Symmetric Monoidal Automata
EXTENDED ABSTRACT

Elena Di Lavore and Mario Roméan

Tallinn University of Technology, Ehitajate tee 5, 12616 Tallinn, Estonia

Introduction. Automata appear across the computer science literature in different flavours:
deterministic, non-deterministic, or stochastic; and each of these flavours has its own notions
of transition, bisimulation or trace equivalence. This text shows that we do not need to repeat
these notions each time we change the flavour of automata: all these automata are particular
cases of what we call monoidal automata; we start studying bisimulation and trace equivalence
for monoidal automata; and we suggest that these generalise the multiple classical notions.

Monoidal Automata. We depart from a monoidal analogue of transition system that comes
from the work of Katis, Sabadini and Walters [KSW97]: monoidal transition system. Input
and output types, automata, and automata morphisms assemble into a monoidal bicategory.
Previous work of these authors, together with Gianola, Sabadini and Sobociriski [DLGR 23]
has studied the universal properties of these monoidal transition systems.

Definition 1. An automaton in a symmetric monoidal category (C,®, I), taking inputs on
A € Obj(C) and producing outputs in B € Obj(C), is a triple (.5, so, f) consisting of a state space
S € Obj(C), an initial state so: I — S and a transition morphism, f : S® A —> S® B.

Definition 2. Monoidal automata over a symmetric monoidal category (C,®,I) form a mo-
noidal bicategory, Aut(C,®), whose 0-cells the objects of C; whose 1-cells (S,so, f): A — B
are monoidal automata f: S® A — S ® B; and whose 2-cells a: (S, s0, f) — (T,to,g) are
morphisms « : S — T such that f3(a®id) = (a®id)sg and sg§a = tg. The composition and

S—}—s
S {8
(=
S

(m4) (m2) -15, =D
A

BE-T - @ ST - S E{al B8]

[

o4w

Figure 1: Morphisms, composition and tensor of monoidal automata.

tensoring of two automata tensors both state spaces and both initial states. The only difference
is on how the transition functions interact: composition uses the output of the first as the input
of the second, tensoring keeps them independent (Figure 1, right). The composition and the
tensor of morphisms of automata is exactly its tensor in the original monoidal category.

Ezample 3 (Deterministic automata). Monoidal automata in the monoidal category of sets and
functions are deterministic automata [BK08, Definition 2.5], i.e. a function f: Sx A —» S x B
with an initial state sg € S. Homomorphisms of deterministic automata [Rut95, Section 2| are
precisely the 2-cells of Aut(Set, x).

Ezample 4 (Stochastic automata). Consider the category of stochastic maps with the cartesian
product, (Stoch, x). Morphisms from A to B, are functions f(ele): A x B — [0,1] such that
f(e|a) has finite support and moreover), f(bla) = 1 for each a € A. Stochastic automata
are monoidal automata over the category of stochastic maps, Aut(Stoch, x), i.e. an initial
distribution, do: A — [0,1], together with a function f(s’,bls,a) returning the probability
of outputting b and transitioning to s’ from the state s with an input a.

Symmetric Monoidal Automata: Extended Abstract Di Lavore, Roméan

Ezample 5 (Non-deterministic automata). Non-deterministic automata [BK08, Definition 2.1]
are monoidal automata over the category of relations, Aut(Rel, x). Deterministic morphisms
between them coincide with the classical notion of morphism of automata [Rut95, Rut00].

Ezample 6. Automata can be represented as labelled graphs with an initial node. The vertices
are states and the edges are transitions. In a deterministic automaton, for each vertex and
each input, there is exactly one outgoing edge that produces one output, while, in a stochastic
automaton, the weights of the outgoing edges must sum to 1.

olo ,’ s~ 203 ,é g
1\-',’.::::::..:9 O ,j‘nﬁ“()"‘ f .. N\
SIS
S Wl w ¢ AT

W b Sreme e

Figure 2: Homomorphisms of deterministic, stochastic and non-deterministic automata.

