{-# OPTIONS --without-K #-} -- Agda-hott library. -- Author: Mario Román -- Sigma. Equality introductors and eliminators in the case of -- dependent pairs. open import Agda.Primitive open import Base open import Equality module equality.Sigma {ℓᵢ ℓⱼ} {A : Type ℓᵢ} {P : A → Type ℓⱼ} where -- Two dependent pairs are equal if they are componentwise equal. Σ-componentwise : {v w : Σ A P} → v == w → Σ (fst v == fst w) (λ p → (p ✶) (snd v) == snd w) Σ-componentwise {v} {.v} (refl .v) = refl (fst v) , refl (snd v) Σ-bycomponents : {v w : Σ A P} → Σ (fst v == fst w) (λ p → (p ✶) (snd v) == snd w) → v == w Σ-bycomponents {(a , f)} {(.a , .f)} (refl .a , refl .f) = refl (a , f)