
Profunctor optics: a categorical update

Mario Román, Bryce Clarke, Fosco Loregian, Emily Pillmore,
Derek Elkins, Bartosz Milewski and Jeremy Gibbons
September 5, 2019

SYCO 5, University of Birmingham

Motivation

Part 1: Motivation

Lenses

De�nition (Oles, 1982)

Lens

((
a

b

)
,

(
s

t

))
= Sets(s, a)× Sets(s× b, t).

(example) view: Postal→ Street

update : Postal× Street→ Postal

Prisms (alternatives)

De�nition

Prism

((
a

b

)
,

(
s

t

))
= Sets(s, t+ a)× Sets(b, t).

(example) match: String→ String + Postal

build : Postal→ String

Traversals (and multiple foci)

De�nition

Traversal

((
s

t

)
,

(
a

b

))
= Sets

(
s,
∑

n
an × (bn → t)

)
.

(example) extract : MailList→
∑
n∈N

Emailn × (Emailn →MailList)

This is not modular

How to compose two lenses? How to compose a Prism with a Lens?

(
s

t

) (
a

b

) (
x

y

)
m,b

prism

v,u

lens

Every case (Prism+Lens, Lens+Prism, Traversal+Prism+Other. . .) needs special attention.
For instance, a lens and a prism

v ∈ Sets(s, t+ a) m ∈ Sets(a, x)

u ∈ Sets(b, t) b ∈ Sets(a× y, b)

can be composed into the following morphism, which is neither a lens nor a prism.

m ◦ [idt,v × Λ(b ◦ u)] ∈ Sets(s, t+ x× (y → t)).

This is not modular

How to compose two lenses? How to compose a Prism with a Lens?

(
s

t

) (
a

b

) (
x

y

)
m,b

prism

v,u

lens

Every case (Prism+Lens, Lens+Prism, Traversal+Prism+Other. . .) needs special attention.
For instance, a lens and a prism

v ∈ Sets(s, t+ a) m ∈ Sets(a, x)

u ∈ Sets(b, t) b ∈ Sets(a× y, b)

can be composed into the following morphism, which is neither a lens nor a prism.

m ◦ [idt,v × Λ(b ◦ u)] ∈ Sets(s, t+ x× (y → t)).

This is not modular (in code)

-- Given a lens and a prism,
viewStreet :: Postal -> Street
updateStreet :: Postal -> Street -> Postal
matchAddress :: String -> Either String Postal
buildAddress :: Postal -> String

-- the composition is neither a lens nor a prism.
parseStreet :: String -> Either String (Street , Street -> Postal)
parseStreet s = case matchAddress s of

Left addr -> Left addr
Right post -> Right (viewStreet post, updateStreet post)

Profunctor optics

Perhaps surprisingly, some optics are equivalent to parametric functions over
profunctors.

• Lenses are parametric functions.

Sets(s, a)× Sets(s× b, t) ∼= ∀p ∈ Tmb(×).p(a, b)→ p(s, t)

• Prisms are parametric functions.

Sets(a, a+ x)× Sets(y, b) ∼= ∀p ∈ Tmb(+).p(x, y)→ p(a, b)

Where p ∈ Tmb(⊗) is called a Tambara module; this means we have a natural
transformation p(a, b)→ p(c⊗ a, c⊗ b) subject to some conditions

This solves composition
Now composition of optics is just function composition. From p(a, b)→ p(s, t) and
p(x, y)→ p(a, b) we can get p(x, y)→ p(s, t).

Profunctor optics

Perhaps surprisingly, some optics are equivalent to parametric functions over
profunctors.

• Lenses are parametric functions.

Sets(s, a)× Sets(s× b, t) ∼= ∀p ∈ Tmb(×).p(a, b)→ p(s, t)

• Prisms are parametric functions.

Sets(a, a+ x)× Sets(y, b) ∼= ∀p ∈ Tmb(+).p(x, y)→ p(a, b)

Where p ∈ Tmb(⊗) is called a Tambara module; this means we have a natural
transformation p(a, b)→ p(c⊗ a, c⊗ b) subject to some conditions

This solves composition
Now composition of optics is just function composition. From p(a, b)→ p(s, t) and
p(x, y)→ p(a, b) we can get p(x, y)→ p(s, t).

