uuuuuuuuuuuu

OXFORD
Mathematical
Institute
/\
Profunctor optics: a categorical update —7 |
[S
/

Mario Roman
June 14, 2019

SUPERVISOR: Jeremy Gibbons

/ /

Oxford
Mathematics

Part 1: Motivation

Definition (Lens)

Lens j , = Sets(s,a) X Sets(s X b, t).

b

@~ o
0™ @

-- Example: A postal address contains a ZIP code.
viewZip : PostalAddr -> ZipCode
updateZip : PostalAddr * ZipCode -> PostalAddr

Prisms (alternatives!)

Definition (Prism)

Prism <<i> , (Z)) = Sets(s, s+ a) x Sets(b,).

s \.

baild

_—
-- An addess can be both a postal address or an email.
matchPostal : Address -> Address + PostalAddr

buildEmail : EmailAddr -> Address

Traversals (multiple foci!)

Definition (Traversal)

Traversal <<i> , <Z>> = Sets(s, Xn:a" x (b" = t)).

30 ()

-- A sorted listing of addresses.
extract : MailingList -> Vect n EmailAddress * (Vect n PostalAddress -> Postallist)

This is not modular

How to compose a Prism with a Lens? How to get/set a Zip from an Address?

getPostal : Address -> Address + PostalAddr
setPostal : PostalAddr -> Address

getZip : PostalAddr -> ZipCode

setZip : PostalAddr * ZipCode -> PostalAddr

This is not modular

How to compose a Prism with a Lens? How to get/set a Zip from an Address?

getPostal : Address -> Address + PostalAddr
setPostal : PostalAddr -> Address

getZip : PostalAddr -> ZipCode

setZip : PostalAddr * ZipCode -> PostalAddr

The naive solution is not modular. Every case (Prism+Lens, Lens+Prism,
Traversal+Prism+Other, ...) needs special attention.

-- This is boilerplate code we would rather not write.
getZipFromAddr :: Address -> Address + ZipCode
getZipFromAddr = (\ a -> case getPostal a of
Right postal -> Right (getZip postal)
Left add -> Left add)

setZipAddr :: Address = ZipCode -> Address

setZipAddr = (\ a z -> case getPostal a of
Right postal -> setPostal (setZip (postal , z))
Left add -> add)

Profunctor optics

Some optics are equivalent to parametric functions over profunctors!

Alens Sets(s,a) x Sets(s x b,t) isalso p(a,b) — p(s,t),Vp € Mod(x)
Aprism Sets(s,s+a) x Sets(b,t) isalso p(a,b) — p(s,t),Vp € Mod(+)

Where p € Tamb(®) means we have a transformation p(a,b) — p(c ® a,c ® b).

Profunctor optics

Some optics are equivalent to parametric functions over profunctors!

Alens Sets(s,a) x Sets(s x b,t) isalso p(a,b) — p(s,t),Vp € Mod(x)
Aprism Sets(s,s+a) x Sets(b,t) isalso p(a,b) — p(s,t),Vp € Mod(+)

Where p € Tamb(®) means we have a transformation p(a,b) — p(c ® a,c ® b).

This solves composition
Now composition of optics is just function composition. From p(a, b) — p(s,t) and
p(@,y) — p(a,b) we can get p(z,y) — p(s,).

Goals of this dissertation

+ Gathering the literature on this topic.
+ What is a general definition of optic?
+ How does the profunctor representation work in general?
+ Try to provide new proofs, as general as possible (actions of monoidal categories as in
[Riley, 2018]).

« Description of the traversal from first principles.

+ Problem proposed by [Milewski, 2017]: get a description of the traversal and the
concrete representation from a single application of Yoneda.
+ Unification of optics, including the traversal.

A definition of optics: the (co)end representation.
Unification with the traversal: derivation of the traversal and new optics.
How to compose optics: the profunctor representation theorem.

Further work: formal verification and new directions.

A definition of "optic"

Part 2: A definition of "optic"

Ends and Coends are special kinds of (co)limits over a profunctor
: C°P x C — Sets, (co)equalizing its right and left mapping.

(id, f)
/E plo,a) — [[plee) —2] plab)

zeC p(fid) £ 0 e

p(id, f) z€C
L b — | pwo) — [)
f:b—a p(fiid) e

We can think of them as encoding forall (ends) and exists (coends)

Fosco Loregian. “This is the (co)end, my only (co)friend”. In: arXiv preprint arXiv:1501.02503 (2015).

