Normalization of a produoidal
Normal produoidal categories are the profunctorial analogue of normal duoidal categories. Produoidal normalization is analogue to duoidal normalization.
See also.
- Unit of the normalization monad
- Multiplication of the normalization monad
- Algebras of normalization are normal produoidals
# Proof
We define the following multiplication and unit for the promonad, $ππ$. They are constructed out of laxators of the produoidal category $π$ and Yoneda isomorphisms; thus, they must be associative and unital by coherence. The unit is defined by $$\begin{aligned} & π(A; B) \ \cong & \quad\mbox{(by unitality of $π$)} \ & π(A; I \otimes B \otimes I) \ \to & \quad\mbox{(by the laxators of $π$)} \ & π(A; N \otimes B \otimes N) \ = & \quad\mbox{(by definition)} \ & ππ(A; B). \ \end{aligned}$$
The multiplication is defined by, $$\begin{aligned} & β«^{B β π} ππ(A; B) Γ ππ(B; C) \ = & \quad\mbox{(by definition)} \ & β«^{B β π} π(A; N β B β N) Γ π(B; N β C β N) \ β & \quad\mbox{(by Yoneda lemma)} \ & π(A; N β N β C β N β N) \phantom{\int}\ β & \quad\mbox{(by laxators of $π$)} \ & π(A; N β C β N) \phantom{\int}\ = & \quad\mbox{(by definition)} \ & ππ(A;C). \phantom{\int}\ \end{aligned}$$
Let us now construct the unitors and the associators. Again, they are constructed out of laxators of the produoidal category $π$, the associators and unitors of $π$, and Yoneda isomorphisms. We first consider the right unitor. $$\begin{aligned} & β«^{X β βπ} βπ(A; B β X) Γ βπ(X; N) \ = & \quad\mbox{(by definition)} \ & β«^{X β βπ} π(A; N β B β N β X β N) Γ βπ(X; N) \ = & \quad\mbox{(by associativity of $π$)} \ & β«^{X β βπ, P β π} π(A; N β B β P) Γ π(P; N β X β N) Γ βπ(X; N) \ = & \quad\mbox{(by definition)} \ & β«^{X β βπ, P β π} π(A; N β B β P) Γ βπ(P;X) Γ βπ(X; N) \ = & \quad\mbox{(by Yoneda)} \ & β«^{P β π} π(A; N β B β P) Γ βπ(P; N) \ = & \quad\mbox{(by definition)} \ & β«^{P β π} π(A; N β B β P) Γ π(P; N) \ = & \quad\mbox{(by unitality)} \ & β«^{P β π} π(A; N β B β N). \ \end{aligned}$$ We now consider the left unitor. $$\begin{aligned} & β«^{X β βπ} βπ(A; X β B) Γ βπ(X; N) \ = & \quad\mbox{(by definition)} \ & β«^{X β βπ} π(A; N β X β N β B β N) Γ βπ(X; N) \ = & \quad\mbox{(by associativity of $π$)} \ & β«^{X β βπ, P β π} π(A; P β B β N) Γ π(P; N β X β N) Γ βπ(X; N) \ = & \quad\mbox{(by definition)} \ & β«^{X β βπ, P β π} π(A; P β B β N) Γ βπ(P;X) Γ βπ(X; N) \ = & \quad\mbox{(by Yoneda)} \ & β«^{P β π} π(A; P β B β N) Γ βπ(P; N) \ = & \quad\mbox{(by definition)} \ & β«^{P β π} π(A; P β B β N) Γ π(P; N) \ = & \quad\mbox{(by unitality)} \ & β«^{P β π} π(A; N β B β N). \ \end{aligned}$$ Finally, we consider the associator. We can do so in two steps, showing that both sides of the equation $$β«^{X β βπ} βπ(A; B β X) Γ βπ(X; C β D) β β«^{Y β βπ} βπ(A; Y β D) Γ βπ(Y; B β C)$$ are isomorphic to $π(A; N β B β N β C β N β D β N)$. The first side by $$\begin{aligned} & β«^{X β βπ} βπ(A; B β X) Γ βπ(X; C β D) \\ = & \quad\mbox{(by definition)} \\ & β«^{X β βπ} π(A; N β B β N β X β N) Γ βπ(X; C β D) \\ = & \quad\mbox{(by associativity)} \\ & β«^{X β βπ, P β π} π(A; N β B β P) Γ π(P; N β X β N) Γ βπ(X; C β D) \\ = & \quad\mbox{(by definition)} \\ & β«^{X β βπ, P β π} π(A; N β B β P) Γ βπ(P; X) Γ βπ(X; C β D) \\ = & \quad\mbox{(by Yoneda)} \\ & β«^{P β π} π(A; N β B β P) Γ βπ(P; C β D) \\ = & \quad\mbox{(by definition)} \\ & β«^{P β π} π(A; N β B β P) Γ π(P; N β C β N β D β N) \\ = & \quad\mbox{(by associativity)} \\ & π(A; N β B β N β C β N β D β N), \\ \end{aligned}$$ and the second side by $$\begin{aligned} & β«^{Y β βπ} βπ(A; Y β D) Γ βπ(Y; B β C) \\ = & \quad\mbox{(by definition)} \\ & β«^{Y β βπ} π(A; N β Y β N β D β N) Γ βπ(Y; B β C) \\ = & \quad\mbox{(by associativity)} \\ & β«^{Y β βπ, P β π} π(A; P β D β N) Γ π(P; N β Y β N) Γ βπ(Y; B β C) \\ = & \quad\mbox{(by definition)} \\ & β«^{Y β βπ, P β π} π(A; P β D β N) Γ βπ(P; X) Γ βπ(X; B β C) \\ = & \quad\mbox{(by Yoneda)} \\ & β«^{P β π} π(A; P β D β N) Γ βπ(P; B β C) \\ = & \quad\mbox{(by definition)} \\ & β«^{P β π} π(A; P β D β N) Γ π(P; N β B β N β C β N) \\ = & \quad\mbox{(by associativity)} \\ & π(A; N β B β N β C β N β D β N). \\ \end{aligned}$$
Tags: produoidal category, duoidal normalization, Monoidal contexts, Symmetric normalization of a produoidal.