Morphisms and bisimulation. The classical definition of simulation can be rewritten as a
pair of inequations in Rel. A relation R € S x T is a simulation from (.5, so, f) to (T, tg, g) if it
satisfies (s1) and (s2) below, where R°: T'— S indicates the opposite of the relation R.

(1) (s2)

s'e BE-s it =S S = i

This observation allows us to characterise simulations in terms of morphisms of automata.

Proposition 7. Let (S, so,), (T,t0,9): A — B be two automata in Rel and R: S — T be a
relation between their sets of states. Then, R is a simulation from (S, so, f) to (T,to,q) if and
only if the relation (idg x R°)§A is a morphism of automata (S x T,rg,h) — (S, s, f) in Rel,
for the automaton (S x T,rg,h) defined below.

A bisimulation is a relation R such that both R and R° are simulations. We use this obser-
vation to characterise bisimulations with the following result, which is essentially a restatement
of [Rut95, Lemma 2.2] with added inputs and outputs. We give a string diagrammatic proof.

Proposition 8. Let (S, so, f), (T, to,9): A — B be two automata in Rel, and R: S — T be
a relation between their sets of states. Then, R is a bisimulation if and only if the projec-
tions p: R — S and q: R — T are morphisms of automata, p: (R,ry,h') — (S, so, f) and
q: (R,ry,h') = (T, to,g), where (R,r{, k') is the automaton defined below.

h!(s! o R
=3 A

E-R:

Symmetric Monoidal Automata: Extended Abstract Di Lavore, Roméan

Monoidal Streams and Monoidal Traces. Automata define an execution trace: a con-
trolled stream of the visible outputs of the automaton. In the same way, monoidal automata
define an execution trace, which must be now a monoidal stream. The theory of monoidal
streams [DLAFR22] is an analogue of the coinductive construction of streams using morphisms
in a symmetric monoidal category. We now employ it to study traces of monoidal automata.

A classical stream, A = (Ao, Ay, ...), is coinductively defined to be (i) an element now(A) =
Ao, (ii) together with a stream, representing its tail, later(A) = (A1, Az, ...). When the stream
is formed by objects of a symmetric monoidal category, we can act on the first element of the
stream now(M - A) = M ® now(A) leaving the rest of the stream the same, later(M - A) =
later(A). Monoidal streams use this to introduce a new element: an explicit memory that
allows to connect each piece of the stream to the next one.

Definition 9. A monoidal stream f: A — B between two families of objects A = (A4, A;...)
and B = (By, By, ...) is a triple (M(f),now(f), later(f)) consisting of (i) an object of the sym-
metric monoidal category, M(f), called the memory; (ii) a morphism of the symmetric monoidal
category, now(f): now(X) — M(f) ® now(Y), called the first action; and (iii) a monoidal stream
later(f): M(f) - later(A) — later(B), called the rest of the action. Monoidal streams are
quotiented by a dinaturality equivalence relation: the minimal equivalence relation that relates
(M(f), now(f), Later(f)) ~ (M(g),now(g), later(g)), for each morphism r: M(g) — M(f) such that
now(g) 7 = now(f) and such that r - later(f) ~ later(g). Monoidal streams form a symmetric
monoidal category, Stream(C, ®).

A single object A can be repeated to form a stream [A], defined by now([A]) = A and
later([A]) = [A]. Analogously, a transition function, f: S® A — S ® B with state space S,
can be repeated to form a monoidal stream [f]: S - [A] — [B]. When the transition function
has an initial state, sg, and forms a monoidal automata, we can use it to construct a monoidal
stream that represents the execution trace of the automaton.

Definition 10. The trace of a monoidal automaton (S, sg, f): A — B is the monoidal stream,
tr(S, so, f): [A] — [B], defined by tr(S,so, f) = so - [f]. We say that two automata are
trace-equivalent if their traces coincide.

