏2 total

{𝑝} (if 𝑏1 then 𝑐1 else𝑑1) ∼ (if 𝑏2 then 𝑐2 else𝑑2) {𝑞}
ifelse

{(𝑏1# ⊗ 𝑏2#) ∧ 𝑝} 𝑐1 ∼ 𝑐2 {𝑞}
{((¬𝑏1)# ⊗ (¬𝑏2)#) ∧ 𝑝}𝑑1 ∼ 𝑑2 {𝑞} 𝑏1, 𝑏2 total and deterministic

{(𝑏1 = 𝑏2) ∧ 𝑝} (if 𝑏1 then 𝑐1 else𝑑1) ∼ (if 𝑏2 then 𝑐2 else𝑑2) {𝑞}
loop

{𝑝} 𝑐1 ∼ 𝑐2 {𝑝} {𝑝} 𝑐1 ∼ skip {𝑝} {𝑝} skip ∼ 𝑐2 {𝑝} 𝑏1, 𝑏2 total

{𝑝} (while𝑏1 do 𝑐1) ∼ (while𝑏2 do 𝑐2) {𝑝}

, Vol. 1, No. 1, Article . Publication date: July 2025.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

24 Anon.

while

{(𝑏1# ⊗ 𝑏2#) ∧ 𝑝} 𝑐1 ∼ 𝑐2 {(𝑏1 = 𝑏2) ∧ 𝑝} 𝑏1, 𝑏2 total and deterministic

{(𝑏1 = 𝑏2) ∧ 𝑝} (while𝑏1 do 𝑐1) ∼ (while𝑏2 do 𝑐2) {((¬𝑏1)# ⊗ (¬𝑏2)#) ∧ 𝑝}

monotone

𝑝1 ≤ 𝑝2 {𝑝2} 𝑐 ∼ 𝑑 {𝑞2} 𝑞2 ≤ 𝑞1
{𝑝1} 𝑐 ∼ 𝑑 {𝑞1}

symm

{𝑝} 𝑐 ∼ 𝑑 {𝑞}
{𝜎 ; 𝑝}𝑑 ∼ 𝑐 {𝜎 ; 𝑞}

assign-L

𝑒 total and deterministic

{𝑝 [𝑥 \ 𝑒]} (𝑥 := 𝑒) ∼ skip {𝑝}

choice-L

{𝑝} 𝑐 ∼ skip {𝑞} {𝑝}𝑑 ∼ skip {𝑞} 𝑏 total

{𝑝} (if 𝑏 then 𝑐 else𝑑) ∼ skip {𝑞}
ifelse-L

{(𝑏# ⊗ ⊤) ∧ 𝑝} 𝑐 ∼ skip {𝑞} {((¬𝑏1)# ⊗ ⊤) ∧ 𝑝}𝑑 ∼ skip {𝑞} 𝑏 total and deterministic

{𝑝} (if 𝑏 then 𝑐 else𝑑) ∼ skip {𝑞}
loop-L

{𝑝} 𝑐 ∼ skip {𝑝} 𝑏 total

{𝑝} (while𝑏 do 𝑐) ∼ skip {𝑝}

while-L

{(𝑏# ⊗ ⊤) ∧ 𝑝} 𝑐 ∼ skip {𝑝} 𝑏 total and deterministic

{𝑝} (while𝑏 do 𝑐) ∼ skip {((¬𝑏)# ⊗ ⊤) ∧ 𝑝}

6.2 Relational incorrectness triples
This section considers relational predicate-incorrectness triples. In the category Stoch of sets

and partial stochastic functions, these correspond to quantitative probabilistic relational Hoare

triples [ABDG25].

Definition 89 (Relational predicate-incorrectness triples). In a posetal imperative category, a

relational predicate-incorrectness triple, {𝑝} 𝑐 ∼ 𝑐′ {𝑞}, consists of two morphisms, 𝑐 : 𝑋 → 𝑌 and

𝑐′ : 𝑋 ′ → 𝑌 ′, a predicate on the product of the inputs, 𝑝 : 𝑋 ⊗ 𝑋 ′ → 1, and a predicate on the

product of the outputs, 𝑞 : 𝑌 ⊗𝑌 ′ → 1, such that there exist a coupling, ℎ ⊲𝑐&𝑐′, satisfying 𝑝 ≥ ℎ= #𝑞.

We derive the rules of relational predicate-incorrectness logic. Compared to the rules of quantita-

tive probabilistic relational Hoare logic [ABDG25], we do not assume that guards are deterministic,

so we derive additional rules for nondeterministic choice and iteration. The strassen rule of

quantitative probabilistic relational Hoare logic [ABDG25] is missing as it is a consequence of

Strassen’s theorem, a characterisation of couplings particular to subdistributions.

For two guards, 𝑏1 : 𝑋1 → 1 + 1 and 𝑏2 : 𝑋2 → 1 + 1, we denote with 𝑏1 = 𝑏2 the predicate on

𝑋1 ⊗ 𝑋2 that succeeds when 𝑏1 and 𝑏2 are both true or both false, and fails otherwise. We use

𝑏1
⊗ 𝑏2# to denote the predicate on 𝑋1 ⊗ 𝑋2 obtained as the monoidal product of 𝑏1

#

: 𝑋1 → 1 and

𝑏2
#

: 𝑋2 → 1. For a predicate 𝑝 : 𝑋1 ⊗ 𝑋2 → 1, we indicate with 𝜎 ; 𝑝 : 𝑋2 ⊗ 𝑋1 → 1 the predicate

obtained by permuting the inputs.

Theorem 90. The following are valid relational predicate-incorrectness triples in any posetal impera-

tive category where abort ≤ 𝑓 and 𝑓 # ⊤ ≤ ⊤ for all morphisms 𝑓 .

skip

{𝑝} skip ∼ skip {𝑝}

comp

{𝑝} 𝑐1 ∼ 𝑑1 {𝑞} {𝑞} 𝑐2 ∼ 𝑑2 {𝑟 }
{𝑝} (𝑐1 ; 𝑐2) ∼ (𝑑1 ∼ 𝑑2) {𝑟 }

assign

{𝑝 [(𝑢1, 𝑢2) \ (𝑣1, 𝑣2)]} (𝑢1 := 𝑣1) ∼ (𝑢2 := 𝑣2) {𝑝}

sample

ℎ ⊲ 𝑐1 & 𝑐2

{𝑝 [(𝑢1, 𝑢2) \ ℎ=]} (𝑢1 ← 𝑐1) ∼ (𝑢2 ← 𝑐2) {𝑝}

, Vol. 1, No. 1, Article . Publication date: July 2025.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Program Logics via Distributive Monoidal Categories 25

choice

{𝑝} 𝑐1 ∼ 𝑐2 {𝑞} {𝑝} 𝑐1 ∼ 𝑑2 {𝑞} {𝑝}𝑑1 ∼ 𝑐2 {𝑞} {𝑝}𝑑1 ∼ 𝑑2 {𝑞} 𝑏1, 𝑏2 total

{𝑝} (if 𝑏1 then 𝑐1 else𝑑1) ∼ (if 𝑏2 then 𝑐2 else𝑑2) {𝑞}
ifelse

{(𝑏1# ⊗ 𝑏2#) ∧ 𝑝} 𝑐1 ∼ 𝑐2 {𝑞}
{((¬𝑏1)# ⊗ (¬𝑏2)#) ∧ 𝑝}𝑑1 ∼ 𝑑2 {𝑞} 𝑏1, 𝑏2 total and deterministic

{(𝑏1 = 𝑏2) ∧ 𝑝} (if 𝑏1 then 𝑐1 else𝑑1) ∼ (if 𝑏2 then 𝑐2 else𝑑2) {𝑞}
loop

{𝑝} 𝑐1 ∼ 𝑐2 {𝑝} {𝑝} 𝑐1 ∼ skip {𝑝} {𝑝} skip ∼ 𝑐2 {𝑝} 𝑏1, 𝑏2 total

{𝑝} (while𝑏1 do 𝑐1) ∼ (while𝑏2 do 𝑐2) {𝑝}
while

{(𝑏1# ⊗ 𝑏2#) ∧ 𝑝} 𝑐1 ∼ 𝑐2 {(𝑏1 = 𝑏2) ∧ 𝑝} 𝑏1, 𝑏2 total and deterministic

{(𝑏1 = 𝑏2) ∧ 𝑝} (while𝑏1 do 𝑐1) ∼ (while𝑏2 do 𝑐2) {((¬𝑏1)# ⊗ (¬𝑏2)#) ∧ 𝑝}

monotone

𝑝1 ≥ 𝑝2 {𝑝2} 𝑐 ∼ 𝑑 {𝑞2} 𝑞2 ≥ 𝑞1
{𝑝1} 𝑐 ∼ 𝑑 {𝑞1}

choice-L

{𝑝} 𝑐 ∼ skip {𝑞} {𝑝}𝑑 ∼ skip {𝑞} 𝑏 total

{𝑝} (if 𝑏 then 𝑐 else𝑑) ∼ skip {𝑞}
symm

{𝑝} 𝑐 ∼ 𝑑 {𝑞}
{𝜎 ; 𝑝}𝑑 ∼ 𝑐 {𝜎 ; 𝑞}

assign-L

{𝑝 [𝑥 \ 𝑣]} (𝑥 := 𝑣) ∼ skip {𝑝}

sample-L

𝑐 total

{𝑝 [𝑢 \ 𝑐]} (𝑢 ← 𝑐) ∼ skip {𝑝}
ifelse-L

{(𝑏# ⊗ ⊤) ∧ 𝑝} 𝑐 ∼ skip {𝑞} {((¬𝑏1)# ⊗ ⊤) ∧ 𝑝}𝑑 ∼ skip {𝑞} 𝑏 total and deterministic

{𝑝} (if 𝑏 then 𝑐 else𝑑) ∼ skip {𝑞}
loop-L

{𝑝} 𝑐 ∼ skip {𝑝} 𝑏 total

{𝑝} (while𝑏 do 𝑐) ∼ skip {𝑝}

while-L

{(𝑏# ⊗ ⊤) ∧ 𝑝} 𝑐 ∼ skip {𝑝} 𝑏 total and deterministic

{𝑝} (while𝑏 do 𝑐) ∼ skip {((¬𝑏)# ⊗ ⊤) ∧ 𝑝}

7 Conclusions and future work
We have introduced posetal imperative categories as a principled approach to program logics

(Section 4). We have defined a sound and complete syntax for them (Section 2), which allowed us to

derive the rules of various existing program logics and relational program logics (Sections 5 and 6).

7.1 Further work
External logic, fibrations, and enrichment. While we focused on the logics given by the internal

structure of the category, we could derive more variants if we accept the logic to be external (e.g. the

extra operation ⊕ of outcome logic). In particular, a fibrationwould structure the use of two different

categories: one for predicates and one for commands. We considered poset-enriched categories to

express program triples. We could extend the treatment to metric-enriched categories to express

quantitative properties of program behaviour.

Separation logic and premonoidal semantics. The logic of bunched implications has semantics in

categories that are both cartesian closed and monoidal closed with a second tensor; additional

distributivity with coproducts is admissible [OP99]. We believe a careful adaptation of our tech-

niques could derive separation logic from categorical first principles: this could account for its

probabilistic versions [BHL19], or be extended to higher-order versions [BTSY06]. The condition

that modules have restricted access to some parts of memory [OYR04] may be modelled with

premonoidal categories and their internal language [Jef97].

, Vol. 1, No. 1, Article . Publication date: July 2025.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

26 Anon.

References
[ABDG25] Martin Avanzini, Gilles Barthe, Davide Davoli, and Benjamin Grégoire. A quantitative probabilistic relational

Hoare logic. Proceedings of the ACM on Programming Languages, 9(POPL):1167–1195, 2025.

[ABH
+
21] Alejandro Aguirre, Gilles Barthe, Justin Hsu, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph

Matheja. A pre-expectation calculus for probabilistic sensitivity. Proceedings of the ACM on Programming

Languages, 5(POPL):1–28, 2021.

[AM80] Michael A Arbib and Ernest G Manes. Partially additive categories and flow-diagram semantics. Journal of

Algebra, 62(1):203–227, 1980.

[AMMO09] Rob Arthan, Ursula Martin, Erik A Mathiesen, and Paulo Oliva. A general framework for sound and complete

Floyd-Hoare logics. ACM Transactions on Computational Logic (TOCL), 11(1):1–31, 2009.

[BDD25] Filippo Bonchi, Alessandro Di Giorgio, and Elena Di Lavore. A diagrammatic algebra for program logics. In

Parosh Aziz Abdulla and Delia Kesner, editors, Foundations of Software Science and Computation Structures,

pages 308–330, Cham, 2025. Springer Nature Switzerland.

[BÉ93] Stephen L Bloom and Zoltán Ésik. Iteration theories. Springer, 1993.

[BEH
+
19] Gilles Barthe, Thomas Espitau, Justin Hsu, Tetsuya Sato, and Pierre-Yves Strub. Relational ★-liftings for

differential privacy. Logical Methods in Computer Science, Volume 15, Issue 4, Dec 2019.

[Ben04] Nick Benton. Simple relational correctness proofs for static analyses and program transformations. ACM

SIGPLAN Notices, 39(1):14–25, 2004.

[BGL25] Nathan Bowler, Sergey Goncharov, and Paul Blain Levy. Probabilistic strategies: Definability and the tensor

completeness problem. In Proceedings of the 40th Annual ACM/IEEE Symposium on Logic in Computer Science

(to appear), 2025.

[BGZB09] Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. Formal certification of code-based cryp-

tographic proofs. In Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, pages 90–101, 2009.

[BHL19] Gilles Barthe, Justin Hsu, and Kevin Liao. A probabilistic separation logic. Proceedings of the ACM on

Programming Languages, 4(POPL):1–30, 2019.

[BHM00] Nick Benton, John Hughes, and Eugenio Moggi. Monads and effects. In International Summer School on Applied

Semantics, pages 42–122. Springer, 2000.

[BK99] Nick Benton and Andrew Kennedy. Monads, effects and transformations. Electronic Notes in Theoretical

Computer Science, 26:3–20, 1999.

[BKOZB12] Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella Béguelin. Probabilistic relational reasoning

for differential privacy. In Proceedings of the 39th annual ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, pages 97–110, 2012.

[BTSY06] Lars Birkedal, Noah Torp-Smith, and Hongseok Yang. Semantics of separation-logic typing and higher-order

frame rules for algol-like languages. Logical Methods in Computer Science, Volume 2, Issue 5, Nov 2006.

[CH72] Maurice Clint and CAR Hoare. Program proving: Jumps and functions. Acta informatica, 1:214–224, 1972.

[CJ13] Dion Coumans and Bart Jacobs. Scalars, monads, and categories. In Quantum Physics and Linguistics: A

Compositional, Diagrammatic Discourse. Oxford University Press, 02 2013.

[CLW93] Aurelio Carboni, Stephen Lack, and Robert FC Walters. Introduction to extensive and distributive categories.

Journal of Pure and Applied Algebra, 84(2):145–158, 1993.

[Coc93] J. Robin B. Cockett. Introduction to distributive categories. Math. Struct. Comput. Sci., 3(3):277–307, 1993.

[Cro12] Roy L. Crole. Alpha equivalence equalities. Theoretical Computer Science, 433:1–19, 2012.

[Cur12] Pierre-Louis Curien. Operads, clones, and distributive laws. In Operads and universal algebra, pages 25–49.

World Scientific, 2012.

[Dij68] Edsger W Dijkstra. Letters to the editor: go to statement considered harmful. Communications of the ACM,

11(3):147–148, 1968.

[Dij75] Edsger W Dijkstra. Guarded commands, nondeterminacy and formal derivation of programs. Communications

of the ACM, 18(8):453–457, 1975.

[dVK11] Edsko de Vries and Vasileios Koutavas. Reverse hoare logic. In Gilles Barthe, Alberto Pardo, and Gerardo

Schneider, editors, Software Engineering and Formal Methods, pages 155–171. Springer Berlin Heidelberg, 2011.

[Elg75] Calvin C Elgot. Monadic computation and iterative algebraic theories. In Studies in Logic and the Foundations

of Mathematics, volume 80, pages 175–230. Elsevier, 1975.

[Fio93] MP Fiore. A coinduction principle for recursive data types based on bisimulation. In [1993] Proceedings Eighth

Annual IEEE Symposium on Logic in Computer Science, pages 110–119. IEEE, 1993.

[Fio96] Marcelo P Fiore. A coinduction principle for recursive data types based on bisimulation. Information and

Computation, 127(2):186–198, 1996.

, Vol. 1, No. 1, Article . Publication date: July 2025.

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Program Logics via Distributive Monoidal Categories 27

[Flo93] Robert W Floyd. Assigning meanings to programs. In Program Verification: Fundamental Issues in Computer

Science, pages 65–81. Springer, 1993.

[Fü99] Carsten Führmann. Direct models of the computational lambda-calculus. In Proc. MFPS 1999, 1999.

[GBG25a] Leandro Gomes, Patrick Baillot, and Marco Gaboardi. BiGKAT: an algebraic framework for relational verifica-

tion of probabilistic programs. In International Conference on Foundations of Software Science and Computation

Structures, pages 243–264. Springer Nature Switzerland Cham, 2025.

[GBG25b] Leandro Gomes, Patrick Baillot, and Marco Gaboardi. A Kleene algebra with tests for union bound reasoning

about probabilistic programs. In 33rd EACSL Annual Conference on Computer Science Logic (CSL 2025), pages

35–1. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2025.

[Gir82] Michèle Giry. A categorical approach to probability theory. In Categorical aspects of topology and analysis,

pages 68–85. Springer, 1982.

[GK24] Jad Elkhaleq Ghalayini and Neel Krishnaswami. The denotational semantics of ssa. arXiv preprint

arXiv:2411.09347, 2024.

[Gon10] Sergey Goncharov. Kleene Monads. PhD thesis, Universität Bremen, 2010.

[GP99] Murdoch Gabbay and Andrew M. Pitts. A new approach to abstract syntax involving binders. In 14th Annual

IEEE Symposium on Logic in Computer Science, Trento, Italy, July 2-5, 1999, pages 214–224. IEEE Computer

Society, 1999.

[GP02] Murdoch Gabbay and Andrew M. Pitts. A new approach to abstract syntax with variable binding. Formal

Aspects Comput., 13(3-5):341–363, 2002.

[Gra01] Marco Grandis. Finite sets and symmetric simplicial sets. Theory and Applications of Categories [electronic

only], 8:244–252, 2001.

[GRS21] Sergey Goncharov, Christoph Rauch, and Lutz Schröder. A metalanguage for guarded iteration. Theoretical

Computer Science, 880:111–137, 2021.