An example in Haskell

-- Haskell code --

let address = "15 Parks Rd, OX1 3QD, Oxford"

address^.postal
-- Street: 15 Parks Rd
-- Code: OX1 3QD
-- City: Oxford

address^.postal.street
-- "15 Parks Rd"

address^.postal.street <~ "7 Banbury Rd"
-- "7 Banbury Rd, OX1 3QD, Oxford"

Outline

• Existential optics: a de�nition of optic.
• Profunctor optics: on optics as parametric functions.
• Composing optics: on how composition works.
• Case study: on how to invent an optic.
• Further work: and implementations.

Preliminaries

Part 2: Existential optics

(co)Ends

Ends and Coends over a profunctor p : Cop ×C→ Sets are special kinds of (co)limits
, (co)equalizing its right and left mapping.∫

x∈C
p(x, x)

∏
x∈C

p(x, x)
∏

f : a→b
p(a, b)

p(f,id)

p(id,f)

⊔
f : b→a

p(a, b)
⊔
x∈C

p(x, x)

∫ x∈C
p(x, x)

p(f,id)

p(id,f)

Intuitively, a natural universal quanti�er (ends) and existential quanti�er (coends).

Fosco Loregian. “This is the (co)end, my only (co)friend”. In: arXiv preprint arXiv:1501.02503 (2015).

(Co)end calculus

Natural transformations can be rewritten in terms of ends. For any F,G : C→ D,

Nat(F,G) =

∫
x∈C

D(Fx,Gx).

We can compute (co)ends using the Yoneda lemma.∫
x∈C

Sets(C(x, a), Gx) ∼= Ga,∫ x∈C
Fx×C(a, x) ∼= Fa.

Continuity of the hom functor takes the following form.

D

(∫ c∈C
p(c, c), d

)
∼=
∫
c∈C

D(p(c, c), d),

D

(
d,

∫
c∈C

p(c, c)

)
∼=
∫
c∈C

D(d, p(c, c)).

(Co)end calculus

Natural transformations can be rewritten in terms of ends. For any F,G : C→ D,

Nat(F,G) =

∫
x∈C

D(Fx,Gx).

We can compute (co)ends using the Yoneda lemma.∫
x∈C

Sets(C(x, a)
x = a

, Gx) ∼= Ga,∫ x∈C
Fx×C(a, x)

x = a
∼= Fa.

Continuity of the hom functor takes the following form.

D

(∫ c∈C
p(c, c), d

)
∼=
∫
c∈C

D(p(c, c), d),

D

(
d,

∫
c∈C

p(c, c)

)
∼=
∫
c∈C

D(d, p(c, c)).

A de�nition of "optic"

De�nition (Milewski, Boisseau/Gibbons, Riley, generalized)
Fix a monoidal categoryM with a strong monoidal functor () : M→ [C,C]. Let
s, t, a, b ∈ C; an optic from (s, t) with focus on (a, b) is an element of the following
set.

Optic

((
a

b

)
,

(
s

t

))
=

∫ m∈M
C(s,ma)×C(mb, t).

Intuition: The optic splits into some focus a and some contextm. We cannot access
that context, but we can use it to update.

Lenses are optics

Proposition (from Milewski, 2017)
Lenses are optics for the product.


∼=





Proof. ∫ c∈Sets

Sets(s, c× a)× Sets(c× b, t) ∼= (Product)∫ c∈Sets

Sets(s, c)× Sets(s, a)× Sets(c× b, t) ∼= (Yoneda)

Sets(s, a)× Sets(s× b, t)

Lenses are optics

Proposition (from Milewski, 2017)
Lenses are optics for the product.


∼=





Proof. ∫ c∈Sets

Sets(s, c× a)× Sets(c× b, t) ∼= (Product)∫ c∈Sets

Sets(s, c)
c = s

× Sets(s, a)× Sets(c× b, t) ∼= (Yoneda)

Sets(s, a)× Sets(s× b, t)

Prisms are optics

Proposition (Milewski, 2017)
Dually, prisms are optics for the coproduct.




