{-# OPTIONS --without-K #-}
-- Agda-hott library.
-- Author: Mario Román
-- Composition. Properties of function composition.
open import Base
open import Equality
module Composition where
-- Associativity
∘-lassoc : ∀{ℓ} {A B C D : Type ℓ} →
(h : C → D) → (g : B → C) → (f : A → B) →
(h ∘ (g ∘ f)) == ((h ∘ g) ∘ f)
∘-lassoc h g f = refl (λ x → h (g (f x)))
∘-rassoc : ∀{ℓ} {A B C D : Type ℓ} →
(h : C → D) → (g : B → C) → (f : A → B) →
((h ∘ g) ∘ f) == (h ∘ (g ∘ f))
∘-rassoc h g f = inv (∘-lassoc h g f)