[Has97] Masahito Hasegawa. Recursion from cyclic sharing: Traced monoidal categories and models of cyclic lambda

calculi. In Philippe de Groote, editor, Typed Lambda Calculi and Applications, Third International Conference on

Typed Lambda Calculi and Applications, TLCA ’97, Nancy, France, April 2-4, 1997, Proceedings, volume 1210 of

Lecture Notes in Computer Science, pages 196–213. Springer, 1997.

[Has02] Masahito Hasegawa. The uniformity principle on traced monoidal categories. In Richard Blute and Peter

Selinger, editors, Category Theory and Computer Science, CTCS 2002, Ottawa, Canada, August 15-17, 2002,

volume 69 of Electronic Notes in Theoretical Computer Science, pages 137–155. Elsevier, 2002.

[Has06] Ichiro Hasuo. Generic forward and backward simulations. In International Conference on Concurrency Theory,

pages 406–420. Springer, 2006.

[Her00] Claudio Hermida. Representable multicategories. Advances in Mathematics, 151(2):164–225, 2000.

[HJ06] Chris Heunen and Bart Jacobs. Arrows, like monads, are monoids. In Stephen D. Brookes and Michael W.

Mislove, editors, Proceedings of the 22nd Annual Conference on Mathematical Foundations of Programming

Semantics, MFPS 2006, Genova, Italy, May 23-27, 2006, volume 158 of Electronic Notes in Theoretical Computer

Science, pages 219–236. Elsevier, 2006.

[HJS06] Ichiro Hasuo, Bart Jacobs, and Ana Sokolova. Generic trace theory. Electronic Notes in Theoretical Computer

Science, 164(1):47–65, 2006.

[Hoa69] Charles Antony Richard Hoare. An axiomatic basis for computer programming. Communications of the ACM,

12(10):576–580, 1969.

[Jac10] Bart Jacobs. From coalgebraic to monoidal traces. Electronic Notes in Theoretical Computer Science, 264(2):125–

140, 2010.

[Jac15] Bart Jacobs. New directions in categorical logic, for classical, probabilistic and quantum logic. Logical Methods

in Computer Science, 11, 2015.

[Jac16] Bart Jacobs. Effectuses from monads. Electronic Notes in Theoretical Computer Science, 325:169–183, 2016.

[Jac18] Bart Jacobs. From probability monads to commutative effectuses. Journal of logical and algebraic methods in

programming, 94:200–237, 2018.

[Jef97] Alan Jeffrey. Premonoidal categories and a graphical view of programs. Preprint at ResearchGate, 1997.

[Joy95] André Joyal. Free bicompletion of enriched categories. Mathematical Reports of the Academy of Sciences,

17(5):213–218, 1995.

[Kam18] Benjamin Lucien Kaminski. Advanced weakest precondition calculi for probabilistic programs. PhD thesis,

RWTH Aachen University, 2018.

[KK17] Benjamin Lucien Kaminski and Joost-Pieter Katoen. A weakest pre-expectation semantics for mixed-sign

expectations. In 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–12.

IEEE, 2017.

, Vol. 1, No. 1, Article . Publication date: July 2025.

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

28 Anon.

[Koz97] Dexter Kozen. Kleene algebra with tests. ACM Transactions on Programming Languages and Systems (TOPLAS),

19(3):427–443, 1997.

[Lac04] Stephen Lack. Composing props. Theory and Applications of Categories, 13(9):147–163, 2004.

[Lam68] Joachim Lambek. Deductive systems and categories i. syntactic calculus and residuated categories. Math. Syst.

Theory, 2(4):287–318, 1968.

[Lap06] Miguel L Laplaza. Coherence for distributivity. In Coherence in categories, pages 29–65. Springer, 2006.

[LCS25] Jack Liell-Cock and Sam Staton. Compositional imprecise probability: A solution from graded monads and

markov categories. Proceedings of the ACM on Programming Languages, 9(POPL):1596–1626, 2025.

[Lev22] Paul Blain Levy. Call-by-Push-Value. ACM SIGLOG News, 9(2):7–29, may 2022.

[LS88] Joachim Lambek and Philip J Scott. Introduction to higher-order categorical logic, volume 7. Cambridge

University Press, 1988.

[MA12] Ernest G Manes and Michael A Arbib. Algebraic approaches to program semantics. Monographs in Computer

Science. Springer New York, NY, 2012.

[MCM06] AK McIver, Ernie Cohen, and CC Morgan. Using probabilistic Kleene algebra for protocol verification. In

Relations and Kleene Algebra in Computer Science: 9th International Conference on Relational Methods in Computer

Science and 4th International Workshop on Applications of Kleene Algebra, RelMiCS/AKA 2006, Manchester, UK,

August 29–September 2, 2006. Proceedings 9, pages 296–310. Springer, 2006.

[Mog91] Eugenio Moggi. Notions of computation and monads. Information and Computation, 93(1):55–92, 1991.

[MZ15] Paul-André Melliès and Noam Zeilberger. Functors are type refinement systems. In Proceedings of the 42nd

Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 3–16, 2015.

[MZ16] Paul-André Melliès and Noam Zeilberger. A bifibrational reconstruction of lawvere’s presheaf hyperdoctrine.

In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, pages 555–564, 2016.

[Nes25] Chad Nester. Elgot categories and abacus programs, 2025.

[O’H19] Peter W O’Hearn. Incorrectness logic. Proceedings of the ACM on Programming Languages, 4(POPL):1–32, 2019.

[Ole83] Frank Joseph Oles. A Category-Theoretic Approach to the Semantics of Programming Languages. Case

Western Reserve University – PhD Thesis, 1983.

[Olm14] Federico Olmedo. Approximate Relational Reasoning for Probabilistic Programs. PhD thesis, Technical University

of Madrid, 2014.

[OP99] Peter W O’Hearn and David J Pym. The logic of bunched implications. Bulletin of Symbolic Logic, 5(2):215–244,

1999.

[ORY01] Peter O’Hearn, John Reynolds, and Hongseok Yang. Local reasoning about programs that alter data structures.

In Computer Science Logic: 15th International Workshop, CSL 2001 10th Annual Conference of the EACSL Paris,

France, September 10–13, 2001, Proceedings 15, pages 1–19. Springer, 2001.

[OYR04] Peter W O’Hearn, Hongseok Yang, and John C Reynolds. Separation and information hiding. In Proceedings of

the 31st ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages 268–280, 2004.

[Pan99] Prakash Panangaden. The Category of Markov Kernels. Electronic Notes in Theoretical Computer Science,

22:171–187, January 1999.

[PR97] John Power and Edmund Robinson. Premonoidal categories and notions of computation. Math. Struct. Comput.

Sci., 7(5):453–468, 1997.

[PT97] John Power and Hayo Thielecke. Environments, continuation semantics and indexed categories. In International

Symposium on Theoretical Aspects of Computer Software, pages 391–414. Springer, 1997.

[RC01] RAG Seely Robin Cockett. Finite sum-product logic. Theory and Applications of Categories, 8:63–99, 2001.

[Rey02] John C Reynolds. Separation logic: A logic for shared mutable data structures. In Proceedings 17th annual IEEE

symposium on logic in computer science, pages 55–74. IEEE, 2002.

[RKK
+
23] Wojciech Różowski, Tobias Kappé, Dexter Kozen, Todd Schmid, and Alexandra Silva. Probabilistic guarded

KAT modulo bisimilarity: Completeness and complexity. In 50th EATCS International Colloquium on Automata,

Languages and Programming, ICALP 2023, page 136. Schloss Dagstuhl-Leibniz-Zentrum fur Informatik GmbH,

Dagstuhl Publishing, 2023.

[Sat16] Tetsuya Sato. Approximate relational hoare logic for continuous random samplings. Electronic Notes in

Theoretical Computer Science, 325:277–298, 2016.

[SFH
+
19] Steffen Smolka, Nate Foster, Justin Hsu, Tobias Kappé, Dexter Kozen, and Alexandra Silva. Guarded Kleene

algebra with tests: verification of uninterpreted programs in nearly linear time. Proceedings of the ACM on

Programming Languages, 4(POPL):1–28, 2019.

[Shu16] Michael Shulman. Categorical logic from a categorical point of view, 2016.

[SP00] Alex Simpson and Gordon Plotkin. Complete axioms for categorical fixed-point operators. In Proceedings

Fifteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No. 99CB36332), pages 30–41. IEEE, 2000.

[Sze86] Ágnes Szendrei. Clones in universal algebra. Les presses de L’universite de Montreal, 1986.

, Vol. 1, No. 1, Article . Publication date: July 2025.

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Program Logics via Distributive Monoidal Categories 29

[Wad98] Philip Wadler. The marriage of effects and monads. In Proceedings of the third ACM SIGPLAN international

conference on Functional programming, pages 63–74, 1998.

[Wal92] Robert F. C. Walters. An imperative language based on distributive categories. Math. Struct. Comput. Sci.,

2(3):249–256, 1992.

[Whi41] Philip M Whitman. Free lattices. Annals of Mathematics, 42(1):325–330, 1941.

[Win93] Glynn Winskel. The formal semantics of programming languages: an introduction. MIT press, 1993.

[ZDS23] Noam Zilberstein, Derek Dreyer, and Alexandra Silva. Outcome logic: A unifying foundation for correctness

and incorrectness reasoning. Proceedings of the ACM on Programming Languages, 7(OOPSLA1):522–550, 2023.

[ZK22] Linpeng Zhang and Benjamin Lucien Kaminski. Quantitative strongest post: a calculus for reasoning about the

flow of quantitative information. Proceedings of the ACM on Programming Languages, 6(OOPSLA1):1–29, 2022.

[ZKST25] Noam Zilberstein, Dexter Kozen, Alexandra Silva, and Joseph Tassarotti. A demonic outcome logic for

randomized nondeterminism. Proceedings of the ACM on Programming Languages, 9(POPL):539–568, 2025.

[ZSS24] Noam Zilberstein, Angelina Saliling, and Alexandra Silva. Outcome separation logic: local reasoning for

correctness and incorrectness with computational effects. Proceedings of the ACM on Programming Languages,

8(OOPSLA1):276–304, 2024.

, Vol. 1, No. 1, Article . Publication date: July 2025.

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

30 Anon.

A Proofs for Section 2 (An internal distributive language)
Let us restate the rules of the lanugage in a more compact way, using vectors instead of lists.

Return

(®𝑥 : ®𝑋) ∈ Γ (𝛼𝛼𝛼 : ®𝑋) ∈ Δ
Γ ⊢ 𝛼𝛼𝛼 (®𝑥) : Δ

Generator

𝑓 ∈ G(®𝑋 ; ®𝑌1, ..., ®𝑌ℓ) (®𝑥 : ®𝑋) ∈ Γ {(®𝑦𝑖 : ®𝑌𝑖), Γ ⊢ 𝑝𝑖 : Δ}ℓ𝑖=1
Γ ⊢ 𝑓 (®𝑥){®𝑦𝑖 ⇒ 𝑝𝑖 }ℓ𝑖=1

Loop

{(𝑥𝑖 : 𝑋𝑖) ∈ Γ}𝑛𝑖=1 (®𝑢 : ®𝑋), Γ ⊢ 𝑝 : (𝛼𝛼𝛼 : ®𝑋),Δ
Γ ⊢ loop 𝛼𝛼𝛼 (®𝑥){®𝑢 ⇒ 𝑝} : Δ

A.1 Alpha equivalence
We work up to 𝛼-equivalence of variables and labels, formalized by nominal techniques and variable

permutations [GP99, GP02, Cro12]: essentially, the groups of automorphisms of both variables and

labels, Aut(V) and Aut(A), act on terms by structural induction (Theorems 91 and 92) and bound

variables are quotiented accordingly (Theorem 94). Because we ask the sets of variables and labels,

V and A, to be countably infinite sets—and because any term contains always a finite number of

variables and labels—there are always variables and labels that do not appear in any finite collection

of terms: these are called fresh.

Definition 91 (Label automorphisms on terms). Automorphisms of labels, 𝜏 ∈ Aut(A), act on a

term, 𝑡 , yielding a new term, 𝜏 · 𝑡 , inductively defined as follows.

𝜏 · (𝛼𝛼𝛼 (®𝑥)) = (𝜏𝛼𝛼𝛼) (®𝑥);
𝜏 · (loop 𝛼𝛼𝛼 (®𝑥){®𝑢.𝑝}) = loop (𝜏𝛼𝛼𝛼) (®𝑥){®𝑢.(𝜏 · 𝑝)};

𝜏 · (𝑓 (®𝑥){®𝑦𝑖 .𝑝𝑖 }) = 𝑓 (®𝑥){®𝑦𝑖 .(𝜏 · 𝑝𝑖)}.

Definition 92 (Variable automorphisms on indexed terms). Automorphisms of variables, 𝜎 ∈
Aut(V) act on a term, 𝑝 , under an index, yielding a new term, 𝜎 · 𝑝 , inductively defined as follows.

𝜎 · (𝛼𝛼𝛼 (®𝑥)) = 𝛼𝛼𝛼 (𝜎 ®𝑥);
𝜎 · (loop 𝛼𝛼𝛼 (®𝑥){®𝑢.𝑝}) = loop 𝛼𝛼𝛼 (𝜎 ®𝑥){𝜎 ®𝑢.(𝜎 · 𝑝)};

𝜎 · (𝑓 (®𝑥){®𝑦𝑖 .𝑝𝑖 }) = 𝑓 (𝜎 ®𝑥){𝜎 ®𝑦𝑖 .(𝜎 · 𝑝𝑖)}.
Note how automorphisms act on both bound and free variables; the distinction between bound and

free variables only becomes apparent when discussing alpha-equivalence (Theorem 94).

Remark 93 (Simple permutations, and shadowing). From now on, we write (𝑥 𝑦) to refer to the

permutation that exchanges 𝑥 by𝑦 and viceversa. We also write (®𝑢 ®𝑥) for the composite permutation

(𝑢𝑛 𝑥𝑛) . . . (𝑢1 𝑥1). Importantly for shadowing, this is different from (𝑢1 𝑥1) . . . (𝑢𝑛 𝑥𝑛): while both
permutations coincide whenever the variables are different, the first permutation decides that 𝑢𝑖
will shadow 𝑢 𝑗 whenever 𝑖 < 𝑗 for 𝑥𝑖 = 𝑥 𝑗 .

Axiom 94 (Alpha-equivalence of terms). Two terms, under the same context and index, Γ ⊢ 𝑝 : Δ
and Γ ⊢ 𝑞 : Δ, are 𝛼-equivalent when they are related inductively by the following rules.

Return

{(𝑥𝑖 : 𝑋𝑖) ∈ Γ}𝑛𝑖=1 (𝛼𝛼𝛼 : 𝑋1, ..., 𝑋𝑛) ∈ Δ
Γ ⊢ 𝛼𝛼𝛼 (𝑥1, ..., 𝑥𝑛) ≡ 𝛼𝛼𝛼 (𝑥1, ..., 𝑥𝑛) : Δ

, Vol. 1, No. 1, Article . Publication date: July 2025.

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

Program Logics via Distributive Monoidal Categories 31

Loop

{(®𝑥 : ®𝑋) ∈ Γ} 𝛾𝛾𝛾 fresh (®𝑦 : ®𝑌) fresh
Γ ⊢ ((®𝑦 ®𝑢) · (𝛾𝛾𝛾 𝛼𝛼𝛼) · 𝑝) ≡ ((®𝑦 ®𝑣) · (𝛾𝛾𝛾 𝛽𝛽𝛽) · 𝑞) : 𝛾𝛾𝛾 (𝑋1, ..., 𝑋𝑛),Δ

Γ ⊢ (loop 𝛼𝛼𝛼 (®𝑥){®𝑢.𝑝}) ≡ (loop 𝛽𝛽𝛽 (®𝑥){®𝑣 .𝑞}) : Δ
Generator (𝑓)

{(𝑥𝑖 : 𝑋𝑖) ∈ Γ}𝑛𝑖=1 {(®𝑦𝑖 : ®𝑌𝑖) fresh}𝑛𝑖=1 {®𝑦𝑖 : ®𝑌𝑖 , Γ ⊢ ((®𝑦𝑖 ®𝑢𝑖) · 𝑝𝑖) ≡ ((®𝑦𝑖 ®𝑣𝑖) · 𝑞𝑖) : Δ}ℓ𝑖=1
Γ ⊢ 𝑓 (®𝑥){®𝑢𝑖 .𝑝𝑖 }ℓ𝑖=1 ≡ 𝑓 (®𝑥){®𝑣𝑖 .𝑞𝑖 }ℓ𝑖=1 : Δ

Definition 95 (Alpha-equivalence of derivations). Two derivations are 𝛼-equivalent if, after

refreshing the variables on their contexts and the labels on their indices, their terms are 𝛼-equivalent

under the same context and labels. That is, we say that (®𝑥 : ®𝑋) ⊢ 𝑝 : (®𝛼𝛼𝛼 : ®Ψ) and (®𝑦 : ®𝑋) ⊢ 𝑞 : (®𝛽𝛽𝛽 : ®Ψ)
are 𝛼-equivalent their substitutions with fresh variables and labels coincide.

®𝑧 : ®𝑋 ⊢ (®𝑧 ®𝑥) · ((®𝜔𝜔𝜔 ®𝛼𝛼𝛼) · 𝑝) ≡ (®𝑧 ®𝑦) · ((®𝜔𝜔𝜔 ®𝛽𝛽𝛽) · 𝑞) : (®𝜔𝜔𝜔 : ®Ψ).

Proposition 15 (Label exchange, contraction, and weakening). Exchange, contraction, and
weakening for labels are derivable.

lblExchange

Γ ⊢ 𝑝 : Δ1, (𝛼𝛼𝛼1 : Ψ1), (𝛼𝛼𝛼2 : Ψ2),Δ2

Γ ⊢ 𝑝 : Δ1, (𝛼𝛼𝛼2 : Ψ2), (𝛼𝛼𝛼1 : Ψ1),Δ2

lblContraction

Γ ⊢ 𝑝 : Δ1, (𝛼𝛼𝛼1 : Ψ), (𝛼𝛼𝛼2 : Ψ),Δ2

Γ ⊢ lCntr𝛼𝛼𝛼1,𝛼𝛼𝛼2
(𝑝) : Δ1, (𝛼𝛼𝛼 : Ψ),Δ2

lblWeakening

Γ ⊢ 𝑝 : Δ1,Δ2

Γ ⊢ 𝑝 : Δ1, (𝛼𝛼𝛼 : Ψ),Δ2

Proof. In order to derive lblExchange, we proceed by structural induction on terms: (i) if the

term is a return statement, we simply notice that membership to the set of labels has not been

altered; (ii) if the term is a loop, we apply the induction hypothesis to the body of the loop, which,

from (𝜔𝜔𝜔 : Ψ),Δ1, (𝛼𝛼𝛼1 : Ψ1), (𝛼𝛼𝛼2 : Ψ2),Δ2, becomes (𝜔𝜔𝜔 : Ψ),Δ1, (𝛼𝛼𝛼2 : Ψ2), (𝛼𝛼𝛼1 : Ψ1),Δ2; and (iii) if the

term is a generator statement, we apply the induction hypothesis to each one of its branches.