∼=





Proof. ∫ m∈Sets

Sets(s,m+ a)× Sets(m+ b, t) ∼= (Coproduct)∫ m∈Sets

Sets(s,m+ a)× Sets(m, t)× Sets(b, t) ∼= (Yoneda)

Sets(s, t+ a)× Sets(b, t)

Prisms are optics

Proposition (Milewski, 2017)
Dually, prisms are optics for the coproduct.




∼=





Proof. ∫ m∈Sets

Sets(s,m+ a)× Sets(m+ b, t) ∼= (Coproduct)∫ m∈Sets

Sets(s,m+ a)× Sets(m, t)
m = t

× Sets(b, t) ∼= (Yoneda)

Sets(s, t+ a)× Sets(b, t)

Traversals are optics

Theorem
Traversals are optics for the action of polynomial functors

∑
n cn × �n.


 ∼=





That is,∫ c

Sets (s,Σn(cn × an))× Sets (Σn(cn × bn), t) ∼= Sets(s,Σna
n × (bn → t)).

Traversals are optics: proof

Again by the Yoneda lemma, this time for functors c : N→ Sets.

∫ c

Sets
(
s,
∑

n
cn × an

)
× Sets

(∑
n
cn × bn, t

)
∼= (cocontinuity)∫ c

Sets
(
s,
∑

n
cn × an

)
×
∏
n

Sets (cn × bn, t) ∼= (prod/exp adjunction)∫ c

Sets
(
s,
∑

n
cn × an

)
×
∏
n

Sets (cn, b
n → t) ∼= (natural transf. as an end)∫ c

Sets(s,
∑

n
cn × an)× [N,Sets]

(
c�, b

� → t
)
∼= (Yoneda lemma)

Sets
(
s,
∑

n
an × (bn → t)

)
Programming libraries use traversable functors to describe traversals. Polynomials are
related to these traversable functors by a result of Jaskelio�/O’Connor.

Traversals are optics: proof

Again by the Yoneda lemma, this time for functors c : N→ Sets.

∫ c

Sets
(
s,
∑

n
cn × an

)
× Sets

(∑
n
cn × bn, t

)
∼= (cocontinuity)∫ c

Sets
(
s,
∑

n
cn × an

)
×
∏
n

Sets (cn × bn, t) ∼= (prod/exp adjunction)∫ c

Sets
(
s,
∑

n
cn × an

)
×
∏
n

Sets (cn, b
n → t) ∼= (natural transf. as an end)∫ c

Sets(s,
∑

n
cn × an)× [N,Sets]

(
c�, b

� → t
) c = b� → t

∼= (Yoneda lemma)

Sets
(
s,
∑

n
an × (bn → t)

)
Programming libraries use traversable functors to describe traversals. Polynomials are
related to these traversable functors by a result of Jaskelio�/O’Connor.

Uni�cation of optics

All the usual optics are of this form. Some new ones arise naturally.

Name Concrete Action
Adapter (s→ a)× (b→ t) Identity
Lens (s→ a)× (b× s→ t) Product
Prism (s→ t+ a)× (b→ t) Coproduct
Grate ((s→ a)→ b)→ t Exponential
A�ne Traversal s→ t+ a× (b→ t) Product and coproduct
Glass ((s→ a)→ b)→ s→ t Product and exponential
Traversal s→ Σn.an × (bn → t) Polynomials
Setter (a→ b)→ (s→ t) Any functor

Profunctor representation

Part 3: the Profunctor representation theorem
For an action () : M→ [C,C].

Tambara modules

De�nition (from Pastro/Street)
A Tambara module is a profunctor p together with a family of morphisms satisfying
some coherence conditions.

p(a, b)→ p(ma,mb), m ∈M.

Pastro and Street showed they are coalgebras for a comonad.

Θ(p)(a, b) =

∫
m∈M

p(ma,mb).

Or equivalently, algebras for its left adjoint monad Ψ a Θ.

Ψq(x, y) =

∫ m∈M ∫ a,b∈C
q(a, b)×C(ma, x)×C(y,mb)

We call Tmb to the Eilenberg-Moore category for the monad, or equivalently, for the
adjoint comonad.

Profunctor representation

Theorem (Boisseau/Gibbons)

Optics are functions parametric over Tambara modules.