(Co)end calculus

Natural transformations can be rewritten in terms of ends. Forany F,G: C — D,
Nat(F, G) = / D(Fz, Ga).
zeC
We can compute (co)ends using Yoneda lemma.
zeC
Fa = / Fz x C(a,x), Ga = / Sets(C(z,a), Gz).
zeC

We have a well-behaved formal calculus for (co)ends.

Fosco Loregian. “This is the (co)end, my only (co)friend”. In: arXiv preprint arXiv:1501.02503 (2015).

A definition of "optic"

Fix some action M x C — C of a monoidal category M on C.

Definition (Riley, 2018)
The Optic category has pairs on C as objects and morphisms as follows.

ceM
Opticyy <<i> , <Z>> :/ © C(s,c-a) X C(c-b,t).

Intuition: The optic splits into some focus a and some context c. We cannot access
that context, but we can use it to update.

Lenses are optics

cESets
/ Sets(s,c X a) x Sets(c X b,t).

@O
©Qe—@

Figure 1: A lens is given by (s — ¢ x a) and (¢ x b — t) for some c we cannot access.

=
o
=]
w
VRS
N
~+ 0
N~
N
S Q
N~
N~
Il

Lenses are optics

Theorem (from Milewski, 2017)

@ — o @® N®_+o
©e—@ @e=@

Proof. By Yoneda lemma.

cESets
/ Sets(s,c x a) x Sets(c X b, t) = (Product)

cESets
/ Sets(s, c) x Sets(s,a) x Sets(c x b, t) = (Yoneda)

Sets(s,a) x Sets(s x b,t)

Prisms are optics
s a c€Sets
Prism ol = / Sets(s,c+ a) x Sets(c+ b,t).

%‘\Sﬂ (exis‘\a&id \

]
V‘/
o}

. . @
o ¢

Figure 2: A prism is given by (s — ¢ + a) and (c + b — t) for some c we cannot access.

Prisms are optics

Theorem (from Milewski, 2017)

F—-)
: e | |-

s \.
-\or—ﬁ@ ild
/ ®—

IR

Proof. By Yoneda lemma.

meESets
/ Sets(s,m + a) x Sets(m +b,t) = (Coproduct)

meSets
/ Sets(s,m + a) x Sets(m,t) x Sets(m x b,t) = (Yoneda)

Sets(s,t + a) x Sets(b, t)

Traversals are optics (with a new derivation)

- s o B c€[Nat,Sets] n n
aversal R = / Sets (S’Zn cn X a)><Sets (Zn Ccp X b ,t) .
8
1]

@0
@ — -—
© 000

To our knowledge, this is an original formulation of traversals. It should be related to
the description in terms of Traversables [Pickering/Gibbons/Wu, 2016].

Traversals are optics (with a new derivation)

Theorem

That is,

c€[Nat,Sets]
/ Sets(s, Y cnxa™)xSets(D cnxb™,t) = Sets(s — » _a"x(b" = t)).

Traversals are optics (with a new derivation)

This is Yoneda, this time for functors c: Nat — Sets.

/ Sets <s, Z Cn X a”) X Sets (Z Cn X b”,t) =~ (cocontinuity)

neN neN

neN neN

c
/ Sets (s, > en x a") x] Sets(cn x b™,t) 2 (cartesian closedness)

IR

(natural transf. as an end)

/ Sets (s, Z Cn X a") X H Sets (cpn, b" — t)

neN neN

neN

c
/ Sets (s, > en x a") x [Nat, Sets] (c, (=) = t) ~ (Yoneda lemma)

Sets (s, Z a x (" — t))

neN

This solves the problem posed by [Milewski, 2017].

Unification of optics

All the usual optics are of this form.

Name Concrete Action

Adapter (s—=a)x(b—=1) id: [Set, Set]

Lens (s—=a)x(bxs—t) (X): Set — [Set, Set]
Prism (s—=t+a)x(b—=1) (4): Set — [Set, Set]
Grate ((s—>a)—=b) >t (—): Set°? — [Set, Set]

Affine Traversal s —t+ax (b—1t)
Fixed Traversal 3n.s — (a™ x (b — t))

Traversal s — En.a™ x (b" — t)
Glass ((s—>a)—b)—>s—t
Setter (a—=b) = (s—=1t)

(X,4+): (Set x Set) — [Set, Set)]
(x,0™): (Set x Nat) — [Set, Set]
3 : [Nat, Set] — [Set, Set]
(x,—): (Set x Set) — [Set, Set]
ev: [Set, Set] — [Set, Set]

In particular, we have new derivations of traversal, fixed traversal, and glass; this
expands on previous work by Milewski, Boisseau/Gibbons and Riley.