In order to derive lblContraction, we proceed by structural induction on terms: (i) we apply

𝛼𝛼𝛼 , whenever we find 𝛼𝛼𝛼1 or 𝛼𝛼𝛼2, and leave the rest of the term unchanged. We may assume that any

label𝜔𝜔𝜔 that we find at the head of a loop is fresh.

lCntr𝛼𝛼𝛼1,𝛼𝛼𝛼2
(𝛼𝛼𝛼1 (𝑥1, ..., 𝑥𝑛)) = 𝛼𝛼𝛼 (𝑥1, ..., 𝑥𝑛);

lCntr𝛼𝛼𝛼1,𝛼𝛼𝛼2
(𝛼𝛼𝛼2 (𝑥1, ..., 𝑥𝑛)) = 𝛼𝛼𝛼 (𝑥1, ..., 𝑥𝑛);

lCntr𝛼𝛼𝛼1,𝛼𝛼𝛼2
(𝜔𝜔𝜔 (𝑥1, ..., 𝑥𝑛)) =𝜔𝜔𝜔 (𝑥1, ..., 𝑥𝑛), for 𝜔 ≠ 𝛼1, 𝜔 ≠ 𝛼2

lCntr𝛼𝛼𝛼1,𝛼𝛼𝛼2
(loop𝜔𝜔𝜔 (𝑥1, ..., 𝑥𝑛){𝑝}) = loop𝜔𝜔𝜔 (𝑥1, ..., 𝑥𝑛){lCntr𝛼𝛼𝛼1,𝛼𝛼𝛼2

(𝑝)};
lCntr𝛼𝛼𝛼1,𝛼𝛼𝛼2

(𝑓 (®𝑥){®𝑦𝑖 ⇒ 𝑝𝑖 }) = 𝑓 (®𝑥){®𝑦𝑖 ⇒ lCntr𝛼𝛼𝛼1,𝛼𝛼𝛼2
(𝑝𝑖)}.

Finally, in order to derive lblWeak, we proceed by structural induction on terms: (i) if the term

is a return statement, we simply notice that membership to the set of labels has not been altered;

(ii) if the term is a loop, we apply the induction hypothesis to the body of the loop; and (iii) if the

term is a generator statement, we apply the induction hypothesis to each one of its branches. □

Proposition 16 (Index tensor exchange, contraction, weakening). Exchange, copying, and
discarding for variables on the index are derivable.

rExchange

Γ ⊢ 𝑝 : Δ1, (𝛼𝛼𝛼 : Ψ1, 𝑋1, 𝑋2,Ψ2),Δ2

Γ ⊢ rExch(𝑝) : Δ1, (𝛼𝛼𝛼 : Ψ1, 𝑋2, 𝑋1,Ψ2),Δ2

rCopying

Γ ⊢ 𝑝 : Δ1, (: Ψ1, 𝑋,Ψ2),Δ2

Γ ⊢ rCopy(𝑝) : Δ1, (𝛼𝛼𝛼 : Ψ1, 𝑋, 𝑋,Ψ2),Δ2

rDiscarding

Γ ⊢ 𝑝 : Δ1, (𝛼𝛼𝛼 : Ψ1, 𝑋,Ψ2),Δ2

Γ ⊢ rDisc(𝑝) : Δ1, (𝛼𝛼𝛼 : Ψ1,Ψ2),Δ2

, Vol. 1, No. 1, Article . Publication date: July 2025.

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

32 Anon.

Proof. In order to derive rExchange, we proceed by structural induction on terms.We exchange

two variables each time we find the right label, 𝛼𝛼𝛼 ; and we leave the rest of the term unchanged.

rExch(𝛼𝛼𝛼 (𝑦1, ..., 𝑥1, 𝑥2, ..., 𝑦𝑛)) = 𝛼𝛼𝛼 (𝑦1, ..., 𝑥2, 𝑥1, ..., 𝑦𝑛);
rExch(𝜔𝜔𝜔 (𝑧1, ..., 𝑧𝑚)) =𝜔𝜔𝜔 (𝑧1, ..., 𝑧𝑚), when𝜔𝜔𝜔 ≠ 𝛼𝛼𝛼 ;

rExch(loop𝜔𝜔𝜔 (𝑥1, ..., 𝑥𝑛){𝑝}) = loop𝜔𝜔𝜔 (𝑥1, ..., 𝑥𝑛){rExch(𝑝)};
rExch(𝑓 (®𝑥){®𝑦𝑖 ⇒ 𝑝𝑖, 𝑗 }) = 𝑓 (®𝑥){®𝑦𝑖 ⇒ rExch(𝑝𝑖, 𝑗)}.

In order to derive rCopying, we proceed by structural induction on terms. We return twice the

variable we are duplicating; and we leave the rest of the term unchanged.

rCopy(𝛼𝛼𝛼 (𝑦1, ..., 𝑥, ..., 𝑦𝑛)) = 𝛼𝛼𝛼 (𝑦1, ..., 𝑥, 𝑥, ..., 𝑦𝑛);
rCopy(𝜔𝜔𝜔 (𝑧1, ..., 𝑧𝑚)) =𝜔𝜔𝜔 (𝑧1, ..., 𝑧𝑚), when𝜔𝜔𝜔 ≠ 𝛼𝛼𝛼 ;

rCopy(loop 𝜔 (𝑥1, ..., 𝑥𝑛){𝑝}) = loop 𝜔 (𝑥1, ..., 𝑥𝑛){rCopy(𝑝)};
rCopy(𝑓 (®𝑥){®𝑦𝑖 ⇒ 𝑝𝑖, 𝑗 }) = 𝑓 (®𝑥){®𝑦𝑖 ⇒ rCopy(𝑝𝑖, 𝑗)}.

In order to derive rDiscard, we proceed by structural induction on terms. We avoid returning

the variable we are discarding; and we leave the rest of the term unchanged.

rDisc(𝛼𝛼𝛼 (𝑦1, ..., 𝑥, ..., 𝑦𝑛)) = 𝛼𝛼𝛼 (𝑦1, ..., ..., 𝑦𝑛);
rDisc(𝜔𝜔𝜔 (𝑧1, ..., 𝑧𝑚)) =𝜔𝜔𝜔 (𝑧1, ..., 𝑧𝑚), when𝜔𝜔𝜔 ≠ 𝛼𝛼𝛼 ;

rDisc(loop 𝜔 (𝑥1, ..., 𝑥𝑛){𝑝}) = loop 𝜔 (𝑥1, ..., 𝑥𝑛){rDisc(𝑝)};
rDisc(𝑓 (®𝑥){®𝑦𝑖 ⇒ 𝑝𝑖, 𝑗 }) = 𝑓 (®𝑥){®𝑦𝑖 ⇒ rDisc(𝑝𝑖, 𝑗)}.

□

Proposition 17 (Variable exchange and contraction). Variable exchange, variable contraction,
and variable weakening are derivable.

varExchange

Γ1, (𝑥 : 𝑋), (𝑦 : 𝑌), Γ2 ⊢ 𝑝 : Δ

Γ1, (𝑦 : 𝑌), (𝑥 : 𝑋), Γ2 ⊢ 𝑝 : Δ

varContraction

Γ1, (𝑥1 : 𝑋), (𝑥2 : 𝑋), Γ2 ⊢ 𝑝 : Δ

Γ1, (𝑥 : 𝑋), Γ2 ⊢ 𝑝 [𝑥1, 𝑥2 \ 𝑥, 𝑥] : Δ

varWeakening

Γ1, Γ2 ⊢ 𝑝 : Δ

Γ1, (𝑥 : 𝑋), Γ2 ⊢ 𝑝 : Δ

Proof. We derive varExchange by structural induction: (i) if the term is a return statement,

variable membership has is not altered and it can be constructed in the same way; (ii) if the term is

a loop, we apply the induction hypothesis to its body; and (iii) if the term is a generator, we apply

structural induction on each one of the branches.

We derive varContraction by structural induction: (i) if the term is a return statement, it now

contains 𝑥 in place of 𝑥1 and 𝑥2, so it can be derived with the new context; (ii) if the term is a loop,

we apply substitution to its variables and the induction hypothesis to its body; and (iii) if the term

is a generator, we apply structural induction on each one of the branches.

We derive varWeakening by structural induction: the whole term is left unchanged. □

B Proofs for Section 3 (Guards, predicates and commands)
Proposition 23. Guards form a pair of commutative monoids, and negation is an involutive homo-

morphism between them.

𝑏1∧𝑏2 ≡ 𝑏2∧𝑏1; (𝑏1∧𝑏2)∧𝑏3 ≡ 𝑏1∧(𝑏2∧𝑏3); 𝑏∧LLL ≡ 𝑏;
𝑏1∨𝑏2 ≡ 𝑏2∨𝑏1; (𝑏1∨𝑏2)∨𝑏3 ≡ 𝑏1∨(𝑏2∨𝑏3); 𝑏∨RRR ≡ 𝑏;

¬(𝑏1∧𝑏2) ≡ ¬𝑏2∨¬𝑏1; ¬(¬𝑏) ≡ 𝑏.

, Vol. 1, No. 1, Article . Publication date: July 2025.

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

Program Logics via Distributive Monoidal Categories 33

For any total guard, Γ ⊢ 𝑏𝑡 : Ω, we additionally have the annihilator rules, 𝑏𝑡∧RRR ≡ RRR and 𝑏𝑡∨LLL ≡ LLL.
For any deterministic guard, Γ ⊢ 𝑏𝑑 : Ω, we additionally have the idempotency rules. 𝑏𝑑∧𝑏𝑑 ≡ 𝑏𝑑 and

𝑏𝑑∨𝑏𝑑 ≡ 𝑏𝑑 .

Proof. Let us prove 𝑏1∧𝑏2 ≡ 𝑏2∧𝑏1. We reason by (i) the definition of conjunction, (ii) the

interchange axiom, and (iii) the definition of conjunction.

𝑏1∧𝑏2
(i)

≡
𝑏1 [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \ 𝑏2, 𝑏2 [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \𝛼𝛼𝛼2,𝛼𝛼𝛼2]]

(ii)

≡
𝑏2 [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \ 𝑏1, 𝑏1 [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \𝛼𝛼𝛼2,𝛼𝛼𝛼2]]

(iii)

≡
𝑏1∧𝑏2.

Proving 𝑏1∨𝑏2 ≡ 𝑏2∨𝑏1 is analogous.
Let us prove ¬(𝑏1∧𝑏2) ≡ ¬𝑏2∧¬𝑏1. We reason by (i) definition of conjunction and negation, (ii)

the identity substitution, (iii) composing substitutions, (iv) the definition of negation, again, (v) the

definition of negation, and (vi) the definition of disjunction.

¬(𝑏1∧𝑏2)
(i)

≡
𝑏1 [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \ 𝑏2, 𝑏2 [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \𝛼𝛼𝛼2,𝛼𝛼𝛼2]] [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \𝛼𝛼𝛼2,𝛼𝛼𝛼1]

(ii)

≡
𝑏1 [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \ 𝑏2 [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \𝛼𝛼𝛼1,𝛼𝛼𝛼2], 𝑏2 [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \𝛼𝛼𝛼2,𝛼𝛼𝛼2]] [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \𝛼𝛼𝛼2,𝛼𝛼𝛼1]

(iii)

≡
𝑏1 [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \ 𝑏2 [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \𝛼𝛼𝛼2,𝛼𝛼𝛼1], 𝑏2 [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \𝛼𝛼𝛼1,𝛼𝛼𝛼1]]

(iv)

≡
(¬𝑏1) [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \ 𝑏2 [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \𝛼𝛼𝛼1,𝛼𝛼𝛼1], 𝑏2 [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \𝛼𝛼𝛼2,𝛼𝛼𝛼1]]

(v)

≡
(¬𝑏1) [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \ (¬𝑏2) [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \𝛼𝛼𝛼1,𝛼𝛼𝛼1], (¬𝑏2) [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \𝛼𝛼𝛼1,𝛼𝛼𝛼2]]

(vi)

≡
¬𝑏1∨¬𝑏2.

The rest of the proofs are analogous. □

Proposition 26. The following equations hold for predicate combinators: predicates form a commu-

tative monoid with conjunction and truth, with falsehood as an absorbing element, that distributes

over choices.

𝑝 ∧ 𝑞 ≡ 𝑞 ∧ 𝑝; 𝑝 ∧ (𝑞 ∧ 𝑟) ≡ (𝑝 ∧ 𝑞) ∧ 𝑟 ; 𝑝 ∧ ⊤ ≡ 𝑝; 𝑝 ∧ ⊥ ≡ ⊥;
𝑝 ∧ (𝑞 +𝑏 𝑟) ≡ (𝑝 ∧ 𝑞) +𝑏 (𝑝 ∧ 𝑟).

For any total predicate, Γ ⊢ 𝑝𝑡 : Υ, we have it collapse, 𝑝 ≡ ⊤. For any deterministic predicate,

Γ ⊢ 𝑝𝑑 : Υ, we have the idempotency rule, 𝑝𝑑 ∧ 𝑝𝑑 ≡ 𝑝𝑑 .

Proof. Let us prove, for instance, that 𝑝 ∧ (𝑞 +𝑏 𝑟) ≡ (𝑝 ∧ 𝑞) +𝑏 (𝑝 ∧ 𝑟). We reason by (i) the

definition of conjunction, (ii) the definition of conditional, (iii) the interchange axiom, and (iv) the

definitions of conditional and conjunction again.

𝑝 ∧ 𝑞 +𝑏 𝑟
(i)

≡
𝑝 [𝜈𝜈𝜈 \ 𝑞 +𝑏 𝑟]

(ii)

≡
𝑝 [𝜈𝜈𝜈 \ 𝑏 [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \ 𝑞, 𝑟]]

(iii)

≡
𝑏 [𝛼𝛼𝛼1,𝛼𝛼𝛼2 \ 𝑝 [𝜈𝜈𝜈 \ 𝑞], 𝑝 [𝜈𝜈𝜈 \ 𝑟]]

(iv)

≡
(𝑝 ∧ 𝑞) +𝑏 (𝑝 ∧ 𝑟).

The rest of the proofs are analogous and follow from computing substitutions. □

, Vol. 1, No. 1, Article . Publication date: July 2025.

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

34 Anon.

Proposition 29. The following equations hold for command combinators. In particular, commands

form a monoid, with composition and skip.

(𝑐1 ; 𝑐2) ; 𝑐3 ≡ 𝑐1 ; (𝑐2 ; 𝑐3); (𝑐 ; skip) ≡ 𝑐 ≡ (skip ;𝑐); abort; 𝑐 ≡ abort ≡ 𝑐 ; abort;
if LLL then 𝑐1 else 𝑐2 ≡ 𝑐1; if RRR then 𝑐1 else 𝑐2 ≡ 𝑐2; if (¬𝑏) then 𝑐1 else 𝑐2 ≡ if 𝑏 then 𝑐2 else 𝑐1;

while𝑏 do 𝑐 ≡ if 𝑏 then(𝑐 ; while𝑏 do 𝑐) else skip; while𝑏 do abort ≡ assert (¬𝑏)#;
if 𝑏 then 𝑐1 else 𝑐2 ; 𝑑 ≡ if 𝑏 then(𝑐1;𝑑) else(𝑐2;𝑑);

assert 𝑝; assert𝑞 ≡ assert(𝑝 ∧ 𝑞); assert𝑏# ≡ if 𝑏 then skip else abort;

assert⊤ ≡ skip; assert⊥ ≡ abort; assert(𝑝 +𝑏 𝑞) = if 𝑏 then(assert𝑝) else(assert𝑞)

Proof. Let us prove, for instance, that while𝑏 do 𝑐 ≡ if 𝑏 then(𝑐 ; while𝑏 do 𝑐) else skip. We

reason by (i) the definition of while, (ii) the fixpoint rule (Theorem 14), (iii) the definition of while,
and (iv) the definition of command concatenation.

while𝑏 do 𝑐
(i)

≡
loop 𝛼𝛼𝛼 (®𝑥){if 𝑏 then 𝑐 [𝜂𝜂𝜂 \ ®𝑥 .𝛼𝛼𝛼 (®𝑥)] else skip}

(ii)

≡
if 𝑏 then 𝑐 [𝜂𝜂𝜂 \ ®𝑥 .loop 𝛼𝛼𝛼 (®𝑥){if 𝑏 then 𝑐 [𝜂𝜂𝜂 \ ®𝑥 .𝛼𝛼𝛼 (®𝑥)] else skip}] else skip

(iii)

≡
if 𝑏 then 𝑐 [𝜂𝜂𝜂 \ ®𝑥 .while𝑏 do 𝑐] else skip

(iv)

≡
if 𝑏 then(𝑐;while𝑏 do 𝑐) else skip .

The rest of the equations follow from similar principles. □

Lemma 96.
𝑙 ; L𝑏1M{𝑐1}{𝑐2} ≤ L𝑏2M{𝑑1 ; 𝑙}{𝑑2}

𝑙 ; (while𝑏1 do 𝑐1) ; 𝑐2 ≤ (while𝑏2 do𝑑1) ; 𝑑2
Proposition 97. The following equations hold for deterministic guards.

L𝑏M{skip}{skip} ≡ L𝑏M{assert𝑏#}{assert (¬𝑏)#}
if 𝑏 then 𝑐1 else 𝑐2 ≡ if 𝑏 then(assert𝑏# ; 𝑐1) else(assert (¬𝑏)# ; 𝑐2).

Lemma 98. For a total guard 𝑏 : 𝑋 → 1 + 1, then if 𝑏𝑡 then skip else skip ≡ skip.

Lemma 99. In a commutative imperative category, predicates and guards interchange: for a predicate

𝑝 : 𝑋 → 1 and a guard 𝑏 : 𝑋 → 1 + 1, then assert 𝑝 ; L𝑏M{skip}{skip} = L𝑏M{assert𝑝}{assert𝑝}.

Lemma 100. In a commutative imperative category, constant guards interchange with anything: for

a guard 𝑏 : 1→ 1 + 1 and a morphism 𝑓 : 𝑋 → 𝑌 , then 𝑓 ; L𝑏𝑌 M{skip}{skip} = L𝑏𝑋 M{𝑓 }{𝑓 }, where
𝑏𝑋 = 𝜀𝑋 # 𝑏 is the guard on 𝑋 associated to 𝑏.