Optic((a, b), (s, t)) ∼=
∫
p∈Tmb

Sets(Up(a, b), Up(s, t))

In fact,Optic is the full subcategory on representable functors of the Kleisli category
for Ψ.

Profunctor representation: proof

∫
p∈Tmb

Sets(p(a, b), p(s, t)) ∼= (Yoneda lemma)∫
p∈Tmb

Sets
(
Nat(よ(a, b), Up), Up(s, t)

) ∼= (Free Tambara)∫
p∈Tmb

Sets
(
Tmb(Ψよ(a, b), p), Up(s, t)

) ∼= (Yoneda lemma)

Ψよ(a, b)(s, t) ∼= (De�nition of Ψ)∫ m∈M ∫ x,y∈C
C(s,mx)×C(my, t)×よ(a, b)(x, y) ∼= (Yoneda lemma)∫ m∈M

C(s,ma)×C(mb, t)

Because Ψよ(a, b)(s, t) ∼= Nat(よ(s, t),Ψよ(a, b)), the category of optics is the full
subcategory on representable functors of the Kleisli category for Ψ.

Profunctor representation

Part 3: the Profunctor representation theorem
For an action () : M→ [C,C].

(This time in Prof!)

The bicategory Prof

The bicategory Prof has

• 0-cells are (small) categoriesA,B,C,D, . . ., as inCat;
• 1-cellsC 9 D are profunctors p : Cop ×D→ Sets,
• 2-cells p⇒ q are natural transformations.

Two profunctors p : C 9 D and q : D 9 E are composed into (q � p) : C 9 E with the
following (co)end.

(q � p)(c, e) =

∫ d∈D
p(c, d) × q(d, e).

Yoneda lemma makes the hom profunctorよ : Cop ×C→ Sets the identity.

The bicategory Prof

The bicategory Prof has

• 0-cells are (small) categoriesA,B,C,D, . . ., as inCat;
• 1-cellsC 9 D are profunctors p : Cop ×D→ Sets,
• 2-cells p⇒ q are natural transformations.

Two profunctors p : C 9 D and q : D 9 E are composed into (q � p) : C 9 E with the
following (co)end.

(q � p)(c, e) =

∫ d∈D
p(c, d) × q(d, e).

(Q ◦ P)(c, e) ⇐⇒ ∃d ∈ D. P (c, d) ∧ Q(d, e).

Yoneda lemma makes the hom profunctorよ : Cop ×C→ Sets the identity.

Promonads and the optics category

A promonad ψ ∈ [Aop ×B,Sets] is a monoid in the bicategory of profunctors.

Lemma (Kleisli construction in Prof, e.g. in Pastro/Street)
The Kleisli object for the promonad, Kl(ψ), is a category with the same objects, but
hom-sets given by the promonad, Kl(ψ)(a, b) = ψ(a, b).

For some �xed kind of optic, we can create a category with the same objects as
Cop ×C, but where morphisms are optics of that kind.

ψ((s, t), (a, b)) =

∫ m∈M
C(s,ma)×D(mb, t)

That is,Optic := Kl(ψ).

Kleisli object

h

F

F

µ

Ψ Ψ

Cop ×C

=

α

i

i

µ

Ψ Ψ

Cop ×C

Optic

∃!Gh

Theorem (Pastro/Street)
Functors [Optic,Set] are equivalent to right modules on the terminal object for the
promonad Mod(ψ), which are algebras for an associated monad.

It follows from the universal property of the Kleisli object that

Cat(Optic,Set) ∼= Prof(1,Optic) ∼= Mod(ψ).

I am using Dan Marsden’s macros for diagrams

Profunctor representation theorem

Theorem (Riley 2018, Boisseau/Gibbons 2018, di�erent proof technique)
Optics given by ψ correspond to parametric functions over profunctors that have
(pro)module structure over ψ.

Optic((a, b), (s, t)) ∼=
∫
p∈Mod(ψ)

p(a, b)→ p(s, t)

Proof. ∫
p∈Mod(ψ)

p(a, b)→ p(s, t) ∼= (lemma)∫
p∈[Optic,Sets]

p(a, b)→ p(s, t) ∼= (by de�nition)

Nat(−(a, b),−(s, t)) ∼= (Yoneda embedding)
Nat(Nat(Optic((a, b),�),−),Nat(Optic((s, t),�),−)) ∼= (Yoneda embedding)

Nat(Optic((a, b),�),Optic((s, t),�)) ∼= (Yoneda embedding)
Optic((s, t), (a, b))

Summary

• Optic is the full subcategory on representable functors of a Kleisli category.
• In Prof, it is a Kleisli object.