Preorder on optics

Every action gives a submonoid of endofunctors. Join corresponds to the action of
the coproduct (pseudo)monoid. This generalizes the lattice described in
Pickerings-Gibbons-Wu.

Setter (cy)

—

Traversal poly (1))

1

Glass(!) , Affine(y 4
Grate(_,) Lens) Prism)

~ 1 _—

Adapter(i@

Profunctor representation

Part 3: the Profunctor representation theorem

Promonads and the optics category

A promonad ¢ € [C°P x C, Sets] is a monoid in the 2-category of profunctors.

Lemma (Kleisli construction in Prof, e.g. in Pastro-Street 2008)

The Kleisli object for the promonad, K1(v), is a category with the same objects, but
hom-sets given by the promonad, K1())(a, b) = ¥ (a, b).

For some fixed kind of optic, we can create a category with the same objects as
C°P x C, but where morphisms are optics of that kind.

~c€M
P((s,t),(a,b)) = / C(s,c-a) x C(c-b,t)

That is, Optic = Kl(¢).

Craig Pastro and Ross Street. “Doubles for monoidal categories”. In: Theory and applications of categories 21.4
(2008), pp. 61-75.

Kleisli object

ceor x C CoP x C
© Optic H
F v LG 3Gy, F v v

Theorem

Functors [Optic, Set] are equivalent to right modules on the terminal object for the
promonad Mod(+)), which are algebras for an associated monad.

This follows from the universal property of the Kleisli object,
Cat(Optic, Set) = Prof(1, Optic) = Mod(%)).

Dan Marsden. “Category Theory Using String Diagrams”. In: CoRR abs/1401.7220 (2014). arXiv: 1401.7220. URL:
http://arxiv.org/abs/1401.7220.

https://arxiv.org/abs/1401.7220
http://arxiv.org/abs/1401.7220

Profunctor representation theorem

Theorem (Riley 2018, Boisseau/Gibbons 2018, with a different proof)
Optics given by) correspond to parametric functions over profunctors that have
module structure over).

/ p(a,b) — p(a,b) = Optic,,((s, 1), (a, b))
pEMod(v)

Proof. Applying Yoneda lemma again.

/ p(a,b) = p(a, b) = (lemma)
pEMod (7))
/ p(a,b) = p(a,b) = (by definition)
p€E[Optic,Sets]
Nat(—(a,b), —(s,t
Nat(Nat(Optic((a,b),0), —), Nat(Optic((s, t),0),
Nat(Optic((a, b),), Optic((s, t),
Optic((s,), (a,

1R

(Yoneda embedding)

1R

(Yoneda embedding)

1%

)
)
0)) (Yoneda embedding)
b))

Bartosz Milewski. Profunctor optics: the categorical view.
https://bartoszmilewski.com/2017/07/07/profunctor-optics-the-categorical-view/. 2017.

Profunctor representation: lenses

Theorem (Profunctor representation theorem)
/ p(a,b) = pla,b) = Optic, (s,), (a,1))
peMod ()

In particular, for lenses, modules associated to the action (x) are profunctors with a

natural transformation

/ p(a,b) — p(c X a,c x b),
ceC

which were called cartesian profunctors.

-- Haskell definition.
class Cartesian p where
cartesian :: pab ->p (c, a) (c, b)
Lens s t a b = (forall p . Cartesian p =>p a b ->p s t)

Guillaume Boisseau and Jeremy Gibbons. “What you needa know about Yoneda: profunctor optics and the
Yoneda lemma (functional pearl)”. In: PACMPL 2.ICFP (2018), 84:1-84:27. DOI: 10.1145/3236779. URL:

https://doi.org/10.1145/3236779.

https://doi.org/10.1145/3236779
https://doi.org/10.1145/3236779

Profunctor representation: prisms

Theorem (Profunctor representation theorem)
/ p(a,b) = pla,b) = Optic, (s,), (a,1))
peMod ()

In particular, for prisms, modules associated to the action (+) are profunctors with a

natural transformation

/ p(a,b) = p(c+a,c+b),
ceC

which were called cocartesian profunctors.