C Proofs for Section 4 (Categorical semantics)
Definition 101 (Sesquifunctor). A (two-variable) sesquifunctor, 𝐹 : (A,B) → C, consists of an
assignment on objects, 𝐹 (𝐴, 𝐵) ∈ C𝑜𝑏 𝑗 for 𝐴 ∈ A𝑜𝑏 𝑗 and 𝐵 ∈ B𝑜𝑏 𝑗 , and two assignments on

morphisms,

𝐹 (𝑓 ; id𝐵) : 𝐹 (𝐴;𝐵) → 𝐹 (𝐴′;𝐵), for each 𝑓 : 𝐴→ 𝐴′; and

𝐹 (id𝐴;𝑔) : 𝐹 (𝐴;𝐵) → 𝐹 (𝐴;𝐵′), for each 𝑔 : 𝐵 → 𝐵′;

satisfying the sesquifunctoriality axioms,

(1) 𝐹 (𝑓 # 𝑓 ′; id𝐵) = 𝐹 (𝑓 , id𝐵) # 𝐹 (𝑓 ′; id𝐵),
(2) 𝐹 (id𝐴;𝑔 # 𝑔′) = 𝐹 (id𝐴, 𝑔) # 𝐹 (id𝐴;𝑔′), and

, Vol. 1, No. 1, Article . Publication date: July 2025.

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

Program Logics via Distributive Monoidal Categories 35

(3) 𝐹 (id𝐴; id𝐵) = id𝐴⊗𝐵 .

Crucially, a sesquifunctor does not necessarily satisfy the bifunctoriality axiom,

𝐹 (𝑓 ; id𝐵) # 𝐹 (id𝐴′ ;𝑔) ≠ 𝐹 (id𝐴;𝑔) # 𝐹 (𝑓 ; id𝐵′).

Definition 102 (Symmetric premonoidal category). A symmetric premonoidal category—precisely,

a symmetric strict premonoidal category, or permutative premonoidal category—consists of a (strict)

premonoidal category endowed with a family of morphisms, 𝜎𝐴,𝐵 : 𝐴 ⊗ 𝐵 → 𝐵 ⊗ 𝐴, satisfying all
formal distinctly typed equations.

Lemma 47 (Terms form a predistributive copy-discard multicategory). Terms form a predis-

tributive copy-discard multicategory. Variable multiwhiskering (multiWhisk-r and multiWhisk-l),

where we add the same type to the premises and to each one of the conclusions, are derivable.

multiWhisk-l

Γ ⊢ 𝑝 : (𝛼𝛼𝛼1 : Ψ1), ..., (𝛼𝛼𝛼𝑛 : Ψ𝑛)
Γ, (𝑤 : 𝑋) ⊢ 𝑋 ⋉ 𝑝 : (𝛼𝛼𝛼1 : 𝑋,Ψ1), ..., (𝛼𝛼𝛼𝑛 : 𝑋,Ψ𝑛)

multiWhisk-r

Γ ⊢ 𝑝 : (𝛼𝛼𝛼1 : Ψ1), ..., (𝛼𝛼𝛼𝑛 : Ψ𝑛)
Γ, (𝑤 : 𝑋) ⊢ 𝑝 ⋊ 𝑋 : (𝛼𝛼𝛼1 : Ψ1, 𝑋), ..., (𝛼𝛼𝛼𝑛 : Ψ𝑛, 𝑋)

The copy-discard category structure follows from the rest of the structural rules (Theorem 16).

Proof. In order to derive multiWhisk-r, we proceed by structural induction on the term: (i)

if the term is a return statement, we add the extra variable; (ii) if the term is a loop, we apply

the induction hypothesis to the body of the loop; (iii) if the term is a generator, we apply the

induction hypothesis to each one of its branches. In order to deriveWhiskering, we first apply

multiWhiskering and then rDiscarding.

𝛼𝛼𝛼 (®𝑥) ⋊ 𝑋 ≡ 𝛼𝛼𝛼 (®𝑥,𝑤);
loop 𝛼𝛼𝛼 (®𝑥){®𝑢.𝑝} ⋊ 𝑋 ≡ loop 𝛼𝛼𝛼 (®𝑥,𝑤){®𝑢, 𝑣 .𝑝 ⋊ 𝑋 [𝑤 \ 𝑣]};
(𝑓 (®𝑥){®𝑢𝑖 .𝑝𝑖 }𝑖) ⋊ 𝑋 ≡ 𝑓 (®𝑥){®𝑢𝑖 .(𝑝𝑖 ⋊ 𝑋)}.

In order to derive multiWhisk-l, we can use multiWhisk-r and the variable exchange rule

(Theorem 16). □

Remark 103. Variable whiskering (whisk), where we add the same type to the premises and to one

of the conclusions, is also derivable by weakening.

Whiskering

Γ ⊢ 𝑝 : (𝛼𝛼𝛼1 : Ψ1), ..., (𝛼𝛼𝛼𝑛 : Ψ𝑛)
Γ, (𝑥 : 𝑋) ⊢ whisk(𝑝) : (𝛼𝛼𝛼1 : Ψ1, 𝑋), (𝛼𝛼𝛼2 : Ψ2), ..., (𝛼𝛼𝛼𝑛 : Ψ𝑛)

Theorem 54 (Denotational semantics). Consider an assignment from a distributive signature

(B,G) to the underlying distributive signature of an imperative multicategory, (C𝑜𝑏 𝑗 ,C), given
by an assignment on objects, L•M𝑜𝑏 𝑗 : B → C𝑜𝑏 𝑗—which extends to an assignment on lists of types,

J•K⊗ : List(B) → C𝑜𝑏 𝑗 , defined inductively by JK⊗ = 𝐼 and J𝑋, ®𝑋 K⊗ = J𝑋 K⊗J ®𝑋 K⊗—and an assignment

on generators preserving their type,

L•M : G(®𝑋 ; ®𝑌1, ..., ®𝑌𝑛) → C(L ®𝑋 M; L®𝑌1M + ... + L®𝑌𝑛M).
It extends to an assignment, J•K : (®𝑥 : ®𝑋 ⊢ (𝛼𝛼𝛼1 :

®𝑌1), ..., (𝛼𝛼𝛼1 :
®𝑌𝑛)) → C(J ®𝑋 K⊗ ; J®𝑌1K⊗ + ... + J®𝑌𝑛K⊗),

from terms to morphisms of the multicategory C.

Proof. Let context and index be Γ = (𝑥1 : 𝑋1, ..., 𝑥𝑛 : 𝑋𝑛) and Δ = (𝛼𝛼𝛼1 : (𝑌1, ..., 𝑌𝑘1)), ..., (𝛼𝛼𝛼𝑙 :
(𝑌1, ..., 𝑌𝑘𝑙)). We proceed by structural induction on terms.

Let us define the interpretation of the return statement. Given any finite function 𝜎 : 𝑚 → 𝑛, we

write ®𝑥𝜎 for the list of𝑚 variables that we pick according to the function, ®𝑥𝜎 = 𝑥𝜎 (1) , ..., 𝑥𝜎 (𝑚) . Recall

, Vol. 1, No. 1, Article . Publication date: July 2025.

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

36 Anon.

that, in any copy-discard category, we have a morphism 𝜎★ ∈ C(𝑋1 ⊗ ... ⊗ 𝑋𝑛 ;𝑋𝜎 (1) ⊗ ... ⊗ 𝑋𝜎 (𝑛)).
Recall, moreover, that in any cocartesian multicategory, given any index 𝑖 , we have an action

(•) · 𝑖∗ : C(𝐴;𝐵) → C(𝐴;𝐶1, ..., 𝐵
(𝑖) , ...,𝐶𝑙). We define the interpretation of a return statement as

follows.

JΓ ⊢ 𝛼𝛼𝛼𝑖 (®𝑥𝜎) : ΔK = (𝜎★) · 𝑖∗ .
Let us define the interpretation of the loop statement. The difficulty of this case is that we

want to allow two classes of variables: those that get updated by the loop and those that do not.

Categorically, there is no such distinction, and all variables must be copied to each iteration of

the loop to be discarded at the end. Given two finite functions, 𝜎 : 𝑚1 → 𝑛 and 𝜏 : 𝑚2 → 𝑛, we

write their copairing—the function that acts as 𝜎 on the first 𝑚1 elements and as 𝜏 on the last

𝑚2—as [𝜎, 𝜏] : 𝑚1 +𝑚2 → 𝑛. In the following formula, the morphism [𝜎, id𝑛]★ : 𝑋1 ⊗ ... ⊗ 𝑋𝑛 →
𝑋𝜎 (1) ⊗ ... ⊗ 𝑋𝜎 (𝑚) ⊗ 𝑋1 ⊗ ... ⊗ 𝑋𝑛 picks apart the variables that will be updated by the body of

the loop; the morphism 𝜈 = (id𝑚 + [id𝑛, id𝑛])★ : 𝑋𝜎 (1) ⊗ ... ⊗ 𝑋𝜎 (𝑚) ⊗ 𝑋1 ⊗ ... ⊗ 𝑋𝑛 → 𝑋𝜎 (1) ⊗ ... ⊗
𝑋𝜎 (𝑚) ⊗𝑋1 ⊗ ...⊗𝑋𝑛 ⊗𝑋1 ⊗ ...⊗𝑋𝑛 passes a copy of the non-updated variables to the next iteration;

and the inclusions 𝑖𝑘 𝑗
: 𝑘 𝑗 → 𝑘 𝑗 + 𝑛 are used as 𝑖★

𝑘 𝑗
: 𝑌1 ⊗ ... ⊗ 𝑌𝑘 𝑗

⊗ 𝑋1 ⊗ ... ⊗ 𝑋𝑛 → 𝑌1 ⊗ ... ⊗ 𝑌𝑘 𝑗
to

project the relevant variables. We define the interpretation of a loop statement as follows.

JΓ ⊢ loop 𝛼𝛼𝛼 (®𝑥𝜎){®𝑢.𝑝} : ΔK = [𝜎, id𝑛]★ # fix(𝜈 # (J®𝑢 : ®𝑋𝜎 , Γ ⊢ 𝑝 : ΔK ⊗ id𝑛)) # (𝑖★𝑘1 , ..., 𝑖
★
𝑘𝑙
).

Let us define the interpretation a generator statement, where we are given a generator of the

form 𝑓 ∈ G(®𝑋 ; ®𝑌1, ..., ®𝑌ℓ). Given a list of finite functions, 𝜎1 : 𝑚1 → 𝑛, ..., 𝜎𝑙 : 𝑚𝑙 → 𝑛, we write

[𝜎1, ..., 𝜎𝑙] : 𝑚1 + ... + 𝑚𝑙 → 𝑛 for its pairing. In the following formula, 𝜈 = [id𝑛, id𝑛]★ copies

the input and (•) · [id𝑙 , ..., id𝑙]∗ merges the ℓ groups of outputs into a single one. We define the

interpretation of a generator statement as follows.

JΓ ⊢ 𝑓 (®𝑥){ ®𝑦𝑖 .𝑝𝑖 }𝑖 : ΔK = (𝜈 # (L𝑓 M⊗ id𝑛)) # (J®𝑦1:®𝑌1, Γ ⊢ 𝑝1 : Δ1K, ..., J®𝑦ℓ :®𝑌ℓ , Γ ⊢ 𝑝ℓ : ΔℓK) · [id𝑙 , ..., id𝑙]∗ .

We provide auxiliary string diagrams in Figure 1. □

Theorem 56 (Soundness and completeness). The denotational semantics is sound and complete

for imperative multicategories.

Proof sketch. Regarding soundness, it remains to show that the definition in Theorem 54 is

well-defined with respect to the axioms of the language: interchange and loop axioms in Section 2.4.

Fortunately, the axioms have been chosen so as to correspond to existing axioms of traced distribu-

tive copy-discard multicategories. Indeed, the language’s interchange axiom has been picked to

reflect the interchange axiom of distributive multicategories; and the loop axioms (dinaturality,

diagonal, uniformity) have been picked to reflect the axioms of the trace. It only remains to

formally track this correspondence by structural induction in the rules.

Regarding completeness, we have been building the syntactic model of the theory as we have been

introducing the structure. We have already shown that terms form a multicategory (Theorem 41),

that it is a cocartesian multicategory (Theorem 44), and that it is a predistributive copy-discard

category (Theorem 47). This syntactic model means that any equation that holds for any traced

distributive copy-discard multicategory holds for the syntax. □

Definition 104 (Posetal distributive copy-discard category). A posetal distributive copy-discard cat-

egory is a distributive copy-discard category where every hom-set has a poset structure compatible

with composition, tensors and coproducts: for all 𝑓 , 𝑓 ′ : 𝑋 → 𝑌 , 𝑔,𝑔′ : 𝑌 → 𝑍 and ℎ,ℎ′ : 𝑉 →𝑊 , if

𝑓 ≤ 𝑓 ′, 𝑔 ≤ 𝑔′ and ℎ ≤ ℎ′, then 𝑓 # 𝑔 ≤ 𝑓 ′ # 𝑔′, 𝑓 ⊗ ℎ ≤ 𝑓 ′ ⊗ ℎ′ and 𝑓 + ℎ ≤ 𝑓 ′ + ℎ′.

, Vol. 1, No. 1, Article . Publication date: July 2025.

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

Program Logics via Distributive Monoidal Categories 37

Definition 105 (Posetal uniform trace, cf. Hasegawa [Has02]). A posetal uniform traced monoidal

category is a traced monoidal category (C, ⊕, 𝑍) whose underlying monoidal category is posetally-

enriched and whose trace, additionally, satisfies the posetal uniformity axiom: the existence of

𝑢 : 𝑈 → 𝑉 such that 𝑓 # (𝑢⊕ id𝑌) ≤ (𝑢⊕ id𝑋) #𝑔 implies that tr(𝑓) ≤ tr(𝑔), for any 𝑓 : 𝑈 ⊕𝑋 → 𝑈 ⊕𝑌
and 𝑔 : 𝑉 ⊕ 𝑋 → 𝑉 ⊕ 𝑌 ; similarly, the existence of 𝑣 : 𝑉 → 𝑈 such that (𝑣 ⊕ id𝑋) # 𝑓 ≤ 𝑔 # (𝑣 ⊕ id𝑌)
implies that tr(𝑓) ≤ tr(𝑔).
Definition 106 (Posetal imperative category). A posetal imperative category is a posetal distributive

copy-discard category whose coproduct has a posetal uniform trace.

Definition 107 (Copy-discard coproducts). A copy-discard category has copy-discard coproducts if

it has coproducts and the coproduct injections are total and deterministic. We will denote unbiased

finite coproducts with

∑
, binary coproducts with + and the initial object with 0.

Definition 108 (Distributive monoidal category). A distributive monoidal category is a finitely-

cocomplete monoidal category such that the canonical morphisms 𝛿−L
𝑋 ;𝑌1,...𝑌𝑛

:

∑𝑛
𝑖=1𝑋 ⊗ 𝑌𝑖 →

𝑋 ⊗ ∑𝑛
𝑖=1 𝑌𝑖 and 𝛿

−R
𝑋1,...𝑋𝑛 ;𝑌

:

∑𝑛
𝑖=1𝑋𝑖 ⊗ 𝑌 →

(∑𝑛
𝑖=1𝑋𝑖

)
⊗ 𝑌 are isomorphisms.

Definition 109 (Distributive copy-discard category). A distributive copy-discard category is a

copy-discard category (C, ⊗, 𝐼) with chosen finite copy-discard coproducts such that the canonical

distributors

𝛿−𝐿
𝑋 ;𝑌1,...𝑌𝑛

:

∑𝑛
𝑖=1𝑋 ⊗ 𝑌𝑖 → 𝑋 ⊗ ∑𝑛

𝑖=1 𝑌𝑖 , and 𝛿−𝑅
𝑋1,...𝑋𝑛 ;𝑌

:

∑𝑛
𝑖=1𝑋𝑖 ⊗ 𝑌 →

(∑𝑛
𝑖=1𝑋𝑖

)
⊗ 𝑌,

are natural isomorphisms. In particular, there are binary distributors,

𝛿𝐿
𝑋 ;𝑌,𝑍

: 𝑋 ⊗ (𝑌 + 𝑍) → 𝑋 ⊗ 𝑌 + 𝑋 ⊗ 𝑍 and 𝛿𝑅
𝑋,𝑌 ;𝑍

: (𝑋 + 𝑌) ⊗ 𝑍 → 𝑋 ⊗ 𝑍 + 𝑌 ⊗ 𝑍 .
Lemma 110. The following holds in any distributive category.

𝜄𝑋𝑋 # (𝜄𝑋𝑋 + 𝜄𝑌𝑌) # (𝛿−L𝑋 ;𝑋,𝑌 + 𝛿−L𝑌 ;𝑋,𝑌) # 𝛿−R𝑋,𝑌 ;𝑋+𝑌 = 𝜄𝑋 ⊗ 𝜄𝑋
Proof. The distributors are the canonical coproduct maps below.

𝑋𝑌 𝑋𝑌 + 𝑋𝑍 𝑋𝑍

𝑋 (𝑌 + 𝑍)

𝜄

id⊗𝜄 𝛿−L

𝜄

id⊗𝜄

𝑋𝑍 𝑋𝑍 + 𝑌𝑍 𝑌𝑍

(𝑋 + 𝑌)𝑍

𝜄

𝜄⊗id 𝛿−R

𝜄

𝜄⊗id

We rewrite the left-hand side using (5, 8) that the distributors are the canonical ones, (6, 9) the

properties of coproducts, and (7) naturality of injections.

𝜄𝑋𝑋 # (𝜄𝑋𝑋 + 𝜄𝑌𝑌) # (𝛿−L𝑋 ;𝑋,𝑌 + 𝛿−L𝑌 ;𝑋,𝑌) # 𝛿−R𝑋,𝑌 ;𝑋+𝑌

= 𝜄𝑋𝑋 # ((𝜄𝑋𝑋 # [id𝑋 ⊗ 𝜄𝑋 , id𝑋 ⊗ 𝜄𝑌]) + (𝜄𝑌𝑌 # [id𝑌 ⊗ 𝜄𝑋 , id𝑌 ⊗ 𝜄𝑌])) # 𝛿−R𝑋,𝑌 ;𝑋+𝑌 (5)

= 𝜄𝑋𝑋 # ((id𝑋 ⊗ 𝜄𝑋) + (id𝑌 ⊗ 𝜄𝑌)) # 𝛿−R𝑋,𝑌 ;𝑋+𝑌 (6)

= (id𝑋 ⊗ 𝜄𝑋) # 𝜄𝑋 (𝑋+𝑌) # 𝛿−R𝑋,𝑌 ;𝑋+𝑌 (7)

= (id𝑋 ⊗ 𝜄𝑋) # 𝜄𝑋 (𝑋+𝑌) # [𝜄𝑋 ⊗ id𝑋+𝑌 , 𝜄𝑌 ⊗ id𝑋+𝑌] (8)

= (id𝑋 ⊗ 𝜄𝑋) # (𝜄𝑋 ⊗ id𝑋+𝑌) (9)

= 𝜄𝑋 ⊗ 𝜄𝑋 .
This concludes the proof. □

Proposition 111. Let C be a copy-discard category that is also distributive monoidal. Then, it is a

distributive copy-discard category if and only if the copy and discard morphisms are compatible with

coproducts, 𝜈𝑋+𝑌 = (𝜈𝑋 + 𝜁𝑋⊗𝑌 + 𝜁𝑌⊗𝑋 +𝜈𝑌) # (𝛿−L𝑋 ;𝑋,𝑌
+ 𝛿−L

𝑌 ;𝑋,𝑌
) # 𝛿−R

𝑋,𝑌 ;𝑋+𝑌 and 𝜀𝑋+𝑌 = (𝜀𝑋 + 𝜀𝑌) # 𝜇1.