• Tambara modules are algebras for the monad.
• In Prof, they are (pro)algebras for the promonad. It follows that [Optic,Sets] ∼= Tmb.

Composition of optics

Part 4: Composition of optics

How Haskell composes optics

Given two optics for two actions α : M→ [C,C] and β : N→ [C,C].∫
p∈Tmb(α)

Sets(p(a, b), p(s, t)),

∫
q∈Tmb(β)

Sets(q(x, y), q(a, b)).

We can compose them into a function polymorphic over profunctors that are algebras
for both monads. ∫

(p,p)∈Tmb(α)×ProfTmb(β)
Sets(p(a, b), p(s, t))

In other words, we consider the following pullback.

Tmb(α)×Prof Tmb(β) Tmb(α)

Tmb(β) Prof

π

π

U

U

The coproduct comonad

Lemma
A pair of Tambara modules Tmb(α) and Tmb(β) over the same profunctor p is the
same as a Tambara modules Tmb(α+ β) for the coproduct action
α+ β : M + N→ [C,C].

For instance, Haskell would compose lenses and prisms into optics for an action of the
following form.

a 7→ c1 + d1 × (c2 + d2 × . . . a)

This is usually projected into an action of the following form a 7→ c+ d× a (replete
image of the action) that gives an optic called a�ne traversal.

Lattice of actions

With some notion of subcategory of endofunctors (replete subcategories and
pseudomonic functors), we can limit actions to submonoidal categories of [C,C].

Setter[C,C]

Traversal(Σ)

Glass(→,×) Affine(×,+)

Grate(→) Lens(×) Prism(+)

Adapter(id)

Kaleidoscopes: a case study

Part 5: A case study

Applicative functors

Let (M,⊗, i) be a monoidal category. [M,Sets] is monoidal with Day convolution.

(F ∗G)(m) =

∫ x,y∈M
M(x⊗ y,m)× F (x)×G(y)

Monoids for Day convolution are lax monoidal functors. We can compute free lax
monoidal functors as we compute free monoids.

F ∗ = id + F + F ∗ F + F ∗ F ∗ F + . . .

Lax monoidal functors for Sets are called applicative functors [McBride/Paterson].

The optic for applicative functors

∫ F∈App

Sets(s, Fa)× Sets(Fb, t)

∼= (Yoneda lemma)∫ F∈App

Nat (s× (a→ (−)), F)× Sets(Fb, t)

∼= (Free-forgetful adjunction for applicative functors)∫ F∈App

App

(∑
n

sn × (an → (−)) , F

)
× Sets(Fb, t)

∼= (Yoneda lemma)

Sets

(∑
n

sn × (an → b), t

)
∼= (Continuity)∏

n

Sets (sn × (an → b), t) .

This can be done in general for any functors that can be generated (co)freely.

Kaleidoscopes

Kaleidoscopes are optics for the evaluation of applicative functors ,
App→ [Sets,Sets]. They have a concrete description

Kaleidoscope

((
a

b

)
,

(
s

t

))
=
∏
n

Sets (sn × (an → b), t) .

List-lenses

Kaleidoscopes cannot be composed with lenses because (c×−) is not lax monoidal.
It is lax monoidal when c is a monoid. We can ask the residual to be a monoid.∫ c∈Mon

C(s, c× a)×C(c× b, t) ∼= (Product)∫ c∈Mon
C(s, c)×C(s, a)×C(c× b, t) ∼= (Free monoid)∫ c∈Mon
Mon(s∗, c)×C(s, a)×C(c× b, t) ∼= (Yoneda lemma)

C(s, a)×C(s∗ × b, t)

List-lenses

List lenses are optics for the product by a monoid , (×) : Mon× Sets→ Sets. They
have a concrete description

ListLens

((
a

b

)
,

(
s

t

))
= Sets(s, a)× Sets(s∗ × b, t)

List-lenses (unlike general lenses) compose with Kaleidoscopes!

