{-# OPTIONS --without-K #-} -- Agda-hott library. -- Author: Mario Román -- Composition. Properties of function composition. open import Base open import Equality module Composition where -- Associativity ∘-lassoc : ∀{ℓ} {A B C D : Type ℓ} → (h : C → D) → (g : B → C) → (f : A → B) → (h ∘ (g ∘ f)) == ((h ∘ g) ∘ f) ∘-lassoc h g f = refl (λ x → h (g (f x))) ∘-rassoc : ∀{ℓ} {A B C D : Type ℓ} → (h : C → D) → (g : B → C) → (f : A → B) → ((h ∘ g) ∘ f) == (h ∘ (g ∘ f)) ∘-rassoc h g f = inv (∘-lassoc h g f)