, Vol. 1, No. 1, Article . Publication date: July 2025.

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

38 Anon.

Proof. Suppose that the copy and discard morphisms are compatible with coproducts. We show

that 𝜄𝑋 # 𝜀𝑋+𝑌 = 𝜀𝑋 , i.e. that the outer diagram below commutes.

𝑋 1

𝑋 + 𝑌 1 + 1 1

𝜀

𝜄 (𝑖) 𝜄
id

𝜀+𝜀

𝜀

(𝑖𝑖)

(𝑖𝑖𝑖) 𝜇

The diagram (i) commutes by naturality of the injection 𝜄𝑋 ; the diagram (ii) commutes by unitality

of the structure morphism of the coproduct 𝜇𝐼 ; the diagram (iii) commutes by hypothesis. Similarly,

we show that 𝜄𝑋 # 𝜈𝑋+𝑌 = 𝜈𝑋 # (𝜄𝑋 ⊗ 𝜄𝑋), i.e. that the outer diagram below commutes. We omit the

symbol ⊗ for the monoidal product to ease readability.

𝑋 𝑋𝑋

𝑋𝑋 + 𝑌𝑌 𝑋𝑋 + 𝑋𝑌 + 𝑌𝑋 + 𝑌𝑌

𝑋 + 𝑌 (𝑋 + 𝑌) (𝑋 + 𝑌)

𝜈

𝜄

(𝑖)
𝜄⊗𝜄

𝜄

(𝑖𝑖)
𝜄+𝜄

(𝑖𝑖𝑖)
(𝛿−L+𝛿−L)#𝛿−R

𝜈

𝜈+𝜈

The diagram (i) commutes by naturality of the injection 𝜄𝑋 ; the diagram (ii) commutes by Theo-

rem 110; the diagram (iii) commutes by hypothesis.

Conversely, suppose that the coproduct injections are total and deterministic. Then, the two

diagrams below commute.

𝑋 𝑋 + 𝑌 𝑌

1

𝜄

𝜀
𝜀

𝜄

𝜀

𝑋 𝑋 + 𝑌 𝑌

𝑋𝑋 (𝑋 + 𝑌) (𝑋 + 𝑌) 𝑌𝑌

𝜄

𝜈 𝜈

𝜄

𝜈

𝜄⊗𝜄 𝜄⊗𝜄

By the universal property of coproducts, we must have 𝜀𝑋+𝑌 = [𝜀𝑋 , 𝜀𝑌] = (𝜀𝑋 + 𝜀𝑌) # 𝜇1 and
equation (10) below. Equations (11, 12) follow from properties of coproducts, while (13, 14) follow

from the canonicity of distributors.

𝜈𝑋+𝑌

= [𝜈𝑋 # (𝜄𝑋 ⊗ 𝜄𝑋), 𝜈𝑌 # (𝜄𝑌 ⊗ 𝜄𝑌)] (10)

= (𝜈𝑋 + 𝜈𝑌) # [𝜄𝑋 ⊗ 𝜄𝑋 , 𝜄𝑌 ⊗ 𝜄𝑌] (11)

= (𝜈𝑋 + 𝜈𝑌) # ((id𝑋 ⊗ 𝜄𝑋) + (id𝑌 ⊗ 𝜄𝑌)) # [𝜄𝑋 ⊗ id𝑋+𝑌 , 𝜄𝑌 ⊗ id𝑋+𝑌] (12)

= (𝜈𝑋 + 𝜈𝑌) # ((id𝑋 ⊗ 𝜄𝑋) + (id𝑌 ⊗ 𝜄𝑌)) # 𝛿−R𝑋,𝑌 ;𝑋+𝑌 (13)

= (𝜈𝑋 + 𝜈𝑌) # ((𝜄𝑋𝑋 # 𝛿−L𝑋 ;𝑋,𝑌) + (𝜄𝑌𝑌 # 𝛿−L𝑌 ;𝑋,𝑌)) # 𝛿−R𝑋,𝑌 ;𝑋+𝑌 (14)

= (𝜈𝑋 + 𝜈𝑌) # (𝜄𝑋𝑋 + 𝜄𝑌𝑌) # (𝛿−L𝑋 ;𝑋,𝑌 + 𝛿−L𝑌 ;𝑋,𝑌) # 𝛿−R𝑋,𝑌 ;𝑋+𝑌

= (𝜈𝑋 + 𝜁𝑋𝑌 + 𝜁𝑌𝑋 + 𝜈𝑌) # (𝛿−L𝑋 ;𝑋,𝑌 + 𝛿−L𝑌 ;𝑋,𝑌) # 𝛿−R𝑋,𝑌 ;𝑋+𝑌

□

Lemma 62. In a distributive copy-discard category, the structure morphisms of coproducts, 𝜇 and 𝜁 ,

are total and deterministic.

, Vol. 1, No. 1, Article . Publication date: July 2025.

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

Program Logics via Distributive Monoidal Categories 39

Proof. By initiality of 0, we obtain that 𝜈0 # (𝜁𝑋 ⊗ 𝜁𝑋) = 𝜁𝑋 # 𝜈𝑋 and that 𝜀0 = 𝜁𝑋 # 𝜀𝑋 . By the

hypothesis on the discard maps, 𝜀, and by naturality of 𝜇, we obtain that the maps 𝜇 are total:

𝜀𝑋+𝑋 = (𝜀𝑋 +𝜀𝑋) #𝜇1 = 𝜇𝑋 #𝜀𝑋 . By (15) the hypothesis on the copy maps, 𝜈 , by (16, 17) the canonicity

of the distributors, by (19, 21) naturality of 𝜇, and by (20) by properties of coproducts, we obtain

that the maps 𝜇 are deterministic.

𝜈𝑋+𝑋 # (𝜇𝑋 ⊗ 𝜇𝑋)
= (𝜈𝑋 + 𝜁𝑋𝑋 + 𝜁𝑋𝑋 + 𝜈𝑋) # (𝛿−L𝑋 ;𝑋,𝑋 + 𝛿−L𝑋 ;𝑋,𝑋) # 𝛿−R𝑋,𝑋 ;𝑋+𝑋 # (𝜇𝑋 ⊗ 𝜇𝑋)
= (𝜈𝑋 + 𝜈𝑋) # ((𝜄𝑋𝑋 # 𝛿−L𝑋 ;𝑋,𝑋) + (𝜄𝑋𝑋 # 𝛿−L𝑋 ;𝑋,𝑋)) # 𝛿−R𝑋,𝑋 ;𝑋+𝑋 # (𝜇𝑋 ⊗ 𝜇𝑋) (15)

= (𝜈𝑋 + 𝜈𝑋) # ((id𝑋 ⊗ 𝜄𝑋) + (id𝑋 ⊗ 𝜄𝑋)) # 𝛿−R𝑋,𝑋 ;𝑋+𝑋 # (𝜇𝑋 ⊗ 𝜇𝑋) (16)

= (𝜈𝑋 + 𝜈𝑋) # ((id𝑋 ⊗ 𝜄𝑋) + (id𝑋 ⊗ 𝜄𝑋)) (17)

((𝜄𝑋 ⊗ id𝑋+𝑋) + (𝜄𝑋 ⊗ id𝑋+𝑋)) # 𝜇 (𝑋+𝑋) (𝑋+𝑋) # (𝜇𝑋 ⊗ 𝜇𝑋) (18)

= (𝜈𝑋 + 𝜈𝑋) # ((𝜄𝑋 ⊗ 𝜄𝑋) + (𝜄𝑋 ⊗ 𝜄𝑋)) # ((𝜇𝑋 ⊗ 𝜇𝑋) + (𝜇𝑋 ⊗ 𝜇𝑋)) # 𝜇𝑋𝑋 (19)

= (𝜈𝑋 + 𝜈𝑋) # 𝜇𝑋𝑋 (20)

= 𝜇𝑋 # 𝜈𝑋 (21)

□

Remark 112 (Bimonoidally strict distributive category). A distributive category is bimonoidally

strict—or simply strict, in this text—when both its monoidal and cocartesian structures are strict.

Every distributive category is equivalent to a bimonoidally strict one: in fact, equivalent to one

where one of the left distributor (respectively, the right distributor) is the identity [Lap06]. However,

not every distributive category is equivalent to a fully strict one: if both distributors were to be

identities, the following strict equality

𝐴𝐶 +𝐴𝐷 + 𝐵𝐶 + 𝐵𝐷 = (𝐴 + 𝐵) (𝐶 + 𝐷) = 𝐴𝐶 + 𝐵𝐶 +𝐴𝐷 + 𝐵𝐷,

would force the coproduct to be commutative, instead of symmetric.

Proposition 75. Under the conditions of Theorem 73, the Kleisli category of a monad, kl(𝑇), has a
posetal uniform trace.

Proof. We first recall the construction of the monoidal trace in Theorem 73. Hereafter, identities

(e.g. id𝑌 : 𝑌 → 𝑌), injections (𝜅𝑈 : 𝑈 → 𝑈 + 𝑋) and coproducts (+) are all in kl(𝑇). Moreover, we

write Σ𝑛∈N𝑌 for the countable coproduct of an object 𝑌 and ∇ : Σ𝑛∈N𝑌 → 𝑌 for the copairing of

𝑖𝑑𝑌 .

For each 𝑓 : 𝑈 + 𝑋 → 𝑈 + 𝑌 in kl(𝑇), one defines ˆ𝑓 : (𝑈 + 𝑋) → (𝑈 + 𝑋) + 𝑌 as 𝑓 # (𝜅𝑈 + id𝑌).
This is a coalgebra for the functor 𝐼𝑑 + 𝑌 : kl(𝑇) → kl(𝑇). One can show that Σ𝑛∈N𝑌 carries a final

coalgebra for such functor and thus one has a unique coalgebra morphism ! ˆ𝑓
: (𝑈 + 𝑋) → Σ𝑛∈N𝑌 .

It is shown in Theorem 5.2 in [Jac10] that defining 𝑇𝑟 (𝑓) : 𝑋 → 𝑌 as

tr(𝑓) = 𝜅𝑋 #! ˆ𝑓 # ∇ (22)

provides a uniform monoidal trace.

In order to prove posetal uniformity we rely on a previous result [Has06, Proposition 5.6], stated

under the same conditions of Theorem 73 but restricted to the case C = Set; one can carefully

check that its proof also works for arbitrary categories C with countable coproducts.

Take 𝑓 : 𝑈 + 𝑋 → 𝑈 + 𝑌 , 𝑔 : 𝑉 + 𝑋 → 𝑉 + 𝑌 and 𝑢 : 𝑈 → 𝑉 in kl(𝑇) and assume that

𝑓 # (𝑢 ⊕ id𝑌) ≥ (𝑢 ⊕ id𝑋) # 𝑔. (23)

, Vol. 1, No. 1, Article . Publication date: July 2025.

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

40 Anon.

As for
ˆ𝑓 : 𝑈 → 𝑈 + 𝑌 , we define the coalgebra 𝑔 : 𝑉 → 𝑉 + 𝑌 and consider the unique coalgebra

morphim !𝑔 : 𝑉 → Σ𝑛∈N𝑌 . From (23), one easily derive that

ˆ𝑓 # ((𝑢 + id𝑋) ⊕ id𝑌) ≥ (𝑢 ⊕ id𝑋) # 𝑔,

namely, using the terminology in [Has06], (𝑢 + id𝑋) is a lax-coalgebra morphism from
ˆ𝑓 to 𝑔. Now

(𝑢 + id𝑋)#!𝑔 : 𝑈 +𝑋 → Σ𝑛∈N𝑌 is also a lax-coalgebra morphism. By Proposition 5.6 in [Has06], the

unique coalgebra morphism ! ˆ𝑓
: 𝑈 + 𝑋 → Σ𝑛∈N𝑌 is the greatest lax coalgebra morphism and thus

! ˆ𝑓
≥ (𝑢 + id𝑋)#!𝑔. (24)

We can then conclude with the following derivation.

tr(𝑓) =𝜅𝑋 #! ˆ𝑓 # ∇ (22)

≥ 𝜅𝑋 # (𝑢 + id𝑋)#!𝑔 # ∇ (24)

= 𝜅𝑋 #!𝑔 # ∇ (coproduct)

= tr(𝑔) (22)

For proving the other implication, one proceeds by reversing the inequalities and use the fact that,

by Proposition 5.6 in [Has06], ! ˆ𝑓
is the smallest oplax coalgebra morphism. □

Corollary 76. The Kleisli categories of the maybe monad, powerset monad, and subdistributions

monad on the distributive category Set, and of the subdistributions monad on the distributive category

StdBorel are posetal imperative categories.

Proof. For the monads on Set, the assumptions of Theorem 73 are already checked in [Jac10].

We now check the conditions for the monad G on StdBorel. The countable coproduct of standard
Borel spaces is again standard Borel, so StdBorel has countable coproducts. The Kleisli category of

G is poset-enriched with the pointwise order and it has a bottom element, the zero subdistribution.

Moreover, hom-sets are DCPOs because the supremum of an increasing sequence of measurable

functions is defined pointwise and bounded increasing sequences of real numbers have a supremum.

Finally, cotuplings are monotone because they are so pointwise. □

D Proofs for Section 5 (Distributive program logics)
Theorem 79. The following are valid assertion-correctness triples in any posetal imperative category

where abort ≤ 𝑓 and 𝑓 # ⊤ ≤ ⊤ for all morphisms 𝑓 .

skip

{𝑝} skip {𝑝}

comp

{𝑝} 𝑐1 {𝑞} {𝑞} 𝑐2 {𝑟 }
{𝑝} 𝑐1 ; 𝑐2 {𝑟 }

assign

𝑒 deterministic and total

{𝑝 [𝑢 \ 𝑒]}𝑢 := 𝑒 {𝑝}
choice

{𝑝} 𝑐1 {𝑞} {𝑝} 𝑐2 {𝑞}
{𝑝} if 𝑏 then 𝑐1 else 𝑐2 {𝑞}

loop

{𝑝} 𝑐 {𝑝}
{𝑝} while𝑏 do 𝑐 {𝑝}

unroll

{𝑝} if 𝑏 then(𝑐 ; while𝑏 do 𝑐) else skip {𝑞}
{𝑝} while𝑏 do 𝑐 {𝑞}

ifelse

{𝑝 ∧ 𝑏#} 𝑐1 {𝑞} {𝑝 ∧ (¬𝑏)#} 𝑐2 {𝑞} 𝑏 deterministic

{𝑝} if 𝑏 then 𝑐1 else 𝑐2 {𝑞}

while

{𝑏# ∧ 𝑝} 𝑐 {𝑝} 𝑏 deterministic

{𝑝} while𝑏 do 𝑐 {𝑝 ∧ (¬𝑏)#}

monotone

𝑝1 ≤ 𝑝2 {𝑝2} 𝑐 {𝑞2} 𝑞2 ≤ 𝑞1
{𝑝1} 𝑐 {𝑞1}

and

{𝑝1} 𝑐 {𝑞1} {𝑝2} 𝑐 {𝑞2}
{𝑝1 ∧ 𝑝2} 𝑐 {𝑞1 ∧ 𝑞2}

fail

{𝑝} abort {𝑞}

, Vol. 1, No. 1, Article . Publication date: July 2025.

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

Program Logics via Distributive Monoidal Categories 41

assert

𝑞 ∧ 𝑟 ≤ ⊥
{𝑝 +𝑏 𝑞} assert 𝑟 {𝑝 ∧ 𝑏#}

top

{𝑝} 𝑐 {⊤}

bot

{⊥} 𝑐 {𝑞}

Proof. The skip rule follows from neutrality of skip (Theorem 29) and reflexivity of the preorder.

assert𝑝 ; skip ≡ assert 𝑝 ≤ assert 𝑝 ≡ skip ; assert𝑝

The comp rule follows from its first and second premises, implicitly using associativity of

concatenation (Theorem 29) and the congruence of the preorder.

assert𝑝 ; 𝑐1 ; 𝑐2 ≤ 𝑐1 ; assert𝑞 ; 𝑐2 ≤ 𝑐1 ; 𝑐2 ; assert 𝑟
The assign rule follows from the definition of expression substitution (Theorem 24), determinism

of 𝑒 and, implicitly, from reflexivity of the preorder.

assert 𝑝 [𝑢 \ 𝑒] ; (𝑢 := 𝑒) = assert((𝑢 := 𝑒) ; 𝑝) ; (𝑢 := 𝑒) = (𝑢 := 𝑒) ; assert𝑝
The choice rule follows by (i) Theorem 99, (ii) both assumptions, {𝑝} 𝑐1 {𝑞} and {𝑝} 𝑐2 {𝑞}, and

(iii) the definition of composition.

assert𝑝 ; if 𝑏 then 𝑐1 else 𝑐2
(i)

≡
if 𝑏 then(assert𝑝 ; 𝑐1) else(assert𝑝 ; 𝑐2)

(ii)

≤
if 𝑏 then(𝑐1 ; assert𝑞) else(𝑐2 ; assert𝑞)

(iii)

≡
(if 𝑏 then 𝑐1 else 𝑐2) ; 𝑞.

The ifelse rule follows from (i) determinism of𝑏 (Theorem 97), (ii) Theorem 99, (iii) the definition

of predicate conjunction (Theorem 24) (iv) the hypotheses, and (v) the definition of composition of

program fragments (Theorem 27).

assert 𝑝 ; if 𝑏 then 𝑓 else𝑔
(i)

=

assert 𝑝 ; if 𝑏 then(assert𝑏# ; 𝑓) else(assert (¬𝑏)# ; 𝑔) (ii)

=

if 𝑏 then(assert 𝑝 ; assert𝑏# ; 𝑓) else(assert 𝑝 ; assert (¬𝑏)# ; 𝑔) (iii)

=

if 𝑏 then(assert(𝑝 ∧ 𝑏#) ; 𝑓) else(assert(𝑝 ∧ (¬𝑏)#) ; 𝑔) (iv)

=

if 𝑏 then(𝑓 ; assert𝑞) else(𝑔 ; assert𝑞) (v)

=

(if 𝑏 then 𝑓 else𝑔) ; assert𝑞.
For the loop rule, we apply the uniformity principle (Theorem 29); the antecedent of the unifor-

mity rule follows from (i) Theorem 99, and (ii) the correctness assumption.

assert 𝑝 ; L𝑏M{𝑐}{skip} (i)

=

L𝑏M{assert 𝑝 ; 𝑐}{assert 𝑝}
(ii)

≤
L𝑏M{𝑐 ; assert𝑝}{assert 𝑝}

Then, by uniformity, assert𝑝 ; while𝑏 do 𝑐 = assert 𝑝 ; while𝑏 do 𝑐 ; skip ≤ while𝑏 do 𝑐 ; assert𝑝 .
Thewhile rule is similar to the loop rule, but additionally uses (ii) determinism of𝑏 (Theorem 97).

assert𝑝 ; L𝑏M{𝑐}{skip} (i)

=

L𝑏M{assert𝑝 ; 𝑐}{assert 𝑝} (ii)

=

L𝑏M{assert𝑏# ; assert 𝑝 ; 𝑐}{assert (¬𝑏)# ; assert𝑝} (iii)

=

L𝑏M{assert(𝑏# ∧ 𝑝) ; 𝑐}{assert((¬𝑏)# ∧ 𝑝)}
(iv)

≤
L𝑏M{𝑐 ; assert 𝑝}{assert((¬𝑏)# ∧ 𝑝)}

, Vol. 1, No. 1, Article . Publication date: July 2025.