Ezample 11 (Deterministic traces). The traces of a deterministic automaton (.5, sq, f) are the
streams of elements in the image of the monoidal stream tr(S, sg, f) in Stream(Set, x). The
explicit form of functional monoidal streams are causal stream functions [SJ19] and can be
described as a coKleisli category [UVO08].

Related work. Our work is mostly based on the work of Katis, Sabadini and Walters on pro-
cesses in monoidal categories [KSW97], and our previous work, first presented at NWPT 21,
which coinductively defined monoidal streams [DLAFR22] as a monoidal counterpart for da-
taflow programming [UV08]. We expand this work: we now add notions of bisimulation and
trace equivalence for monoidal automata. We reason coinductively; Kozen and Silva [KS17]
have given an informal exposition of practical coinductive reasoning. Most of the categorical
literature on automata has been separated from monoidal categories [CP20, SBBR13], or has
been restricted to the cartesian case [BLLL23|. Notions of probabilistic and metric bisimulation
have been already advanced [BDEP97, DDLP06, BBLM17, BSS21, BSV22]. The term “monoi-
dal automata” is also used to indicate automata whose language is monoidal [ES22, ES23].

Acknowledgements. Elena Di Lavore and Mario Roman were supported by the FEuropean
Social Fund Estonian IT Academy research measure (project 2014-2020.4.05.19-0001).

Symmetric Monoidal Automata: Extended Abstract Di Lavore, Roméan

References

[BBLM17]

[BDEP97

[BKOS]

[BLLL23]

[BSS21]

[BSV22]

[CP20]

[DDLP06)

[DLAFR22]

[DLGR*23]

[ES22]

[ES23]

[KS17]

[KSW97]

[Rut95]

[Rut00]

Giovanni Bacci, Giorgio Bacci, Kim G Larsen, and Radu Mardare. On the metric-based
approximate minimization of markov chains. 2017.

Richard Blute, Josée Desharnais, Abbas Edalat, and Prakash Panangaden. Bisimulation
for labelled markov processes. In Proceedings of Twelfth Annual IEEE Symposium on
Logic in Computer Science, pages 149-158, 1997. doi:10.1109/LICS.1997.614943.
Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT press, 2008.
G. Boccali, A. Laretto, F. Loregian, and S. Luneia. Completeness for categories of general-
ized automata. In Paolo Baldan and Valeria de Paiva, editors, 10th Conference on Algebra
and Coalgebra in Computer Science (CALCO 2023), volume 270 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 20:1-20:14, Dagstuhl, Germany, 2023. Schloss
Dagstuhl — Leibniz-Zentrum fiir Informatik. doi:10.4230/LIPIcs.CALCO.2023.20.
Filippo Bonchi, Alexandra Silva, and Ana Sokolova. Distribution Bisimilarity via the
Power of Convex Algebras. Logical Methods in Computer Science, 17(3), 07 2021. doi:
10.46298/1mcs-17(3:10)2021.

Filippo Bonchi, Ana Sokolova, and Valeria Vignudelli. The Theory of Traces for Sys-
tems with Nondeterminism, Probability, and Termination. Logical Methods in Computer
Science, 18(2), 06 2022. doi:10.46298/1mcs-18(2:21)2022.

Thomas Colcombet and Daniela Petrigan. Automata minimization: a functorial approach.
Logical Methods in Computer Science, 16, 2020.

Vincent Danos, Josée Desharnais, Frangois Laviolette, and Prakash Panangaden. Bisim-
ulation and cocongruence for probabilistic systems. Information and Computation,
204(4):503-523, 2006.

Elena Di Lavore, Giovanni de Felice, and Mario Romén. Monoidal streams for dataflow
programming. In Proceedings of the 87th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS ’22, New York, NY, USA, 2022. Association for Computing
Machinery. doi:10.1145/3531130.3533365.