-- Haskell definition.

class Cocartesian p where

cocartesian :: p a b -> p (Either c a) (Either c b)

Prism s t a b = (forall p . Cocartesian p =>p ab ->p s t)

Guillaume Boisseau and Jeremy Gibbons. “What you needa know about Yoneda: profunctor optics and the
Yoneda lemma (functional pearl)”. In: PACMPL 2.ICFP (2018), 84:1-84:27. DOI: 10.1145/3236779. URL:

https://doi.org/10.1145/3236779.

https://doi.org/10.1145/3236779
https://doi.org/10.1145/3236779

Profunctor representation: traversals

Theorem (Profunctor representation theorem)

/ p(a,B) — p(a b) = Opticy ((s,t), (a,b))
pEMod(v)

In particular, for traversals, modules associated to the action (3_,,) are profunctors
with a natural transformation

/Cecp(a,b)%p<zncn><a ,chnxb)7

which we can call analytic profunctors.

Guillaume Boisseau and Jeremy Gibbons. “What you needa know about Yoneda: profunctor optics and the
Yoneda lemma (functional pearl)”. In: PACMPL 2.ICFP (2018), 84:1-84:27. DOI: 10.1145/3236779. URL:

https://doi.org/10.1145/3236779.

https://doi.org/10.1145/3236779
https://doi.org/10.1145/3236779

Further work

Part 4: Further work

Formal verification and constructive proofs

Our proofs are all based in applications of Yoneda lemma and are all constructive.
Taking a perspective of mathematics where proofs have a content (proof relevance),
we can extract algorithms transforming optics from the formal proofs.

lensDerivation {s} {t} {a} {b} =

begin

((Jexists c € Set , ((s ->c xa) x (c x b ->t)))) 2(z-coend (A ¢ -> trivial))
((Jexists ¢ € Set , (((s =>¢) x (s =>a)) x (c x b ->t)))) =(=-coend (A ¢ -> trivial))
((Jexists c € Set , ((s ->¢) x (s =>a) x (c x b -> t)))) =(yoneda)

((s > a) x (s xb ->1))

qed

Figure 3: Derivation of a lens in Agda.

We are using Agda'’s Instance Resolution algorithm to reconstruct the formal proof
from these hints.

Summary of results

+ Optics: a zoo of accessors used by programmers [Kmett, lens library, 2012].
+ We have a definition that captures all of them [Riley, 2018].
+ We give a new derivation of Traversal as the optic for analytic functors.
+ We give a description of the fixed Traversal.

+ Profunctor optics, equivalence: for Tambara [Pastro/Street, 2008], [MilewsRi,
2017] and endofunctors [Riley], [Boisseau/Gibbons].
+ We provide a new proof for [Optic, Set] = Mod from general principles in
2-category theory.
+ With this, we can directly extend the proof of [Pastro/Street, 2008] to any arbitrary
action (same result in [Boisseau/Gibbons] with a different proof technique).

+ Composition of optics: lattice described in [Pickering/Gibbons/Wu, 2016].

+ We construct the optics that arise by composition using coproducts of the actions.
+ We get the Affine traversal as in [Boisseau/Gibbons] as a particular case.
+ We get a new optic composing Lenses and Grates.

» Formal verification: development of a library of optics in Agda.

+ We formally verify proofs of equivalence.
+ We automate reasoning with isomorphisms in Sets.
+ We extract the translation algorithms from the formal proofs.

Further work

» Generalizations: in which other settings do this theorems apply?
+ Our proof works over any enrichment. Study optics over other enrichments.
« In fact, this seems to work for any pseudomonoid. Can we do a formal theory of optics
for categories other than Cat?
« Consider unidirectional optics, everything that works for C°”? x C works also for just
C.

- Simplify the theory with categories: our proofs should be as simple as possible.
+ We almost exclusively rely on Yoneda and definitions.
« Simpler proofs mean simpler formalizations and simpler implementations.

« Other directions:

+ Teleological categories [Hedges, 2019] and their relations to optics.
+ Van Laarhoven representations [Van Laarhoven, 2009] and study the connection in
[Riley, 2018].

» Applications: which optics are useful to programmers?
+ Once the framework has been established, it should be easier to come up with new
optics.
+ Develop a formal library of optics in Agda.