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

42 Anon.

Then, assert 𝑝 ; while𝑏 do 𝑐 = assert 𝑝 ; while𝑏 do 𝑐 ; skip ≤ while𝑏 do 𝑐 ; assert((¬𝑏)# ∧ 𝑝).
The unroll rule follows from (i) Theorem 29 and (ii) the assumption.

assert𝑝 ; (while𝑏 do 𝑐)
(𝑖)
≡

assert𝑝 ; (if 𝑏 then(𝑐 ; while𝑏 do 𝑐) else skip)
(𝑖𝑖)
≤

(if 𝑏 then(𝑐 ; while𝑏 do 𝑐) else skip) ; assert𝑞
(𝑖)
≡

(while𝑏 do 𝑐) ; assert𝑞
The monotone rule follows from monotonicity of composition.

assert 𝑝1 ; 𝑐 ≤ assert 𝑝2 ; 𝑐 ≤ 𝑐 ; assert𝑞2 ≤ 𝑐 ; assert𝑞1
The and rule follows from the properties of assertions (Theorem 29).

assert(𝑝1 ∧ 𝑝2) ; 𝑐 = assert 𝑝1 ; assert𝑝2 ; 𝑐 ≤ assert𝑝1 ; 𝑐 ; assert𝑞2
≤ 𝑐 ; assert𝑞1 ; assert𝑞2 = 𝑐 ; assert(𝑞1 ∧ 𝑞2)

The fail rule follows from the properties of abort (Theorem 29).

assert𝑝 ; abort = abort = abort ; assert𝑞

The assert rule follows from (i) Theorem 29, (ii) the definition of commands composition

(Theorem 27), (iii) the hypotheses, (iv) Theorem 29, (v) Theorem 99, (vi) Theorem 29, and (vii)

Theorem 29.

assert(𝑝 +𝑏 𝑞) ; assert 𝑟
(𝑖)
=

if 𝑏 then(assert𝑝) else(assert𝑞) ; assert 𝑟 (𝑖𝑖)
=

if 𝑏 then(assert𝑝 ; assert 𝑟) else(assert𝑞 ; assert 𝑟)
(𝑖𝑖𝑖)
≤

if 𝑏 then(assert𝑝 ; assert 𝑟) else(assert⊥) (𝑖𝑣)
=

if 𝑏 then(assert 𝑟 ; assert 𝑝) else(assert 𝑟 ; assert𝑝 ; assert⊥) (𝑣)
=

assert 𝑟 ; assert 𝑝 ; if 𝑏 then skip else abort
(𝑣𝑖)
=

assert 𝑟 ; assert 𝑝 ; assert(𝑏#) (𝑣𝑖𝑖)
=

assert 𝑟 ; assert(𝑝 ∧ 𝑏#)
The top and bot rules follow from (i) the extra hypotheses, (ii) Theorem 29, and (iii) Theorem 29.

assert 𝑝 ; 𝑐
(𝑖)
≤ assert⊥ ; 𝑐

(𝑖𝑖𝑖)
=

assert⊤ ; 𝑐
(𝑖𝑖)
= abort ;𝑐

(𝑖𝑖𝑖)
=

𝑐
(𝑖𝑖)
= 𝑐 ; abort

(𝑖)
≤

𝑐 ; assert⊤ 𝑐 ; assert𝑞

□

Theorem 81. The following are valid state-incorrectness triples in any posetal imperative category

where abort ≤ 𝑓 for all morphisms 𝑓 .

skip

{𝑠} skip {𝑠}

comp

{𝑠} 𝑐1 {𝑡} {𝑡} 𝑐2 {𝑟 }
{𝑠} 𝑐1 ; 𝑐2 {𝑟 }

comp (error)

{𝑠} 𝑐1 {⊥}
{𝑠} 𝑐1 ; 𝑐2 {⊥}

assign

{𝑠} 𝑥 := 𝑦 {𝑠 (𝑥 \ 𝑦)}

sample

{𝑠} 𝑥 ← 𝑠0 {
∐

𝑥𝑠 · 𝑠0}

, Vol. 1, No. 1, Article . Publication date: July 2025.

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

Program Logics via Distributive Monoidal Categories 43

choice (left)

{𝑠 ⇂ 𝑏#} 𝑐1 {𝑡}
{𝑠} if 𝑏 then 𝑐1 else 𝑐2 {𝑡}

choice (right)

{𝑠 ⇂ (¬𝑏)#} 𝑐2 {𝑡}
{𝑠} if 𝑏 then 𝑐1 else 𝑐2 {𝑡}

convex

{𝑠1} 𝑐 {𝑡1} {𝑠2} 𝑐 {𝑡2} 𝑏 constant

{𝑠1 +𝑏 𝑠2} 𝑐 {𝑡1 +𝑏 𝑡2}
iter zero

{𝑠} while𝑏 do 𝑐 {𝑠 ⇂ (¬𝑏)#}

iter

{𝑠 ⇂ 𝑏#} 𝑐 ; while𝑏 do 𝑐 {𝑡}
{𝑠} while𝑏 do 𝑐 {𝑡}

monotone

𝑠1 ≥ 𝑠2 {𝑠2} 𝑐 {𝑡2} 𝑡2 ≥ 𝑡1
{𝑠1} 𝑐 {𝑡1}

assert

{𝑠} assert 𝑝 {𝑠 ⇂ 𝑝}

fail

{𝑠} abort {⊥}

bot

{𝑠} 𝑐 {⊥}

Proof. The skip and comp rules follow from Theorem 29. The comp (error) rule follows from

naturality of abort (Theorem 29).

𝑠 ; skip = 𝑠 𝑠 ; 𝑐1 ; 𝑐2 ≥ 𝑡 ; 𝑐2 ≥ 𝑢 𝑠 ; 𝑐1 ; 𝑐2 ≥ ⊥ ; 𝑐2 = ⊥
The assign and sample rules follow from the definitions of the state combinators (Theorem 31).

𝑠 ; (𝑥 := 𝑦) = 𝑠 (𝑥 \ 𝑦) 𝑠 ; (𝑥 ← 𝑠𝑥) =
∐

𝑥𝑠 · 𝑠𝑥
The choice (left) and choice (right) rules follow from (i) the hypothesis, (ii) Theorem 29, (iii)

Theorem 31, and (iv) the assumption.

𝑠 ; (if 𝑏 then 𝑐1 else 𝑐2)
(𝑖)
≥ 𝑠 ; (if 𝑏 then 𝑐1 else 𝑐2)

(𝑖)
≥

𝑠 ; (if 𝑏 then 𝑐1 else abort)
(𝑖𝑖)
= 𝑠 ; (if 𝑏 then abort else 𝑐2)

(𝑖𝑖)
=

𝑠 ; assert𝑏# ; 𝑐1
(𝑖𝑖𝑖)
= 𝑠 ; assert (¬𝑏)# ; 𝑐2

(𝑖𝑖𝑖)
=

(𝑠 ⇂ 𝑏#) ; 𝑐1
(𝑖𝑣)
≥ (𝑠 ⇂ (¬𝑏)#) ; 𝑐2

(𝑖𝑣)
≥

𝑡 𝑡

The convex rule follows from the definition of command composition (Theorem 27).

𝑠1 +𝑏 𝑠2 ; 𝑐 = (𝑠1 ; 𝑐) +𝑏 (𝑠2 ; 𝑐) ≥ 𝑡1 +𝑏 𝑡2
The iter zero rule follows from (i) the hypothesis, (ii) Theorem 29 and (iii) Theorem 31.

𝑠 ; while𝑏 do 𝑐
(𝑖)
≥𝑠 ; while𝑏 do abort (𝑖𝑖)= 𝑠 ; assert (¬𝑏)# (𝑖𝑖𝑖)= 𝑠 ⇂ (¬𝑏)#

The iter rule follows from (i) Theorem 29, (ii) the hypothesis, (iii) Theorem 29, (iv) Theorem 31,

and (v) the assumption.

𝑠 ; while𝑏 do 𝑐
(𝑖)
=

𝑠 ; (if 𝑏 then(𝑐 ; while𝑏 do 𝑐) else skip)
(𝑖𝑖)
≥

𝑠 ; (if 𝑏 then(𝑐 ; while𝑏 do 𝑐) else abort) (𝑖𝑖𝑖)
=

𝑠 ; assert𝑏# ; 𝑐 ; while𝑏 do 𝑐
(𝑖𝑣)
=

(𝑠 ⇂ 𝑏#) ; 𝑐 ; while𝑏 do 𝑐
(𝑣)
≥

𝑡

Themonotone rule follows frommonotonicity of command composition. The assert rule applies

Theorem 31. The fail rule follows from Theorem 29. The bot rule follows from the hypothesis.

𝑠1 ; 𝑐 ≥ 𝑠2 ; 𝑐 ≥ 𝑡2 ≥ 𝑡1 𝑠 # assert 𝑝 = 𝑠 ⇂ 𝑝 𝑠 ; abort = ⊥ 𝑠 ; 𝑐 ≥ ⊥
□

, Vol. 1, No. 1, Article . Publication date: July 2025.

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

44 Anon.

Theorem 83. The following are valid predicate-correctness triples in any posetal imperative category

where abort ≤ 𝑓 for all morphisms 𝑓 .

skip

{𝑝} skip {𝑝}

comp

{𝑝} 𝑐1 {𝑞} {𝑞} 𝑐2 {𝑟 }
{𝑝} 𝑐1 ; 𝑐2 {𝑟 }

assign

𝑒 deterministic

{𝑝 [𝑢 \ 𝑒]}𝑢 := 𝑒 {𝑝}

sample

{𝑝 [𝑢 \ 𝑠]}𝑢 ← 𝑠 {𝑝}
unroll

{𝑝} if 𝑏 then(𝑐 ; while𝑏 do 𝑐) else skip {𝑞}
{𝑝} while𝑏 do 𝑐 {𝑞}

choice

{𝑝} 𝑐1 {𝑞} {𝑝} 𝑐2 {𝑞} 𝑏 total

{𝑝} if 𝑏 then 𝑐1 else 𝑐2 {𝑞}
ifelse

{𝑏# ∧ 𝑝} 𝑐1 {𝑞} {(¬𝑏)# ∧ 𝑝} 𝑐2 {𝑞} 𝑏 total and deterministic

{𝑝} if 𝑏 then 𝑐1 else 𝑐2 {𝑞}

assert

(¬𝑏)# ∧ 𝑞 = ⊥ 𝑏 deterministic

{𝑝 +𝑏 𝑞} assert𝑏# {𝑝}

convex

{𝑝1} 𝑐 {𝑞1} {𝑝2} 𝑐 {𝑞2} 𝑏 constant

{𝑝1 +𝑏 𝑝2} 𝑐 {𝑞1 +𝑏 𝑞2}
monotone

𝑝1 ≤ 𝑝2 {𝑝2} 𝑐 {𝑞2} 𝑞2 ≤ 𝑞1
{𝑝1} 𝑐 {𝑞1}

bot

{⊥} 𝑐 {𝑞}

Proof. The skip and comp rules follow from Theorem 29. The assign and sample rules follow

from Theorem 24.

𝑝 = skip ;𝑝 𝑝 ≤ 𝑐1 ; 𝑞 ≤ 𝑐1 ; 𝑐2 ; 𝑟 (𝑢 := 𝑒) ; 𝑝 = 𝑝 [𝑢 \ 𝑒] (𝑢 ← 𝑠) ; 𝑝 = 𝑝 [𝑢 \ 𝑠]

The choice rule follows from (i) Theorem 98, (ii) the definition of command composition

(Theorem 27), and (iii) the assumption.

𝑝
(𝑖)
=

(if 𝑏 then skip else skip) ; 𝑝 (𝑖𝑖)
=

𝑝 +𝑏 𝑝
(𝑖𝑖𝑖)
≤

(𝑐1 ; 𝑞) +𝑏 (𝑐2 ; 𝑞)
(𝑖𝑖)
=

(if 𝑏 then 𝑐1 else 𝑐2) ; 𝑞

The ifelse rule is proven similarly, additionally using (iv) determinism of the guard𝑏 (Theorem 97)

and (v) Theorem 29.

𝑝
(𝑖)
=

(if 𝑏 then skip else skip) ; 𝑝 (𝑖𝑣)
=

(if 𝑏 then assert𝑏# else assert (¬𝑏)#) ; 𝑝 (𝑖𝑖)
=

(assert𝑏# ; 𝑝) +𝑏 (assert (¬𝑏)# ; 𝑝)
(𝑣)
=

(assert(𝑏# ∧ 𝑝)) +𝑏 (assert((¬𝑏)# ∧ 𝑝))
(𝑖𝑖𝑖)
≤

(𝑐1 ; 𝑞) +𝑏 (𝑐2 ; 𝑞)
(𝑖𝑖)
=

(if 𝑏 then 𝑐1 else 𝑐2) ; 𝑞

The unroll rule applies Theorem 29.

𝑝 ≤ if 𝑏 then(𝑐 ; while𝑏 do 𝑐) else skip ;𝑞 = while𝑏 do 𝑐 ; 𝑞

, Vol. 1, No. 1, Article . Publication date: July 2025.

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

Program Logics via Distributive Monoidal Categories 45

The assert rule follows from the definition of predicate combinators (Theorem 24), the assump-

tion and determinism of 𝑏.

assert𝑏# ; 𝑝 = 𝑝 +𝑏 ⊥ = 𝑝 +𝑏 (¬𝑏)# ∧ 𝑞 = 𝑝 +𝑏 𝑞

The convex rule uses that constant guards commute with commands (Theorem 100).

𝑝1 +𝑏 𝑝2 ≤ (𝑐 ; 𝑞1) +𝑏 (𝑐 ; 𝑞2) = 𝑐 ; (𝑞1 +𝑏 𝑞2)

The monotone rule uses monotonicity of composition. The bot rule use the extra hypothesis.

𝑝1 ≤ 𝑝2 ≤ 𝑐 ; 𝑞2 ≤ 𝑐 ; 𝑞1 ⊥ ≤ 𝑐 ; 𝑞

□

E Proofs for Section 6 (Distributive relational program logics)
We study the algebra of couplings.

Lemma 113. Consider morphisms 𝑐𝑖 : 𝑋𝑖 → 𝑌𝑖 and 𝑑𝑖 : 𝑌𝑖 → 𝑍𝑖 for 𝑖 = 1, 2 in a commutative

imperative category. If there are couplings 𝑔 ⊲ 𝑐1 & 𝑐2 and ℎ ⊲ 𝑑1 & 𝑑2, then there is a coupling

(𝑔 # [ℎ,𝑑1 # 𝜄1, 𝑑2 # 𝜄2]) ⊲ (𝑐1 # 𝑑1) & (𝑐2 # 𝑑2).

Proof.

𝑔 # [ℎ,𝑑1 # 𝜄1, 𝑑2 # 𝜄2] # [𝜋1, id, 0] =

𝑔 # 𝜄 # [(ℎ # [𝜋1, id, 0]), 𝑑1] =

𝑔 # 𝜄 # [(𝜋 # 𝑑1), 𝑑1] =

𝑔 # [𝜋1, id, 0] # 𝑑1 =

𝜋 # 𝑐1 # 𝑑1

Similarly, one shows that 𝑔 # [ℎ,𝑑1 # 𝜄1, 𝑑2 # 𝜄2] # [𝜋2, 0, id] = 𝜋 # 𝑐2 # 𝑑2. □

Lemma 114. For two total morphisms 𝑐1 : 𝑋1 → 𝑌1 and 𝑐2 : 𝑋2 → 𝑌2 in a commutative imperative

category, their monoidal product always gives a coupling: ((𝑐1 ⊗ 𝑐2) # 𝜄1) ⊲ 𝑐1 & 𝑐2.

Proof. We use totality of 𝑐2.

(𝑐1 ⊗ 𝑐2) # 𝜄1 # [𝜋1, id, 0] =

(𝑐1 ⊗ 𝑐2) # 𝜋1 =

𝜋1 # 𝑐1

Similarly, one shows that (𝑐1 ⊗ 𝑐2) # 𝜄1 # [𝜋2, 0, id] = 𝜋 # 𝑐2 by totality of 𝑐1. □

Lemma 115. For two morphisms 𝑐1 : 𝑋1 → 𝑌1 and 𝑐2 : 𝑋2 → 𝑌2 in a commutative imperative

category, a coupling ℎ ⊲ 𝑐1 & 𝑐2 induces a coupling (𝜎 # ℎ # (𝜎 + 𝜎+)) ⊲ 𝑐2 & 𝑐1.

Proof. This is easily checked as symmetries are isomorphisms. □

Lemma 116. Consider morphisms 𝑐𝑖 , 𝑑𝑖 : 𝑋𝑖 → 𝑌𝑖 and total morphisms 𝑏𝑖 : 𝑋𝑖 → 1 + 1 for 𝑖 = 1, 2

in a commutative imperative category. If there are couplings 𝑔 ⊲ 𝑐1 & 𝑐2, 𝑔
′ ⊲ 𝑐1 & 𝑑2, ℎ

′ ⊲ 𝑑1 & 𝑐2,

and ℎ ⊲ 𝑑1 & 𝑑2, then there is a coupling 𝑙 ⊲ (if 𝑏1 then 𝑐1 else𝑑1) & (if 𝑏2 then 𝑐2 else𝑑2) defined by
𝑙 = if 𝑏1 then(if 𝑏2 then𝑔 else𝑔′) else(if 𝑏2 thenℎ′ elseℎ).

, Vol. 1, No. 1, Article . Publication date: July 2025.

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

46 Anon.

Lemma 117. We use that 𝑏2 is total.