Elena Di Lavore, Alessandro Gianola, Mario Romén, Nicoletta Sabadini, and Pawel
Sobociriski. Span(Graph): a canonical feedback algebra of open transition systems. Soft-
ware and System Modeling, 22(2):495-520, 2023. doi:10.1007/s10270-023-01092-7.

Matthew Earnshaw and Pawel Sobocinski. Regular Monoidal Languages. In Stefan Szei-
der, Robert Ganian, and Alexandra Silva, editors, 47th International Symposium on Math-
ematical Foundations of Computer Science (MFCS 2022), volume 241 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 44:1-44:14, Dagstuhl, Germany, 2022.
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik. doi:10.4230/LIPIcs.MFCS.2022.44.
Matthew Earnshaw and Pawet Sobocinski. String Diagrammatic Trace Theory. In Jérome
Leroux, Sylvain Lombardy, and David Peleg, editors, 48th International Symposium on
Mathematical Foundations of Computer Science (MFCS 2023), volume 272 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 43:1-43:15, Dagstuhl, Germany,
2023. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik. doi:10.4230/LIPIcs.MFCS.
2023.43.

Dexter Kozen and Alexandra Silva. Practical coinduction. Mathematical Structures in
Computer Science, 27(7):1132-1152, 2017. doi:10.1017/S0960129515000493.

Piergiulio Katis, Nicoletta Sabadini, and Robert FC Walters. Bicategories of pro-
cesses. Journal of Pure and Applied Algebra, 115(2):141-178, 1997. doi:10.1016/
50022-4049(96)00012-6.

Jan Rutten. A calculus of transition systems (towards universal coalgebra). In Modal logic
and process algebra : a bisimulation perspective, pages 231-256, 01 1995.

Jan Rutten. Universal coalgebra: a theory of systems. Theoretical Computer Science,

https://doi.org/10.1109/LICS.1997.614943
https://doi.org/10.4230/LIPIcs.CALCO.2023.20
https://doi.org/10.46298/lmcs-17(3:10)2021
https://doi.org/10.46298/lmcs-17(3:10)2021
https://doi.org/10.46298/lmcs-18(2:21)2022
https://doi.org/10.1145/3531130.3533365
https://doi.org/10.1007/s10270-023-01092-7
https://doi.org/10.4230/LIPIcs.MFCS.2022.44
https://doi.org/10.4230/LIPIcs.MFCS.2023.43
https://doi.org/10.4230/LIPIcs.MFCS.2023.43
https://doi.org/10.1017/S0960129515000493
https://doi.org/10.1016/S0022-4049(96)00012-6
https://doi.org/10.1016/S0022-4049(96)00012-6

Symmetric Monoidal Automata: Extended Abstract Di Lavore, Roméan

[SBBR13]

[SJ19]

[UVos]

249(1):3-80, 2000. Modern Algebra. doi:10.1016/50304-3975(00)00056-6.

Alexandra Silva, Filippo Bonchi, Marcello Bonsangue, and Jan Rutten. Generalizing
determinization from automata to coalgebras. Logical Methods in Computer Science, 9,
2013.

David Sprunger and Bart Jacobs. The differential calculus of causal functions. CoRR,
abs/1904.10611, 2019. URL: http://arxiv.org/abs/1904.10611, arXiv:1904.10611.
Tarmo Uustalu and Varmo Vene. Comonadic notions of computation. In Jifi Addmek
and Clemens Kupke, editors, Proceedings of the Ninth Workshop on Coalgebraic Methods
in Computer Science, CMCS 2008, Budapest, Hungary, April 4-6, 2008, volume 203 of
Electronic Notes in Theoretical Computer Science, pages 263-284. Elsevier, 2008. doi:
10.1016/j.entcs.2008.05.029.

https://doi.org/10.1016/S0304-3975(00)00056-6
http://arxiv.org/abs/1904.10611
http://arxiv.org/abs/1904.10611
https://doi.org/10.1016/j.entcs.2008.05.029
https://doi.org/10.1016/j.entcs.2008.05.029

