Normalization of a duoidal category
Related.
- duoidal category
- normal duoidal category
- Normalization of profunctors over a monoidal category
- Bimodule on a bicategory
References.
# Extra notes
Let $M$ be a bimonoid in the duoidal category $(π,β,I,β,N)$, with maps $e οΉ I β M$ and $m οΉ M β M β M$; and with maps $u οΉ M β N$ and $d οΉ M β M β M$. Consider the category of two-sided $M^β$-modules; this category has a monoidal structure lifted from $(π,β,N)$:
- the unit, $N$, has a module structure with $$MβNβM \overset{u β id β u}\longrightarrow NβNβN \longrightarrow N;$$
- the sequencing of two $M^β$-modules is a $M^β$-module with $$Mβ(AβB)βM β (MβM)β(AβB)β(MβM) β (MβAβM)β(MβBβM) β AβB.$$ Moreover, whenever $π$ admits reflexive coequalisers preserved by $(β)$, the category of $M^{β}$-bimodules is monoidal with the tensor of bimodules: the coequaliser $$A β M β B \rightrightarrows A β B \twoheadrightarrow A β_M B.$$ In this case $(\mathbf{Bimod}^{β}_M, β_M, M, β, N)$ is a duoidal category.
Definition. Let $(π,β,I,β,N)$ be a duoidal category with reflexive coequalisers preserved by $(β)$. The normalization (Garner, Lopez Franco, 2015) of $π$ is the normal duoidal category $$\mathcal{N}(π) = (\mathbf{Bimod}^{β}_N, β_N, N, β, N).$$