𝑙 # [𝜋1, id, 0] =

(if 𝑏1 then(if 𝑏2 then𝑔 else𝑔′) else(if 𝑏2 thenℎ′ elseℎ)) # [𝜋1, id, 0] =

if 𝑏1 then (if 𝑏2 then(𝑔 # [𝜋1, id, 0]) else(𝑔′ # [𝜋1, id, 0]))
else (if 𝑏2 then(ℎ′ # [𝜋1, id, 0]) else(ℎ # [𝜋1, id, 0])) =

if 𝑏1 then(if 𝑏2 then(𝜋1 # 𝑐1) else(𝜋1 # 𝑐1)) else(if 𝑏2 then(𝜋1 # 𝑑1) else(𝜋1 # 𝑑1)) =

if 𝑏1 then(𝜋1 # 𝑐1) else(𝜋1 # 𝑑1) =

𝜋1 # (if 𝑏1 then 𝑐1 else𝑑1)
Similarly, one shows that 𝑙 # [𝜋2, 0, id] = 𝜋2 # (if 𝑏2 then 𝑐2 else𝑑2) using that 𝑏1 is total.
Lemma 118. Consider morphisms 𝑐𝑖 , 𝑑𝑖 : 𝑋𝑖 → 𝑌𝑖 and total and deterministic morphisms 𝑏𝑖 : 𝑋𝑖 →
1+ 1 for 𝑖 = 1, 2 in a commutative imperative category. If there are couplings 𝑔 ⊲ 𝑐1 &𝑐2 and ℎ ⊲𝑑1 &𝑑2,

then there is a coupling 𝑙 ⊲ (if 𝑏1 then 𝑐1 else𝑑1) & (if 𝑏2 then 𝑐2 else𝑑2) defined by 𝑙 = assert(𝑏1 =

𝑏2) ; (if (𝑏1 ⊗ 𝑏2) then𝑔 elseℎ).
Proof sketch. The proof follows the same idea as that of Theorem 116, but additionally uses

determinism of the guards to duplicate them in the assertion. □

Lemma 119. Consider morphisms 𝑐𝑖 : 𝑋𝑖 → 𝑋𝑖 and total and deterministic morphisms 𝑏𝑖 : 𝑋𝑖 → 1+1
for 𝑖 = 1, 2 in a commutative imperative category. If there is a coupling 𝑔 ⊲ 𝑐1 & 𝑐2, then there is a

coupling 𝑙𝑑 (𝑔) ⊲ (while𝑏1 do 𝑐1) & (while𝑏2 do 𝑐2) defined by
loop 𝛼𝛼𝛼 (𝑥,𝑦){𝑏1 (𝑥){𝑏2 (𝑦){𝑔(𝑥,𝑦){𝑥,𝑦.𝛼𝛼𝛼 (𝑥,𝑦)}{𝑥 ′ .𝛾𝛾𝛾 (𝑥 ′)}{𝑦′ .𝛿𝛿𝛿 (𝑦′)}}{𝑥,𝑦.𝛽𝛽𝛽 (𝑥,𝑦)}}{𝑥,𝑦.𝛽𝛽𝛽 (𝑥,𝑦)}}.
Lemma 120. Consider morphisms 𝑐𝑖 : 𝑋𝑖 → 𝑋𝑖 and total morphisms 𝑏𝑖 : 𝑋𝑖 → 1 + 1 for 𝑖 = 1, 2 in a

commutative imperative category. If there are couplings 𝑔 ⊲ 𝑐1 & 𝑐2, ℎ1 ⊲ 𝑐1 & id𝑋2
, and ℎ2 ⊲ id𝑋1

& 𝑐2,

then there is a coupling 𝑙 (𝑔, ℎ1, ℎ2) ⊲ (while𝑏1 do 𝑐1) & (while𝑏2 do 𝑐2).
loop (𝛼𝛼𝛼 (𝑥,𝑦), 𝛽𝛽𝛽1 (𝑥1, 𝑦1), 𝛽𝛽𝛽2 (𝑥2, 𝑦2),𝛾𝛾𝛾 (𝑥 ′),𝛿𝛿𝛿 (𝑦′)){𝑥,𝑦, 𝑥1, 𝑦1, 𝑥2, 𝑦2, 𝑥 ′, 𝑦′ .(
(𝑏1 ⊗ 𝑏2) (𝑥,𝑦)
{𝑔{𝛼𝛼𝛼 (𝑥,𝑦)}{𝛿𝛿𝛿 (𝑥 ′)}{𝛾𝛾𝛾 (𝑦′)}}
{ℎ1{𝛽𝛽𝛽1 (𝑥1, 𝑦1)}{𝛿𝛿𝛿 (𝑥 ′)}{𝛾𝛾𝛾 ′ (𝑦𝑜)}}
{ℎ2{𝛽𝛽𝛽2 (𝑥2, 𝑦2)}{𝛿𝛿𝛿 ′ (𝑥𝑜)}{𝛾𝛾𝛾 (𝑦′)}}
{𝛼𝛼𝛼 ′ (𝑥𝑜 , 𝑦𝑜)}
+ 𝑏1 (𝑥1, 𝑦1){ℎ1{𝛽𝛽𝛽1 (𝑥1, 𝑦1)}{𝛿𝛿𝛿 (𝑥 ′)}{𝛾𝛾𝛾 ′ (𝑦𝑜)}}{𝛼𝛼𝛼 ′ (𝑥𝑜 , 𝑦𝑜)}
+ 𝑏2 (𝑥2, 𝑦2){ℎ2{𝛽𝛽𝛽2 (𝑥2, 𝑦2)}{𝛿𝛿𝛿 ′ (𝑥𝑜)}{𝛾𝛾𝛾 (𝑦′)}}{𝛼𝛼𝛼 ′ (𝑥𝑜 , 𝑦𝑜)}
+ 𝑏1 (𝑥 ′){𝑐1{𝛿𝛿𝛿 (𝑥 ′)}}{𝛿𝛿𝛿 ′ (𝑥𝑜)}
+ 𝑏2 (𝑦′){𝑐2{𝛾𝛾𝛾 (𝑦′)}}{𝛾𝛾𝛾 ′ (𝑦𝑜)})

Theorem 88. The following are valid relational assertion-correctness triples in any posetal imperative

category where abort ≤ 𝑓 for all morphisms 𝑓 .

skip

{𝑝} skip ∼ skip {𝑝}

comp

{𝑝} 𝑐1 ∼ 𝑑1 {𝑞} {𝑞} 𝑐2 ∼ 𝑑2 {𝑟 }
{𝑝} (𝑐1 ; 𝑐2) ∼ (𝑑1 ; 𝑑2) {𝑟 }

assign

𝑒1, 𝑒2 total and deterministic

{𝑝 [(𝑢1, 𝑢2) \ (𝑒1, 𝑒2)]} (𝑢1 := 𝑒1) ∼ (𝑢2 := 𝑒2) {𝑝}

, Vol. 1, No. 1, Article . Publication date: July 2025.

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

Program Logics via Distributive Monoidal Categories 47

choice

{𝑝} 𝑐1 ∼ 𝑐2 {𝑞} {𝑝} 𝑐1 ∼ 𝑑2 {𝑞} {𝑝}𝑑1 ∼ 𝑐2 {𝑞} {𝑝}𝑑1 ∼ 𝑑2 {𝑞} 𝑏1, 𝑏2 total

{𝑝} (if 𝑏1 then 𝑐1 else𝑑1) ∼ (if 𝑏2 then 𝑐2 else𝑑2) {𝑞}
ifelse

{(𝑏1# ⊗ 𝑏2#) ∧ 𝑝} 𝑐1 ∼ 𝑐2 {𝑞}
{((¬𝑏1)# ⊗ (¬𝑏2)#) ∧ 𝑝}𝑑1 ∼ 𝑑2 {𝑞} 𝑏1, 𝑏2 total and deterministic

{(𝑏1 = 𝑏2) ∧ 𝑝} (if 𝑏1 then 𝑐1 else𝑑1) ∼ (if 𝑏2 then 𝑐2 else𝑑2) {𝑞}
loop

{𝑝} 𝑐1 ∼ 𝑐2 {𝑝} {𝑝} 𝑐1 ∼ skip {𝑝} {𝑝} skip ∼ 𝑐2 {𝑝} 𝑏1, 𝑏2 total

{𝑝} (while𝑏1 do 𝑐1) ∼ (while𝑏2 do 𝑐2) {𝑝}
while

{(𝑏1# ⊗ 𝑏2#) ∧ 𝑝} 𝑐1 ∼ 𝑐2 {(𝑏1 = 𝑏2) ∧ 𝑝} 𝑏1, 𝑏2 total and deterministic

{(𝑏1 = 𝑏2) ∧ 𝑝} (while𝑏1 do 𝑐1) ∼ (while𝑏2 do 𝑐2) {((¬𝑏1)# ⊗ (¬𝑏2)#) ∧ 𝑝}

monotone

𝑝1 ≤ 𝑝2 {𝑝2} 𝑐 ∼ 𝑑 {𝑞2} 𝑞2 ≤ 𝑞1
{𝑝1} 𝑐 ∼ 𝑑 {𝑞1}

symm

{𝑝} 𝑐 ∼ 𝑑 {𝑞}
{𝜎 ; 𝑝}𝑑 ∼ 𝑐 {𝜎 ; 𝑞}

assign-L

𝑒 total and deterministic

{𝑝 [𝑥 \ 𝑒]} (𝑥 := 𝑒) ∼ skip {𝑝}

choice-L

{𝑝} 𝑐 ∼ skip {𝑞} {𝑝}𝑑 ∼ skip {𝑞} 𝑏 total

{𝑝} (if 𝑏 then 𝑐 else𝑑) ∼ skip {𝑞}
ifelse-L

{(𝑏# ⊗ ⊤) ∧ 𝑝} 𝑐 ∼ skip {𝑞} {((¬𝑏1)# ⊗ ⊤) ∧ 𝑝}𝑑 ∼ skip {𝑞} 𝑏 total and deterministic

{𝑝} (if 𝑏 then 𝑐 else𝑑) ∼ skip {𝑞}
loop-L

{𝑝} 𝑐 ∼ skip {𝑝} 𝑏 total

{𝑝} (while𝑏 do 𝑐) ∼ skip {𝑝}

while-L

{(𝑏# ⊗ ⊤) ∧ 𝑝} 𝑐 ∼ skip {𝑝} 𝑏 total and deterministic

{𝑝} (while𝑏 do 𝑐) ∼ skip {((¬𝑏)# ⊗ ⊤) ∧ 𝑝}

Proof. skip. By Theorem 114, the monoidal product gives a coupling: ((skip ⊗ skip) # 𝜄) ⊲
skip& skip. By unitality, we obtain the rule.

assert𝑝 ; ((skip ⊗ skip) # 𝜄)= = assert 𝑝 ; (skip ⊗ skip) = assert𝑝

comp. Suppose there are couplings𝑔1⊲𝑐1&𝑑1 and𝑔2⊲𝑐2&𝑑2 satisfying assert𝑝 ;𝑔=1 ≤ 𝑔=1 ;assert𝑞 and
assert𝑞 ;𝑔=

2
≤ 𝑔=

2
;assert 𝑟 . By Theorem 113, there is a coupling (𝑔1 # [𝑔2, 𝑐2 #𝜄, 𝑑2 #𝜄])⊲ (𝑐1 #𝑐2)& (𝑑1 #𝑑2).

Then, applying the definition of (−)= and the assumptions, we obtain the desired inequality.

assert 𝑝 ; (𝑔1 # [𝑔2, 𝑐2 # 𝜄, 𝑑2 # 𝜄])= =

assert 𝑝 ; 𝑔1 ; 𝜋
+
1
; 𝑔2 ; 𝜋

+
1

=

assert 𝑝 ; 𝑔=
1
; 𝑔=

2
≤

𝑔=
1
; assert𝑞 ; 𝑔=

2
≤

𝑔=
1
; 𝑔=

2
; assert 𝑟 =

𝑔1 ; 𝜋
+
1
; 𝑔2 ; 𝜋

+
1
; assert 𝑟 =

(𝑔1 # [𝑔2, 𝑐2 # 𝜄, 𝑑2 # 𝜄])= ; assert 𝑟
assign. By Theorem 114, the monoidal product gives a coupling: (((𝑢1 := 𝑒1) ⊗ (𝑢2 := 𝑒2)) # 𝜄) ⊲
(𝑢1 := 𝑒1) & (𝑢2 := 𝑒2). This coupling satisfies the triple by determinism of 𝑒1 and 𝑒2.

assert(𝑝 [(𝑢1, 𝑢2) \ (𝑒1, 𝑒2)]) ; (((𝑢1 := 𝑒1) ⊗ (𝑢2 := 𝑒2)) # 𝜄)= =

, Vol. 1, No. 1, Article . Publication date: July 2025.

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

48 Anon.

assert(𝑝 [(𝑢1, 𝑢2) \ (𝑒1, 𝑒2)]) ; ((𝑢1 := 𝑒1) ⊗ (𝑢2 := 𝑒2)) =

((𝑢1 := 𝑒1) ⊗ (𝑢2 := 𝑒2)) ; assert 𝑝 =

(((𝑢1 := 𝑒1) ⊗ (𝑢2 := 𝑒2)) # 𝜄)= ; assert𝑝
choice. The assumption gives us couplings as in the hypotheses Theorem 116, so that we

obtain a coupling if 𝑏1 then(if 𝑏2 then𝑔 else𝑔′) else(if 𝑏2 thenℎ′ elseℎ) of if 𝑏1 then 𝑐1 else𝑑1 and
if 𝑏2 then 𝑐2 else𝑑2. We show that it satisfies the triple.

assert𝑝 ; (if 𝑏1 then(if 𝑏2 then𝑔 else𝑔′) else(if 𝑏2 thenℎ′ elseℎ))= =

assert 𝑝 ; (if 𝑏1 then(if 𝑏2 then𝑔= else𝑔′=) else(if 𝑏2 thenℎ′= elseℎ=)) =

if 𝑏1 then (if 𝑏2 then(assert 𝑝 ; 𝑔=) else(assert 𝑝 ; 𝑔′=))
else (if 𝑏2 then(assert 𝑝 ; ℎ′=) else(assert𝑝 ; ℎ=)) ≤

if 𝑏1 then (if 𝑏2 then(𝑔= ; assert𝑞) else(𝑔′= ; assert𝑞))
else (if 𝑏2 then(ℎ′= ; assert𝑞) else(ℎ= ; assert𝑞)) =

(if 𝑏1 then(if 𝑏2 then𝑔= else𝑔′=) else(if 𝑏2 thenℎ′= elseℎ=)) ; assert𝑞 =

(if 𝑏1 then(if 𝑏2 then𝑔 else𝑔′) else(if 𝑏2 thenℎ′ elseℎ))= ; assert𝑞
ifelse. The assumptions give us couplings as in the hypotheses of Theorem 118, so we obtain that

assert(𝑏1 = 𝑏2) ; (if (𝑏1⊗𝑏2) then𝑔 elseℎ) is a coupling of if 𝑏1 then 𝑐1 else𝑑1 and if 𝑏2 then 𝑐2 else𝑑2.
Then, we derive the inequality using determinism of 𝑏1 and 𝑏2, the definition of (−)=, and the

assumption.

assert(𝑏1 = 𝑏2) ; assert 𝑝 ; (assert(𝑏1 = 𝑏2) ; (if (𝑏1 ⊗ 𝑏2) then𝑔 elseℎ))= =

assert(𝑏1 = 𝑏2) ; assert 𝑝 ; (if (𝑏1 ⊗ 𝑏2) then𝑔= elseℎ=) =

assert(𝑏1 = 𝑏2) ; (if 𝑏1 then (assert(𝑏1# ⊗ 𝑏2#) ; assert𝑝 ; 𝑔=)
else (assert((¬𝑏1)# ⊗ (¬𝑏2)#) ; assert𝑝 ; ℎ=)) ≤

assert(𝑏1 = 𝑏2) ; (if (𝑏1 ⊗ 𝑏2) then(𝑔= ; assert𝑞) else(ℎ= ; assert𝑞)) =

assert(𝑏1 = 𝑏2) ; (if (𝑏1 ⊗ 𝑏2) then𝑔= elseℎ=) ; assert𝑞 =

(assert(𝑏1 = 𝑏2) ; (if (𝑏1 ⊗ 𝑏2) then𝑔 elseℎ))= ; assert𝑞

while. We use the assumption, determinism of 𝑏1 and 𝑏2, and Theorem 119.

assert(𝑝 ∧ (𝑏1 = 𝑏2)) ; (𝑏1 (𝑥){𝑏2 (𝑦){𝑔=(𝑥,𝑦){𝑥,𝑦.𝛼𝛼𝛼 (𝑥,𝑦)}}{𝑥,𝑦.𝛽𝛽𝛽 (𝑥,𝑦)}}{𝑥,𝑦.𝛽𝛽𝛽 (𝑥,𝑦)}) =

𝑏1 (𝑥){𝑏2 (𝑦){(assert(𝑝 ∧ (𝑏1# ⊗ 𝑏2#)) ; 𝑔=) (𝑥,𝑦){𝑥,𝑦.𝛼𝛼𝛼 (𝑥,𝑦)}}
{𝑥,𝑦. assert(𝑝 ∧ (¬𝑏1# ⊗ ¬𝑏2#)){𝛽𝛽𝛽 ()}}}
{𝑥,𝑦. assert(𝑝 ∧ (¬𝑏1# ⊗ ¬𝑏2#)){𝛽𝛽𝛽 ()}} ≤

𝑏1 (𝑥){𝑏2 (𝑦){(𝑔= ; assert𝑝) (𝑥,𝑦){𝑥,𝑦.𝛼𝛼𝛼 (𝑥,𝑦)}}
{𝑥,𝑦. assert(𝑝 ∧ (¬𝑏1# ⊗ ¬𝑏2#)){𝛽𝛽𝛽 ()}}}
{𝑥,𝑦. assert(𝑝 ∧ (¬𝑏1# ⊗ ¬𝑏2#)){𝛽𝛽𝛽 ()}}

Then, by uniformity, we obtain the desired inequality.

assert(𝑝 ∧ (𝑏1 = 𝑏2)) ; (loop 𝛼𝛼𝛼 (𝑥,𝑦){𝑏1 (𝑥){𝑏2 (𝑦){𝑔(𝑥,𝑦)
{𝑥,𝑦.𝛼𝛼𝛼 (𝑥,𝑦)}{𝑥 ′ .𝛾𝛾𝛾 (𝑥 ′)}{𝑦′ .𝛿𝛿𝛿 (𝑦′)}}{𝑥,𝑦.𝛽𝛽𝛽 (𝑥,𝑦)}}{𝑥,𝑦.𝛽𝛽𝛽 (𝑥,𝑦)}})= =

assert(𝑝 ∧ (𝑏1 = 𝑏2))

, Vol. 1, No. 1, Article . Publication date: July 2025.