Example

Take the iris dataset. Each entry is a Flower given by a species and four real numbers
Flower = Species× R4

+.
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
4.6,3.1,1.5,0.2,Iris-setosa
5.0,3.6,1.4,0.2,Iris-setosa
...

We de�ne a list-lens that implements some learning algorithm.

Flower→ R4
+

Flower∗ × R4
+ → Flower

We de�ne a Kaleidoscope that takes an aggregating function on R+ and induces a
componentwise aggregating function on the 4-tuples R4

+.

∏
n∈N ((R+)n → R+)→

((
R4
+

)n → R4
+

)

Example

List-lenses are, in particular, lenses; we can use them to view the measurements of the
�rst element of our dataset.

(iris !! 1)^.measurements

---- Output ----
Sepal length: 4.9
Sepal width: 3.0
Petal length: 1.4
Petal width: 0.2

Example

They are more abstract than a lens in the sense that they can be used to classify some
measurements into a new species taking into account all the examples of the dataset.

iris ?. measurements (Measurements 4.8 3.1 1.5 0.1)

---- Output ----
Flower:

Sepal length: 4.8
Sepal width: 3.1
Petal length: 1.5
Petal width: 0.1
Species: Iris setosa -- <<<< Clasifies the species.

Example

List-lenses can be composed with kaleidoscopes. The composition takes an
aggregation function and classi�es the result

iris >- measurements.aggregateWith mean

---- Output ----
Flower:

Sepal length: 5.843
Sepal width: 3.054
Petal length: 3.758
Petal width: 1.198
Species: Iris versicolor

Summary and further work

Part 4: Summary and further work

Summary

• Optics: a zoo of accessors used by programmers [Kmett, lens library, 2012].
• Concrete representation: each one is described by some functions.
• Existential representation: uni�ed de�nition of optics as a coend.
• Going from concrete to existential cannot be done in general, we look for some way of
eliminating the coend.

• Profunctor optics: for monoidal actions [Pastro/Street, 2008], [Milewski, 2017] and
general actions [Boisseau/Gibbons, 2018].

• Profunctor representation: can be composed easily.
• Going from existential to profunctor and back is done in general.

• Composition of optics: what do we get when composing two optics.
• Distributive laws is the obvious choice.
• In Haskell, we consider coproducts of monads.
• We get a lattice of optics.

Related and further work

• Lawful optics. Studied by [Riley, 2018].
• Programmers use lawful optics, optics with certain properties.

• Generalizations: in which other settings do we get useful results?
• Enrichments over a cartesian Benabou cosmos V .
• We have extended the theorems for mixed optics.

• Implementation: developing libraries of optics.
• A concise library in Haskell. https://github.com/mroman42/vitrea/
• Derivations in Agda / Idris allow us to extract translation algorithms for optics.
Everything we have been doing is constructive.

https://github.com/mroman42/vitrea/

Some literature

Oles, 1982. A category theoretic approach to the semantics of programming languages
(PhD thesis). De�nes lenses for the �rst time.

Kmett, 2012. Lens library. Implements optics in Haskell.

Pickerings/Gibbons/Wu, 2016. Profunctor optics: modular data accessors. Derives
lenses, prisms, adapters and traversals in Haskell.

Milewski, 2017. Profunctor optics, the categorical view. Tambara modules for lenses
and prisms.

Boisseau/Gibbons, 2018. What you needa know about Yoneda. General de�nition of
optics and a general profunctor representation theorem. Traversal as the optic for
traversables.

Riley, 2018. Categories of optics. General framework for obtaining laws for the optics.

https://www.cs.cmu.edu/afs/cs.cmu.edu/project/fox-19/member/jcr/www/FrankOlesThesis.pdf
https://www.cs.cmu.edu/afs/cs.cmu.edu/project/fox-19/member/jcr/www/FrankOlesThesis.pdf
https://hackage.haskell.org/package/lens-0.1
http://www.cs.ox.ac.uk/people/jeremy.gibbons/publications/poptics.pdf
https://bartoszmilewski.com/2017/07/07/profunctor-optics-the-categorical-view/
https://www.cs.ox.ac.uk/jeremy.gibbons/publications/proyo.pdf
https://arxiv.org/abs/1809.00738

