{-# OPTIONS --without-K #-} -- Agda-hott library. -- Author: Mario Román -- Interval. An interval is defined by taking two points (two -- elements) and a path between them (an element of the equality type). -- The path is nontrivial. open import Base open import Equality module topology.Interval where private -- The interval is defined as a type with a nontrivial equality -- between its two elements. data !I : Set where !Izero : !I !Ione : !I I : Type0 I = !I Izero : I Izero = !Izero Ione : I Ione = !Ione postulate seg : Izero == Ione -- Induction principle on points. I-ind : ∀{ℓ} {A : Type ℓ} → (a b : A) → (p : a == b) → I → A I-ind a b p !Izero = a I-ind a b p !Ione = b -- Induction principle on paths. postulate I-βind : ∀{ℓ} (A : Type ℓ) → (a b : A) → (p : a == b) → ap (I-ind a b p) seg == p