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

Program Logics via Distributive Monoidal Categories 49

; (loop 𝛼𝛼𝛼 (𝑥,𝑦){𝑏1 (𝑥){𝑏2 (𝑦){𝑔=(𝑥,𝑦){𝑥,𝑦.𝛼𝛼𝛼 (𝑥,𝑦)}}{𝑥,𝑦.𝛽𝛽𝛽 (𝑥,𝑦)}}{𝑥,𝑦.𝛽𝛽𝛽 (𝑥,𝑦)}}) ≤
loop 𝛼𝛼𝛼 (𝑥,𝑦){𝑏1 (𝑥){𝑏2 (𝑦){𝑔=(𝑥,𝑦){𝑥,𝑦.𝛼𝛼𝛼 (𝑥,𝑦)}}
{𝑥,𝑦. assert(𝑝 ∧ (¬𝑏1# ⊗ ¬𝑏2#)𝑝)𝛽𝛽𝛽 (𝑥,𝑦)}}{𝑥,𝑦. assert(𝑝 ∧ (¬𝑏1# ⊗ ¬𝑏2#)𝑝)𝛽𝛽𝛽 (𝑥,𝑦)}} =

(loop 𝛼𝛼𝛼 (𝑥,𝑦){𝑏1 (𝑥){𝑏2 (𝑦){𝑔=(𝑥,𝑦){𝑥,𝑦.𝛼𝛼𝛼 (𝑥,𝑦)}}{𝑥,𝑦.𝛽𝛽𝛽 (𝑥,𝑦)}}{𝑥,𝑦.𝛽𝛽𝛽 (𝑥,𝑦)}})
; assert(𝑝 ∧ (¬𝑏1# ⊗ ¬𝑏2#))

The derivation for the loop rule follows the same idea of that for the while rule: it relies on

Theorem 120 and uniformity, but it does not need determinism of the guards because they don’t

need to be duplicated in the pre- and post-conditions.

monotone. Let ℎ ⊲ 𝑐 & 𝑑 be the coupling given by the assumption.

assert 𝑝1 ; ℎ= ≤ assert 𝑝2 ; ℎ= ≤ ℎ= ; assert𝑞2 ≤ ℎ= ; assert𝑞1

symm. Letℎ⊲𝑐&𝑑 be the coupling given by the assumption. By Theorem 115, (𝜎 #ℎ# (𝜎+𝜎+))⊲𝑑&𝑐
and this satisfies the desired inequality.

assert(𝜎 ; 𝑝) ; (𝜎 # ℎ # (𝜎 + 𝜎+))= =

assert(𝜎 ; 𝑝) ; 𝜎 ; ℎ= ; 𝜎 =

𝜎 ; assert 𝑝 ; ℎ= ; 𝜎 ≤
𝜎 ; ℎ= ; assert𝑞 ; 𝜎 =

𝜎 ; ℎ= ; 𝜎 ; assert(𝜎 ; 𝑞) =

(𝜎 ; ℎ ; (𝜎 + 𝜎+))= ; assert(𝜎 ; 𝑞)

The one-sided rules are particular instances of the two sided rules, by taking (assign-L) the

expression 𝑒2 to be the variable 𝑢2, (choice-L, ifelse-L) the commands 𝑐2 and 𝑑2 to be skip and

(loop-L, while-L) the guard 𝑏2 to be RRR and the command 𝑐2 to be skip. □

Theorem 90. The following are valid relational predicate-incorrectness triples in any posetal impera-

tive category where abort ≤ 𝑓 and 𝑓 # ⊤ ≤ ⊤ for all morphisms 𝑓 .

skip

{𝑝} skip ∼ skip {𝑝}

comp

{𝑝} 𝑐1 ∼ 𝑑1 {𝑞} {𝑞} 𝑐2 ∼ 𝑑2 {𝑟 }
{𝑝} (𝑐1 ; 𝑐2) ∼ (𝑑1 ∼ 𝑑2) {𝑟 }

assign

{𝑝 [(𝑢1, 𝑢2) \ (𝑣1, 𝑣2)]} (𝑢1 := 𝑣1) ∼ (𝑢2 := 𝑣2) {𝑝}

sample

ℎ ⊲ 𝑐1 & 𝑐2

{𝑝 [(𝑢1, 𝑢2) \ ℎ=]} (𝑢1 ← 𝑐1) ∼ (𝑢2 ← 𝑐2) {𝑝}
choice

{𝑝} 𝑐1 ∼ 𝑐2 {𝑞} {𝑝} 𝑐1 ∼ 𝑑2 {𝑞} {𝑝}𝑑1 ∼ 𝑐2 {𝑞} {𝑝}𝑑1 ∼ 𝑑2 {𝑞} 𝑏1, 𝑏2 total

{𝑝} (if 𝑏1 then 𝑐1 else𝑑1) ∼ (if 𝑏2 then 𝑐2 else𝑑2) {𝑞}
ifelse

{(𝑏1# ⊗ 𝑏2#) ∧ 𝑝} 𝑐1 ∼ 𝑐2 {𝑞}
{((¬𝑏1)# ⊗ (¬𝑏2)#) ∧ 𝑝}𝑑1 ∼ 𝑑2 {𝑞} 𝑏1, 𝑏2 total and deterministic

{(𝑏1 = 𝑏2) ∧ 𝑝} (if 𝑏1 then 𝑐1 else𝑑1) ∼ (if 𝑏2 then 𝑐2 else𝑑2) {𝑞}
loop

{𝑝} 𝑐1 ∼ 𝑐2 {𝑝} {𝑝} 𝑐1 ∼ skip {𝑝} {𝑝} skip ∼ 𝑐2 {𝑝} 𝑏1, 𝑏2 total

{𝑝} (while𝑏1 do 𝑐1) ∼ (while𝑏2 do 𝑐2) {𝑝}

, Vol. 1, No. 1, Article . Publication date: July 2025.

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

50 Anon.

while

{(𝑏1# ⊗ 𝑏2#) ∧ 𝑝} 𝑐1 ∼ 𝑐2 {(𝑏1 = 𝑏2) ∧ 𝑝} 𝑏1, 𝑏2 total and deterministic

{(𝑏1 = 𝑏2) ∧ 𝑝} (while𝑏1 do 𝑐1) ∼ (while𝑏2 do 𝑐2) {((¬𝑏1)# ⊗ (¬𝑏2)#) ∧ 𝑝}

monotone

𝑝1 ≥ 𝑝2 {𝑝2} 𝑐 ∼ 𝑑 {𝑞2} 𝑞2 ≥ 𝑞1
{𝑝1} 𝑐 ∼ 𝑑 {𝑞1}

choice-L

{𝑝} 𝑐 ∼ skip {𝑞} {𝑝}𝑑 ∼ skip {𝑞} 𝑏 total

{𝑝} (if 𝑏 then 𝑐 else𝑑) ∼ skip {𝑞}
symm

{𝑝} 𝑐 ∼ 𝑑 {𝑞}
{𝜎 ; 𝑝}𝑑 ∼ 𝑐 {𝜎 ; 𝑞}

assign-L

{𝑝 [𝑥 \ 𝑣]} (𝑥 := 𝑣) ∼ skip {𝑝}

sample-L

𝑐 total

{𝑝 [𝑢 \ 𝑐]} (𝑢 ← 𝑐) ∼ skip {𝑝}
ifelse-L

{(𝑏# ⊗ ⊤) ∧ 𝑝} 𝑐 ∼ skip {𝑞} {((¬𝑏1)# ⊗ ⊤) ∧ 𝑝}𝑑 ∼ skip {𝑞} 𝑏 total and deterministic

{𝑝} (if 𝑏 then 𝑐 else𝑑) ∼ skip {𝑞}
loop-L

{𝑝} 𝑐 ∼ skip {𝑝} 𝑏 total

{𝑝} (while𝑏 do 𝑐) ∼ skip {𝑝}

while-L

{(𝑏# ⊗ ⊤) ∧ 𝑝} 𝑐 ∼ skip {𝑝} 𝑏 total and deterministic

{𝑝} (while𝑏 do 𝑐) ∼ skip {((¬𝑏)# ⊗ ⊤) ∧ 𝑝}

Proof. skip. By Theorem 114, the monoidal product gives a coupling: ((skip ⊗ skip) # 𝜄) ⊲
skip& skip. By unitality, we obtain the rule.

𝑝 = (skip ⊗ skip) ; 𝑝 = ((skip ⊗ skip) # 𝜄)= ; 𝑝
comp. Suppose there are couplings 𝑔1 ⊲ 𝑐1 &𝑑1 and 𝑔2 ⊲ 𝑐2 &𝑑2 satisfying 𝑝 ≥ 𝑔=1 ;𝑞 and 𝑞 ≥ 𝑔=

2
; 𝑟 .

By Theorem 113, there is a coupling (𝑔1 # [𝑔2, 𝑐2 # 𝜄, 𝑑2 # 𝜄]) ⊲ (𝑐1 # 𝑐2) & (𝑑1 # 𝑑2). Then, applying the
definition of (−)= and the assumptions, we obtain the desired inequality.

(𝑔1 # [𝑔2, 𝑐2 # 𝜄, 𝑑2 # 𝜄])= ; 𝑟 =

𝑔1 ; 𝜋
+
1
; 𝑔2 ; 𝜋

+
1
; 𝑟 =

𝑔=
1
; 𝑔=

2
; 𝑟 ≤

𝑔=
1
; 𝑞 ≤

𝑝

assign. By Theorem 114, the monoidal product gives a coupling: (((𝑢1 := 𝑒1) ⊗ (𝑢2 := 𝑒2)) # 𝜄) ⊲
(𝑢1 := 𝑒1) & (𝑢2 := 𝑒2). This coupling satisfies the triple by definition.

𝑝 [(𝑢1, 𝑢2) \ (𝑒1, 𝑒2)] = ((𝑢1 := 𝑒1) ⊗ (𝑢2 := 𝑒2)) ; 𝑝 = ((𝑢1 := 𝑒1) ⊗ (𝑢2 := 𝑒2) # 𝜄)= ; 𝑝
sample. Given a coupling ℎ ⊲ 𝑐1 & 𝑐2, the triple is satisfied by definition.

𝑝 [(𝑢1, 𝑢2) \ ℎ=] = ℎ= ; 𝑝

choice. The assumption gives us couplings as in the hypotheses Theorem 116, so that we

obtain a coupling if 𝑏1 then(if 𝑏2 then𝑔 else𝑔′) else(if 𝑏2 thenℎ′ elseℎ) of if 𝑏1 then 𝑐1 else𝑑1 and
if 𝑏2 then 𝑐2 else𝑑2. We show that it satisfies the triple using totality of the guards.

(if 𝑏1 then(if 𝑏2 then𝑔 else𝑔′) else(if 𝑏2 thenℎ′ elseℎ))= ; 𝑞 =

(if 𝑏1 then(if 𝑏2 then𝑔= else𝑔′=) else(if 𝑏2 thenℎ′= elseℎ=)) ; 𝑞 =

if 𝑏1 then(if 𝑏2 then(𝑔= ; 𝑞) else(𝑔′= ; 𝑞)) else(if 𝑏2 then(ℎ′= ; 𝑞) else(ℎ= ; 𝑞)) ≤
if 𝑏1 then(if 𝑏2 then𝑝 else𝑝) else(if 𝑏2 then𝑝 else𝑝) =

𝑝

, Vol. 1, No. 1, Article . Publication date: July 2025.

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

Program Logics via Distributive Monoidal Categories 51

ifelse. The assumptions give us couplings as in the hypotheses of Theorem 118, so we obtain that

assert(𝑏1 = 𝑏2) ; (if (𝑏1⊗𝑏2) then𝑔 elseℎ) is a coupling of if 𝑏1 then 𝑐1 else𝑑1 and if 𝑏2 then 𝑐2 else𝑑2.
Then, we derive the inequality using determinism of 𝑏1 and 𝑏2, the definition of (−)=, and the

assumption.

(assert(𝑏1 = 𝑏2) ; (if (𝑏1 ⊗ 𝑏2) then𝑔 elseℎ))= ; 𝑞 =

assert(𝑏1 = 𝑏2) ; (if (𝑏1 ⊗ 𝑏2) then𝑔= elseℎ=) ; 𝑞 =

assert(𝑏1 = 𝑏2) ; (if (𝑏1 ⊗ 𝑏2) then(𝑔= ; 𝑞) else(ℎ= ; 𝑞)) ≤
assert(𝑏1 = 𝑏2) ; (if (𝑏1 ⊗ 𝑏2) then (𝑏1# ⊗ 𝑏2#) ∧ 𝑝 else ((¬𝑏1)# ⊗ (¬𝑏2)#) ∧ 𝑝) =

assert(𝑏1 = 𝑏2) ; (if (𝑏1 ⊗ 𝑏2) then𝑝 else 𝑝) =

assert(𝑏1 = 𝑏2) ; 𝑝 =

(𝑏1 = 𝑏2) ∧ 𝑝

while. We use the assumption, determinism of 𝑏1 and 𝑏2, and Theorem 119.

𝑏1 (𝑥){𝑏2 (𝑦){𝑔=(𝑥,𝑦){𝑥,𝑦.((𝑏1 = 𝑏2) ∧ 𝑝){𝛼𝛼𝛼 ()}}}
{𝑥,𝑦.(𝑝 ∧ (¬𝑏1# ⊗ ¬𝑏2#)){𝛽𝛽𝛽 ()}}}{𝑥,𝑦.(𝑝 ∧ ((¬𝑏1)# ⊗ ¬𝑏2#)){𝛽𝛽𝛽 ()}} ≤
𝑏1 (𝑥){𝑏2 (𝑦){𝑥,𝑦.(𝑝 ∧ (𝑏1# ⊗ 𝑏2#)){𝛼𝛼𝛼 ()}}}
{𝑥,𝑦.(𝑝 ∧ (¬𝑏1# ⊗ ¬𝑏2#)){𝛽𝛽𝛽 ()}}}{𝑥,𝑦.(𝑝 ∧ (¬𝑏1# ⊗ ¬𝑏2#)){𝛽𝛽𝛽 ()}} =

assert(𝑝 ∧ (𝑏1 = 𝑏2)) ; (𝑏1 (𝑥){𝑏2 (𝑦){𝑥,𝑦.𝛼𝛼𝛼 ()}}{𝑥,𝑦.𝛽𝛽𝛽 ()}}{𝑥,𝑦.𝛽𝛽𝛽 ()}) =

Then, by uniformity and the extra hypothesis, we obtain the desired inequality.

(𝑝 ∧ (𝑏1 = 𝑏2)) ≥
assert(𝑝 ∧ (𝑏1 = 𝑏2)) ; (loop 𝛼𝛼𝛼 (𝑥,𝑦){𝑏1 (𝑥){𝑏2 (𝑦){𝑥,𝑦.𝛼𝛼𝛼 (𝑥,𝑦)}{𝑥,𝑦.𝛽𝛽𝛽 ()}}{𝑥,𝑦.𝛽𝛽𝛽 ()}}) ≥
loop 𝛼𝛼𝛼 (𝑥,𝑦){𝑏1 (𝑥){𝑏2 (𝑦){𝑔=(𝑥,𝑦){𝑥,𝑦.𝛼𝛼𝛼 (𝑥,𝑦)}}
{𝑥,𝑦.(𝑝 ∧ ((¬𝑏1)# ⊗ ¬𝑏2#))𝛽𝛽𝛽 ()}}{𝑥,𝑦.(𝑝 ∧ ((¬𝑏1)# ⊗ ¬𝑏2#))𝛽𝛽𝛽 ()}} =

(loop 𝛼𝛼𝛼 (𝑥,𝑦){𝑏1 (𝑥){𝑏2 (𝑦){𝑔=(𝑥,𝑦){𝑥,𝑦.𝛼𝛼𝛼 (𝑥,𝑦)}}{𝑥,𝑦.𝛽𝛽𝛽 (𝑥,𝑦)}}{𝑥,𝑦.𝛽𝛽𝛽 (𝑥,𝑦)}})
; (𝑝 ∧ ((¬𝑏1)# ⊗ ¬𝑏2#))

The derivation for the loop rule follows the same idea of that for the while rule: it relies on

Theorem 120 and uniformity, but it does not need determinism of the guards because they don’t

need to be duplicated in the pre- and post-conditions.

monotone. Let ℎ ⊲ 𝑐 & 𝑑 be the coupling given by the assumption.

𝑝1 ≥ 𝑝2 ≥ ℎ= ; 𝑞2 ≥ ℎ= ; 𝑞1
symm. Letℎ⊲𝑐&𝑑 be the coupling given by the assumption. By Theorem 115, (𝜎 #ℎ# (𝜎+𝜎+))⊲𝑑&𝑐

and this satisfies the desired inequality.

(𝜎 # ℎ # (𝜎 + 𝜎+))= ; 𝜎 ; 𝑞 =

𝜎 ; ℎ= ; 𝜎 ; 𝜎 ; 𝑞 =

𝜎 ; ℎ= ; 𝑞 ≤
𝜎 ; 𝑝

The one-sided rules are particular instances of the two sided rules, by taking (assign-L) the

expression 𝑒2 to be the variable 𝑢2, (sample-L) the command 𝑐 to be skip, (choice-L, ifelse-L) the

, Vol. 1, No. 1, Article . Publication date: July 2025.

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

52 Anon.

commands 𝑐2 and 𝑑2 to be skip and (loop-L, while-L) the guard 𝑏2 to be RRR and the command 𝑐2 to

be skip. □

, Vol. 1, No. 1, Article . Publication date: July 2025.

	Abstract
	1 Introduction
	1.1 Interpreting triples
	1.2 Contributions
	1.3 Synopsis
	1.4 Related work

	2 An internal distributive language
	2.1 Signatures: values, generators, and basic types
	2.2 Language primitives
	2.3 Substitution
	2.4 Interchange and Loop axioms
	2.5 Derived structural rules
	2.6 Posetal reasoning

	3 Guards, predicates and commands
	3.1 Guards
	3.2 Predicates
	3.3 Commands
	3.4 States

	4 Categorical semantics
	4.1 Premonoidal copy-discard categories
	4.2 Cocartesian multicategories
	4.3 Distributive copy-discard multicategories
	4.4 Traced distributive multicategories
	4.5 Imperative multicategories
	4.6 Posetal imperative multicategories
	4.7 Examples, and representability

	5 Distributive program logics
	5.1 Correctness triples
	5.2 Incorrectness triples
	5.3 Outcome-like triples

	6 Distributive relational program logics
	6.1 Relational correctness triples
	6.2 Relational incorrectness triples

	7 Conclusions and future work
	7.1 Further work

	References
	A Proofs for Section 2 (An internal distributive language)
	A.1 Alpha equivalence

	B Proofs for Section 3 (Guards, predicates and commands)
	C Proofs for Section 4 (Categorical semantics)
	D Proofs for Section 5 (Distributive program logics)
	E Proofs for Section 6 (Distributive relational program logics)

